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Abstract

We present the result of classification of Maxwell spaces with zero
current (electromagnetic waves) that admit subgroups of the Poincaré
group. For 3 < k < 6, we give examples of such spaces whose symmetry
group is k-dimensional.
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1. Introduction

In classical theory, the electromagnetic field is described by a skew symmetric
tensor Fj; on a four-dimensional real manifold M C R{ (a domain in the
Minkowski space) satisfying the Maxwell equations [1]
OiFji + 0jFy; + O by = 0,
VipFik = -4 Ji (1.2)

(i,7,k =1, ..., 4; the current J* must satisfy the equation V;J* = 0)!

LV}, is the covariant derivative acting by the rule: ViFi =0 F9 4T F™ —I—ankFim,
ViJ' =0k + % J™, where T, = 9" (Digr; + 0;9ki — Orgij)-
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We say that the Mazwell space is a triple (M, g, F), where M is a smooth,
real, four-dimentional manifold, F' = %Fijd:ﬂi A dz? is a generalized symplectic
structure? on M, and g = g;;dx'da’? is a pseudo-Euclidean metric on M with
the Lorentz signature (— — —+).

The equation dF = 0 means that the form F' is closed and is equivalent to
the first Maxwell equation. If the second Maxwell equation for the tensor Fj;
holds, then the Maxwell space corresponds to some electromagnetic field.

Let G, be the Poincaré group, i. e., the group of motions of the Minkowski
space (or, equivalently, the group of diffeomorphisms of manifold M that pre-
serve the structure (M, g)). Further, let G be the group of symplectomor-
phisms of the structure (M, F'). By Gs we denote the group of diffeomorphisms
of the manifold M that preserves both g and F', i. e., Gg = G, N Gr. Note
that Gg is a subgroup of G;. The Maxwell spaces with non-trivial groups Gg
are interesting, for example, in connection with the well-known method for
obtaining the first integrals of the Lorentz equations [2].

The electromagnetic fields that admit the group Gg were intensively stud-
ied in 1960-70s (see [3] — [8]). The relativistic symmetry groups (maximal sub-
groups of the Poincaré group that preserve tensor F;;) were found in |3, 4, 5| for
particular fields F}; (homogeneous fields, plane waves, etc.); the structure of
these subgroups was studied. The connected subgroups of the Poincaré group
that are invariant transformation groups of electromagnetic fields (relativistic
symmetry groups) were studied in [6, 7, 8]. In particular, it was proved that
the dimension of such a group is not greater than six [8]; the classification of
these groups was obtained in [6, 7]. The problem of classification with respect
to conjugation for connected subgroups of the Poincaré group was proposed in
[9] without any reference to electrodynamics.

Solution for the classification problem of Maxwell spaces that admit sub-
groups of the Poincaré group was proposed by the author in [10, 11]; it was
based on the classification obtained by I. V. Bel’ko [9]. The problem of group
classification for Maxwell spaces without current (MSWC or electromagnetic
waves) was considered by A. S. Ivanova and M. A. Parinov in [12] — [20];
there we described some classes Wy ; of MSWC that admitted certain sub-
groups, Gy, of the Poincaré group, but the existence of representatives for
every class was not proved.

Using the method proposed in [21]|, we construct representatives, if they
exist, for every class Wj;. Otherwise we prove that symmetry group Gg for
every Maxwell space of the class Wy is wider, actually, than G} ;. Note that,
for 1- and 2-dimensional groups Gy, the latter is impossible, see [22, 23].

In this paper, we present examples of MSWC whose symmetry group Gg
is k-dimensional and coincides with Gi; (3 < k < 6). We also announce the

2 Symplectic structure must be closed (dF = 0) and non-degenerate (det F;; # 0); for
generalized symplectic structure non-degeneracy is not required.

266



classification theorem for Maxwell spaces without current and give a sketch of
its proof; its complete proof is extremely long and at the moment it exist only
as a manuscript.

Suppose that L, is the Lie algebra of vector fields that corresponds to the
Poincaré group Gy, and {2’} are the Galilean coordinates. We choose the basis
in L, as follows:

e1 = (1,0,0,0), ez = (0,1,0,0), e5 = (0,0,1,0), es = (0,0,0,1),
€12 = <_x27xla 070)7 €13 = (ZL’370, _'rla())a €23 = (07 —1'3,1‘270),

= (x4, 0,0,xl), Coy = (0,3:'4,0,91;2), €34 = (O,O,x4,x3).

Subgroup G’ C G, is congjugate to subgroup G if there exists an element h €
G, such that G = h™'Gh. We use the classification of connected subgroups of
the Poincaré group up to conjugation obtained by I. V. Bel’ko [9]. His list of
subalgebras L;; C L, for dimensions 1-6, where every Ly is a representative
of the class of subalgebras conjugate to each other, is included in this paper as
Appendix. By L{¢, ..., &} we denote the span of vectors &, ..., &. By Gy,
we denote subgroup of the Poincaré group that corresponds to the Lie algebra
‘Ck,l-

For every group Gy, (algebra Ly ;), we define the class Cy; of Maxwell
spaces as follows. Tensor Fj; defining this class is a solution of the first Maxwell
equation (1.1) and is a solution of the invariance conditions for F;; with respect
to GkJI

Le Fij =0 (=1, ..., k), (1.3)

where the ¢, are basis vectors in L, and Lg, is the Lie derivative. Classes
Cl.1 were described in [10, 11].

The above-mentioned definition of classes Cj; yields the classification of
Maxwell spaces by means of subgroups of the Poincaré group G,. Indeed,
if G’ is an arbitrary subgroup of the Poincaré group, then it is conjugate to
a subgroup Gy,. So, there is a coordinate transformation z* = A%a" + o'
such that G’ = A~'Gy A for some A € G,. This means that the class Cy; of
Maxwell spaces, defined by the tensor Fj;, transforms into the class C’, defined
by the tensor '

Fyjr = FyyAy A (1.4)

the Maxwell spaces of class C" admit subgroup G'.3

For every group Gy, we define the class Wj; of Maxwell spaces without
current (MSWC) as follows: W is a subclass of the class Cj; such that tensor
F;; satisfies the second Maxwell equation with zero current

V. F* = 0. (1.5)

3 The latter means that # = B};xkl + b for any B € G’, and the matrix Fyy =
Fi’j/Bg/Bl]/ is equal to Fi/j’-
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The classes Wy, are described in [12] — [23]. The description of classes Wy,
yields the classification of Maxwell spaces without current (in particular, elec-
tromagnetic waves) in terms of subgroups of the Poincaré group as above.

For every Maxwell space (M, g, F') of classes Ci; or Wy, the dimension
of the symmetry group Gg is > k. But, for some Maxwell spaces of these
classes (sometimes, for all of them), their symmetry groups are broader than
Gr,. So, the following important question arises: does there exist in Cy; a
Maxwell space with symmetry group Gs = Gy, (a representative of the class)?
The same question is important for Wy ; as well. We give the answer to this
question for Maxwell spaces without current in Section .

2. Examples of Maxwell spaces without current

Here we give examples of Maxwell spaces without current admitting subgroups
G}, that may be symmetry groups for a given Fj;. We consider only the cases
3 <k < 6. For examples of cases with k = 1,2, we refer the reader to [22, 23|.

2.1 Examples for 3-dimensional subgroups

2.1.1. Class W31.. For L31. = L{e1,es,ea + e4}, we see that MSWC is
defined by the tensor F;; of the form

Fio=®, Fi3=0C), Fiu=0—®, Fp =V, Fyy =C5, F3, =Cy+V¥, (2.1)

where Cj, = const, while ® = ®(2% — 2?) and ¥ = ¥(z? — 2?) are arbitrary
functions.

Example 2.1. Let ® = Asin(2? — %), ¥ = Bsin2(2? — 2*), C; =0, Cy, = C,
C3 =0, Cy = D; then

FIQZASiD(JI2—.I‘4), F13:0, F14:C—ASil'l((L’2—.7)4),

2.2
Fy3 = Bsin2(2? — 2), Foy =0, Fyy = D — Bsin2(2* — 2%). (2:2)

If A#0, and B # 0, and C?+ D? # 0, then MSWC, defined by the tensor
(2.2), admits 3-dimensional group Gs = G 1.
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2.1.2. Class W39,. For L32, = L{e13 + Aea, €1, e} (A # 0), we have

2 4 2 4 2 _ .4 2 _ 4
Fm:ACOSx R —I—Bsinx R —f-OCOSx * +Dsin$ )\x,
22 4 2 4 gt T 22— o
Fi4 = Acos + Bsin — C'cos — Dsin ,
H A A ) )

2, 4 2, 4 2 4 2 4

— — 2.

F23:—Bcosx T —i—Asinx T —Deos T2 —I—C’Sinx )\$ , (2:3)
2 4 2, 4 2 _ .4 2 _ .4
F34:Bcosx R _ Asin 2 T —Deos T2 +C’sinx )\$ ,

F13 = K, F24 =1L (A,B,C, D,K,L = COTLSt).

If1) A#0and C #0or2) B#0 and D # 0, then Gg = G5 2,.
2.1.3. Class W3 3. For L35 = L{eis + ey, €1, e3} (1 # 0), we have

r? + 7t r? + 7t 2% — ot 2 — 2t
Fiy = Acos + Bsin + C'cos + Dsin ,
fu fu 1 It
2 4 2 4 2 .4 2 .4
F14:Acosx + Bsin R —C’cosx a: —Dsinx T ,
M M 1
2 4 2 4 2 .4 2 .4
F23:—Bcosx e —|—Asinx e —|—Dcosx Y _CosnT =2 , (2:4)
1 1 t [t
22 4 g 2 4 P S . S
F34 = Bcos + — Asin + D cos — C'sin ,
fu 1 fu 1

F13 = K, F24 =1L (A,B,C, D,K,L = COTLSt).

If1) A#0and C #0or2) B# 0 and D # 0, then Gg = G333.
2.1.4. Class Ws35. For L35 = L{ea, €1, es}, we have

Az? + Ba? Bx? + Az*
Fo=—o—15, Fs=K, Fu=———3—""13
(22)2 — (24)?2 (22)2 — (1) (25)
e Cz? + Dz* 2 I F Dz? + Ozt '
8= o g fu=L, I'sa= ooy
(2?)? — (2*)? (2?)? — (2*)?
where A, B,C, D, K, L are constants.
Example 2.2. Let B = C' = 0; then
Az? Azt
Foo= 55— —73, Fi=K, Fu=- )
(2?)? — (2*)? (2%)? — (2*)? (2.6)
Da? Da? '
Fa3 = Fou=1L, Fyu=F5——7

If A2 + D? # 0, then MSWC, defined by the tensor (2.6), admits 3-
dimensional group Gg = G35.
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2.1.5. Class W3 g,. For L36, = L{eas + Aes, ea, €4} (A # 0), we have

3 1 1 3 1 1
Fio = cosh% (Asin% —Bcos%) +sinh% (Csin% — D cos %) ,

3 1 1 3 1 1
Fiy= sinh% <Bcosx— —Asinx—) —i—coshx— (Dcosx— - Csinx—

A A A A )\> ’
3 1 1 3 1 1
Fys = sinh% (Acos% + Bsin%) + cosh% <Ccos% + Dsin%) ,
(2.7)
3 1 1 3 1 1
Fs = cosh% (Acos% + Bsin%) +sinh% (CCOS% + Dsin%) ,
F13:K, F24:L (A,B,C,D,K,L:const).
Example 2.3. Let B=C = D = 0; then
1 3 1 3
F12:Asinx—coshx—, Fis=K, Fi = —Asinx—sinhx—,
! 3 ! 3 '
F23:ACOSTSiHhT, F24:L, F34:ACOSTCOShX.

IfA 7é 0, then GS = G3,6a-

2.1.6. Class W3g. For L35 = L{e1a — €14 + Aea, €3, e3 — e4}, we have

ay , . 3 ay . s
Fip = _34 ($2)2 — ag@’ — 2—;\12$1 +ag, Fi3=a1@*+ a5, Fiqa=Fi+as,
a a
Fo3 = 31 (i2)2 + a5 + 2—;251 +ay, Foy =3 +as, Fy=—Fy—a,
(2.9)
where a;, = const, and
2 4
=2t + (x2+x4)2, g j\—x , =1
1
=t at (@ 4 a) 4 oy (20 4 )’ (2.10)

Example 2.4. Let ay = K in (2.9), and a; = 0 for k # 4; substituting (2.10)
for 7 in (2.9), we obtain

K K
Flg= ——a' — = (* + x4)2, Fi3 = Fy3 = F34, =0,
A A
& (2.11)
F14:F12+K, F24:_($2+:U4)'

A

If K # 0, then MSWC, defined by the tensor (2.11), admits 3-dimensional
group Gg = G .
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2.1.7. Ezample for the class Wy o, (W39 for A =0 and pr # 0). The Lie
algebra L3 9 takes the form L39, = L{eja — e14 + pies, €1, ea — eq}.
The Maxwell spaces without current, defined by the tensor

2 4 2 4
F12:F14:—[L'3 (blsinsﬂ T —bQCOSx e ),
1

2 4 2 4

i3 = blcosx e +bgsinx T ,
W
2.12)
2 4 2 4 (

Fys = —F3 =23 (blcosx e +bQSinx T >,

2 4 2 4
F24:/L(b18inx T —bgcosx e ),

7

admit the group Gsgp; if by # 0 or by # 0, then G'g = G5 gp.

2.1.8. Ezample for the class Wsg. (W39 for X % 0 and pr = 0). The Lie
algebra L34 takes the form L39. = L{e1a — €14 + Aea, €1, €2 — eq}.
The Maxwell space without current, defined by the tensor

K
F12:—(a:2+:r4)2, Fi3=0, Fyy=FIs+K,
22
" K (2.13)
Foy = —F3 = Xﬁﬁ?’, Foy = X(xz +at),

admits the group G o.; if K # 0, then Gg = Gsg..

2.1.9. Ezample for the class W310a (W10 for X # 0 and pp # 0). We
have
L3100 = L{e12 — €14 + Aea, e1 + pes, ea — eq}.

The Maxwell space without current, defined by the tensor

Al +2M2) 2 4\2 pA 1 3
FRo=—-—— - - I _
R U R R VR L
A
F13:O, F14:F12+A, F24:X({E2—|—J}4)’ (214)
_ _ 1 2 4\2 3
Foo = = = =gy P Tl ) =20

admits the group G3’10a; if A # 0, then GS = Gg}l(]a.
2.1.10. Ezample for the class Wz 10p (Ws10 for A =0 and  # 0). The
Lie algebra L3 10 takes the form L340, = L{e1a — €14, €1 + pes, ea — eq}.
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The Maxwell space without current, defined by the tensor

K(ux' —2%) . In(2® +2)

F12:F14:

P (@? + t)? poo
K 1 2 4
F13 = 3 1 COS n(x +x ),
p(x? + at) f
K(pz' — 23 In(z? 4 24
Fo3 = —F3y = — 2(M2 1 2) COsS ( >7
p(@? + at) p
K 1 2 4
Fu= —2 g T2 (2.15)
W + ) p

admits the group G3’10b,‘ if K 7& 0, then GS = G3,10b-

2.1.11. Ezample for the class W3 11. Wehave L31; = L{ei13+Neau, €1, €3}
Tensor F;; of the form

A 1 In
Fio = — (e/\‘p cos ((p — np) e~ cos (gp + _p)) , Fi3 = const,
2p A
A 1 1
Fiy=—— (e)‘“’ cos (90 - M) + e cos (90 + M))
2p A
A 1
Fy3 = 2,0 <e)“p sin( np) % sin ( 3 )) )
A
F3y = 2,0 (eA“’ sin ( ) A sin ( %)) ;

where

F5, = const,

(2.16)

vt =rcos(d —¢), x*=pcosh(Ap), 2° =rsin(d — ), 2*= psinh(\y),
(2.17)
defines MSWC that admits the group Gg11; if A # 0, then Gg = G311.

2.1.12. Class W313. For L3135 = L{ei3, €24, €2 — €4}, we have

La' + K23
L3 — Kot .
Fos = F34 = , Fag =N,

(@2 + 21)[(z")? + (2°)?]
where K, L, M, N are constants.
If K # 0 or L # 0, then MSWC, defined by the tensor (2.18), admits
3-dimensional group Gg = G's 13.
2.1.13. Class W3714. For ,63714 = L{€12 —eu+ )\61 + Hes, €23 +e34 +rvep+
Aes, ea — ey}, we have
Fio = Fiy = —p ®1(u) + ¢ Po(u) + Pu(u), Fiz = P1(u),

Fys = =3y = @ ®y(u) + 1 @1 (u) + 3( (2.19)

=
o
=
|
KA
1Y)
—~
<
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where

ved — (u+ M)zt
u? — A2+ pv

prt + (u— \)z?
u? — A2+ pv

7¢:

u=2?+2% o= : (2.20)

®3(u) and Py4(u) are arbitrary functions, ®4(u) is a solution of the equation

21 2u? + 20% + p? + V2
P’ P — o, =0 2.21
1+u2—)\2+uu ! (u?2 — A2 + pv)? ! ’ ( )

and
~2u®q(u) + (U — N+ )P (u)

At v

Dy (u) (2.22)

2.1.14. Class W3716. For 53,16 = L{@lg — €14, €241+ )\61 + pes, eg — 64}, we
have

Az — pln(2? + 21)) + D(z! — XIn(2? + 21)) + B

F12:F14:

z2 + 4 ’
Azt — AIn(2? + 21)) — D(2® — pIn(z* + 2*)) + C
e+
F13 == A, F24 =D (A, B, C, D = const). (223)

If A §é 0orD 7A 0, then GS = G3’16.

2.1.15. Class W3717. For 53’17 = L{612 — €14, €23 + €34, 624}, we have

12 = 24x'a® + B(2)? — («°)* + (% + 2%)%] + C
2a? + o) (@) + (@22 (@2 — (@ et
Bx? — Azt
Fi3 = 3
[(21)2 + (22)? + (22)2 — (2)?]
244 B[ - (PP - P4t C
2e? ) (@) 1 (2 + (@ — (@ et
- —2Bx'a® + A[(21)? — (23)? — (2% + 2%)?] LD (2.24)
2a®+ ') () + (@) + (@) — @) 2+t
Bzl + Az3
F24 - 35
(@2 + @2 + (@) — (20
3y = 2Bz'a’ — A(2')? — (2°) + (2 + 2")?] D

2a2 + 20) [(2)2 + (222 + (@3 — (@) % Fat

where A, B, C, D are constants.
If A 7é 0 orB 7& O, then GS = G3717.
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2.1.16. Class W3718. For £3,18 = L{612 — €14, €23 + €34, €13 + )\(62 — 64)},
we have

Fy = _% (@)= (@) +1) - % - Cui® - G,
Fi3 = C13% — C53° + Cs, Fiy= Fip+Cs, (2.95)
Fo= D (@)~ () 1) - 2% + O — O
Foy = Cs3° + O17° + Oy, Fyy = —Fyp3 — O,
where
C,=2C :i<Acos jA: + Bsin jzi ), Cy= ~L ,
1T T A NG 208 ) T (@) (2.26)

1 o7t £4 K
05 = —209 = ﬁ <—ASIDW + B cos m) s Cg = (fl)Q’

A, B, K, L are constants, and

1 3
9 x .3 x

P=attr = B =
r°+x T+

22,4 — ($1)2+<$2)2+(1‘3)2—(I4)2.
(2.27)

z

If A 7é 0orB 7é O, then GS = G3’18.

2.1.17. Class W3,19- For £3719 = L{€12 — €14, €23 + €34, €13 + )\624}5 we
have

Fa= - () - (3 +1) ~ "+ 603,
Fis :leQ—Onga Fiy :F12+O5a (2 28)
P (R A

Fyy = C53° + C13°, Fyy = —Fp3 — O},
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where

(1) A
+ (A sin In 2! — Bcos 111)\%4) sin ln}\jl] ,
Cs = (;41>2 [(A sin ln/\f‘l B cos ln)\x‘*) cos ln)\xl
_ <A cos In 7* + Bsin 1n)\:i4> sin ln/\jl] ,
(') = 571 (Acos ln/\ : + Bsin hl)\:il) ,
W(E) = % (A sin lnjl — Beos lnfl) : (2.29)

A, B are constants, and the change of coordinates is defined by (2.27).
If A#0or B#0, then Gs = G5 19.

2.2 Examples for 4-dimensional subgroups

2.2.1. Class Wyy. For L44 = L{e13 + Aea, €1, €3, €2+ e4} (A #0), we have

22— 4 g2 gt
— by sin N , Pz = bs,

F12 = —F14 = bl COS

o o (2.30)

F23 = F34 = bl sin + bz COS

s F24 = b4 (bz = CO?’LSt).

Let A # 0, b + 03 # 0, and b3 + b3 # 0; then MSWC, defined by the tensor
(2.30), admits 4-dimensional group Gg = Gy4.
2.2.2. Class Wy5. For Ly5 = L{ew, €1, e3, e2 + €4} we have
bl b2

Fro=—-Fy=—F— Fi=b; Iyn=Iuy=—F—

Foy =0y . (2.31
22 — ot g2 — gt TH T (2:31)

(b, = const)

Let one of the following conditions be fulfilled: 1) by # 0 and bs # 0, 2) by #
0 and by =+ 0,
3) bg 7£ 0 and b3 7é 0, 4) bQ 7é 0 and b4 7£ O, then GS = G4’5.

2.2.3. Class Wyr. For Ly7 = L{ei13 + Aeas, €1, €3, ea +e4} (A #0), we
have

rp 1 1
—Fiyp = Fiy = ° |:K1 sin <80 - M) + K, cos (%’ - H)] , Fiz = K,
p A A
rp 1 1
F23:F34:€— |:K1COS (@—M) —KQSiIl (@—ﬂ)} y }7124:[(47
p A A
(2.32)
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where K; = const, and the change of coordinates is defined by (2.17).
Let 1) Ki+ K3 # 0 and 2) K3 + K7 # 0, then Gg = Gy7.

2.2.4. Class W4,9a. For £4,9a = L{€12 —eq+ )\62, €1, €3, €3 — 64} ()\ 7é O),
we have

A

F12:F14:——($2+x4)+D7 F13:B7 F24:A7
A
A (2.33)

Let one of the following conditions be provided: 1) A # 0 and C # 0, 2)
D # 0 and B # 0; then Gg = G4,9,.

2.2.5. Class W4716. For ‘64,16 = L{elg —e14+ )\63, €23 + €34 + )\61, €13, €9 —
e4}, we have

Fig=Fiy = —p®i(u) + ¢ ®3(u), Fiz = ®1(u),

2.34
Fos = —F35 = p®o(u) + ¢ Oy (u), Foy = Pa(u), (2:34)
where
K
nl = e
Ku 3Ku  3K(u?+ \?) u
) = tan — 2.35
(W) = xpesoey T e T opa o mdtany, o (239)
K = const,
and by 1 3 by 3 1
o 4 AT Fux AT =2
BETAT, o= e YT A (2:36)
If K 7£ O, then GS = G4’16.
2.2.6. Class W4718. For £4,18 = L{elg, €13, €23, 64}, we have
Kzt Kz? K23
Flo=Flz=Fy=0, Fly=——" Fyy=—"" [j=—"
12 13 23 14 S 24 3 34 » (2.37)
(0= V@ P+ @R+ @), K = const).
If K 7é O, then Gs = G4’18.
2.2.7. Class Wy9. For L419 = L{e12, €14, €24, €3}, we have
Kzt K22 Kzt
Fo=F,=F,=0. Fia=—" Fpo=—"_ [, =

(u= /(1) + (22)2 — (24)2, K = const).

If K 7é O, then GS = G4’19.
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2.3 Examples for 5-dimensional and 6-dimensional sub-
groups

2.3.1. Class W5,5. For £575 = L{612 — €14, €93 + €34 + /\62, €1, €3, €2 — 64}
(A =0), we have

F12 = F14 = (I)(l‘z + ZL‘4), F13 = F24 = 0, Fgg = —F34 = ‘IJ(IQ + 1'4), (239)
where ®(u) and W(u) are arbitrary functions.

Example 2.5. Suppose in (2.39) ® = Ksin(z? + z*) and ¥V = L (K,L =
const). Then (2.39) takes the form

Fip = Fiy = Ksin(a? + 2), Fiz3=Fyy =0, Fo3 = —F3 = L. (2.40)
If K#0and L # 0, then Gg = G55 (A =0).
2.3.2. Class Wga. For Lgo = L{eys, ea, €1, €2, €3, €4}, we have
Flo=Fyy=Fy3=F3,=0, Fi3=C4, Foy =Cy (C1,Cy = const). (2.41)

IfC’l 7£ 0 or CQ 7é O, then GS = G6’2.
2.3.3. Class W673. For £6,3 = L{612 — €14, €923 + €34, €1, €9, €3, 64}, we
have

F12 = F14 = 017 F23 = —F34 = Cg, F13 = F24 =0 (Cl,CQ = const). (242)

IfCl 7é 0 or CQ 7é O, then GS = G6,3.

2.3.4. Class W675. For £6,5 = L{612 — €14, €23 + €34, €13 —|—)\€2, €1, €3, €3 —
es}, we have

2, .4 2 .4
F12:F14:C1Sinx T +02C08x —)i\-l” Fi3 = Fy =0,
2 .4 2., .4 (2.43)
v+ e ol
Fyy = —Fy, = C} cos — (5 sin (C1, Cy = const).

IfC’l 7é 0 or CQ 7& O, then GS = G6,5.
2.3.5. OZCLSS W6,6- For £6,6 = L{612 — €14, €23 -+ €34, €24, €1, €3, €2 — 64},

we have

K1 K2

Fl2=F14=272 Fi3 = Fy =0, F23:—F34=m7

+ a4’

(2.44)

(K1, Ky = const).
Ile 7é 0 or Kg 7é 0, then GS = G6,6-
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2.3.6. Class W677. For £6,7 = L{€12 — €14, 623+634, 613+/\€24, €1, €3, €2 —
e4}, we have

1 In(z? + 24 . In(2? + 2*
Flo=Fy = o <a1 cos%) — ag sin %) ;
Fi3 = F3 =0, (2.45)
1 . In(2? + %) In(z? + z*)
F23:—F34:m<alslnf+agcosf y

(a1, ag = const).
If ay # 0 or as # 0, then Gg = Gg 7.

3. The classification theorems of Maxwell spaces
without current

Theorem 3.1. (i) For every 1-dimensional or 2-dimensional subgroup of
the Poincaré group G, there exist Mazxwell spaces without current, such
that GS =G.

(ii) Classes of MSWC' corresponding to subgroups Guso, Gse, Gs9, Ge1,
Gea, Ges, Geo are empty.

(111) There do not exist MSWC with symmetry groups Gsia, Gsip, G326
(G372 fOT A= O), G374, G3,6b (G376 fO’f’ A= 0), G377, G379a (G379 fO?” A= on = 0),
G3,12; G3,15; G3,18b (G3,18 for A = 0)7 G3,20, G3,21, G4,1; G4,2, G4,3, G4,4b (G4,4
for X =0), Gus, Gag, Gagp (G4,9 for A =0), Gy10, Ga1, Ganz, Gz, Gy,
G4,15, G4,17, G4,20; G5,1; G5,2; G5,3; G5,47 G5,5 (f07" A F# 0); G5,6; G5,77 G5,8;
G5,9; G6,1; G6,4; G6,8; and G6,9-

For the other subgroups Gy, there exist MSWC such that Gg = Gj.

Sketch of the proof. Class W}, is defined by the tensor F;; that is a solution
of equations (1.1), (1.5) and (1.3) for basis vectors of algebra Ly ,;. Class Wy
is empty, if the system (1.1)-(1.5)—(1.3) has only trivial solution F;; = 0; this
is true for algebras listed in (ii).

To find the genuine symmetry group for Maxwell space of the class Wy
we must solve the equation

Lekij =0 (3.1)

with respect to £ € £,1. We say that MSWC (M, g, F) is a representative of
the class Wy, if the space of solutions of equation L¢F;; = 0 (Lie algebra Lg)
coincides with Ly ;. For dimensions k£ = 1, 2, the representatives are found in

4 Algebra L, consists of the vectors ' = a?ja:j + b*, where a?'j = g““akj and ar; = —ajr,
b’ are real numbers.

278



[22, 23]. If the class W}, corresponds to the group Gy that belongs to the list
in (iii), then it has no representatives (Lg # Ly, for every MSWC of Wy ,);
for the other subgroups Gy, we described the representatives in Section 2.

Theorem 3.2. (i) If subgroup G C G, conjugates to one of the following
subgroups: Gyo0, Gs6, Gs9, Ge1, Gea, Ges, Ge9, then the class W of MSWC,
which admits subgroup G, is empty.

(i1) Subgroup G C G, cannot be a symmetry group for MSWC, if it is
conjugate to one of the following subgroups: Gs 14, G315, Gsop (Gsa for A =10),
G3,47 G3,6b (G3,6 for X = 0)7 G3,7; G3,9a (G3,9 Jor X = p = 0); G3,12; G3,157
G3,18b (G3,18 f07” A= 0), G3,20; G3,21, G4,1, G4,2, G4,3; G4,4b (G4,4 f07" A= 0);
G4,6; G4,87 G4,9b (G4,9 for A = 0); G4,10; G4,11, G4,12, G4,13, G4,14, G4,15, G4,17;
G4,20; G5,17 G5,2, G5,3; G5,4; G5,5 (fOT A 7& 0), G5,6; G5,7; Gs,s; G5,9, G6,1, G6,4;
G6,8; and G679.

Sketch of the proof. Let the class W of MSWC, which admits subgroup
G, be non-empty, and G conjugate to one of subgroups Gy, listed in (i). Let
the tensor Fj; # 0 generate MSWC of class W. Using (1.4) we get MSWC of
class Wy, which corresponds to Gy, (see the paragraph above formula (1.4)).
Therefore Wy, ; is not empty, in contradiction to the assumption.

Note that formula (1.4) sets non-generating reflection of classes MSWC.
Otherwise this is a transformation of tensor Fj; by some substitution of
Galilean coordinates. Therefore symmetry groups have the same dimension as
for F; and for Fyj. As Gs # Gy, for classes Wy, which correspond to G
listed in (ii), then dim G's > k for conjugate subgroup GY%.

Conclusion

In this paper, we present the final results on the classification of Maxwell
spaces without current by subgroups of Poincaré group. Using this classifi-
cation we obtain many new wave solutions of Maxwell equations. Note that
these solutions may describe electromagnetic waves but also may not: many of
them are not electromagnetic waves as, for example, the static Maxwell spaces
without current. We hope this work will be useful for applications.

APPENDIX. Subgroups of the Poincaré group for di-
mensions 1-6 (Bel’ko’s list)

1-dimensional subalgebras of £,

1) Li1a = L{er}, L1y = L{es}, L11. = L{ea + es};
2) L12 = L{eis + Xea + pey} (A, pp = const, Au(A — pu) = 0);
3) L13= L{eas + Xeg} (A = const);
)

4) L14 = L{e1s — €14 + Aea + pes} (A, u = const, Ap = 0);
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5) L15 = L{eis + Aeas} (A = const # 0).

2-dimensional subalgebras of £,
1) Lo1, = L{e1, e}, Logp = L{ea, es}, Lo1. = L{e1, ea+es};
2) Loo = L{eis + peq, e}
3) Loz = L{eis + Aea, es};
4) Log = L{e1s + Aea, €3+ es};
5) Lo = L{eas + Nes, e1};
6) Log = L{eas + Nes, €2 —eq};
T) Loz = L{ers — era + Aea + peg, ex — es} (A = 0);
8) Log = L{eis —e1s + Aeg, e3};
9) Log = L{e1s + Aeas, €2 —eq} (A #0);
10) Lo10 = L{e1s, eaul;

)

11 £2711 = L{612 — €14 + )\61 —+ Hes, €23 + €34 — U€q + /\63}
A=0,u#0~X#0,u=0);

12) [,2712 = L{612 — €14, €24 + )\63}.

3-dimensional subalgebras of £,

1) L310 = L{e1,e3,e3}, L31p = L{eq, 2, e},
Ls1. = L{e1,es,es + ea};

2) L3z = L{eis+ ea, e, es};

3) Lyz = L{eis + peq, e, ez} (u#0);

4) L34 = L{eiz + Aea + e4), €1, €3};

5) L35 = L{eas, €1, e3};

6) L35 = L{eas + Nes, ea, e4};

7) L37 = L{eas + Aes, e1, ea — ey}

8) L3s = L{eis — e+ Aeg, €3, €3 —es};
)

9) L39 = L{e1a — e1q + Aea + pes, e1, ea —eq} (A= 0);
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10) Ls10 = L{e1s — e1s + Aea, e1 + pes, ez —es} (u# 0);
11) L3131 = L{eis + Aeas, e, ez} (A #0);
12) L3315 = L{eis + Aea, ea, eq);
13) L3153 = L{e1s, e, ez — es};
14) L314 = L{e1a — e1a + ey + pes, eas + esq + vey + es, ea — eq};
15) Ls15 = L{e1z — e1s, ea, es};
16) Ls16 = L{e12 — €14, €24 + Aey + pes, ez — eq};
17) L3517 = L{e12 — €14, €23 + €34, €24 };
18) L3138 = L{e1n — €14, €3+ €34, €13+ A(ex — eq)};
19) L319 = L{e1a — €14, €23 + €34, €13+ Aeas} (A # 0);
20) L3200 = L{e12, €13, es3};
)

21 £3721 = L{6127 €14, 624}'

4-dimensional subalgebras of £,
1) L41 = L{e1, ea, €3, es};
2) Lyo = L{e1s+ Xey, €1, €2, e3};
3) Ly3= L{eis+ Ney, €1, e3, eq};
4) L44 = L{e13 + Aea, €1, €3, ea+ eq};
5) Lis = L{ea, €1, €3, ea+e4};
6) Ly6= L{eas + e, €1, €2, es};
7) Laz = L{eiz + Neas, €1, e3, ex +ea} (A #0);
8) Lys = L{e1a —e1a+ Nes, €1, ea, es};
9) L49=L{e1a —e1a+ Aea, €1, €3, €2 —e4};
10) Ly10 = L{eis, ea, €1, €3}
11) L411 = L{e1s, €24, €2, es};
)

12) L4192 = L{e1a — e1a + Aes, ea3 + €34 + piea, €1, €z — eq};
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13) L4153 = L{e1a — €14, €21+ Ae1, e3, ex —eyq};
14) Ly14 = L{e1a — €14, €24+ Aes, €1 + pes, ea — eq};
15) Ly15 = L{e1a — €14, €23 + €34, €24 + ey, €2 — ey};

16) L416 = L{e1a — €14 + Nes, €3 + €31+ Aeq, €13, €2 — eq};

)
)
)
)
17) Lya7 = L{e1za — e1a, €23 + €34, €13+ Aeas, ez —eq} (A #0);
18) Lyis = L{ern, €13, €23, €s};
19) Lyi9 = L{iera, €14, €2, €3};
)

20) Ly20 = L{e12 — €14, €23+ €34, €13, €24}

5-dimensional subalgebras of £,
Ls1 ZL{€24, €1, €2, €3, 64};
Ls52 = L{eis + Xeas, €1, €2, €3, €4};
Ls3 = L{eis — e, €1, e, €3, es};

Ls54 = L{es, e, €1, €3, €2+ e4};

)
)
)
)
5) Lss5 = L{eia — €14, €a3 + 3+ Aea, €1, €3, €2 — e4};
) Lsg = L{eia — e, eas + Aes, e, €2, es};
) Lsr= L{€12 — €14, €24, €1, €3, €2 — 64};
) Lsg = L{e1a — €14, €3+ €34, €21+ Aes, €1, €2 — eq};
)

Ls59 = L{e1s — €14, €23 + €34, €13, €24, €2 — €4}.
6-dimensional subalgebras of £,
1) £6,1 = L{€127 €13, €23, €14, €24, 634};
2) Lo2 = L{es, €24, €1, €2, €3, €4};
3) Loz = L{e1n — €14, €33+ €34, €1, €2, €3, €4};
4) _6,4:[4{612—614, €94, €1, €92, €3, 64};
5)
)

Loz = L{e1s — €14, €23+ €34, €13+ Aea, €1, €3, €2 — eq};

6) L6 = L{e1a — €14, €23+ €34, €24, €1, €3, €2 — €4};
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7) Loz = L{e1a — €14, €23+ €34, €13 + Aeay, €1, €3, €2 — €4};
8) £6,8 = L{€12, €13, €23, €1, €2, 63};

9) Lso = L{eia, €14, €2, €1, €2, €4}.
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