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1. Introduction
In this paper we investigate projective equivalence of smooth curves on the
real projective plane. Some of these results are classical and known. Mainly
they go back to Halphen’s dissertation ([2]).

The considered curves are smooth but they have singularities in projective
sense. For example, singular, from the projective point of view, are points on
a curve, where tangent line has second order contact, i.e. inflection or flex
points. Another example gives points on a curve, where osculating quadric
has 5-th order contact, i.e. Monge points.
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We describe SL3 (R)-orbits of the projective action on jets of smooth plane
curves up to 5-th order and classify all possible projective singularities. The
level of 5-th jets taken for the only reason: starting from 6-jets regular orbits
have trivial stabilizers, and from the level of 7-jets first differential invariants
come up. This orbit classification gives projective classification, or projective
normal forms for smooth curves, up to 6-th order jets.

To find the complete algebra of differential invariants we reproduce the
Study derivation in suitable for us form. It allows us to prove that alge-
bra of polynomial differential invariants which separates regular orbits can
be obtained from the projective curvature by taking of higher Study deriva-
tives (Theorem 4). As a by-product of this theorem we get two results: normal
forms curves up to 10-th jets (Theorem 6) and projective classification of germs
regular smooth curves (Theorem 5).

The rest of the paper devoted to special classes of plane curves. The popular
and trivial classes plane curves such as straight lines and quadrics are singular
from the projective point of view. The next class is the class of W -curves,
introduced by Klein and Lie, we collected some known properties of these
curves (see, [3] and [4] for more details). The more important property of
these curves, in light of Theorem 5, is that they are not regular. They are
curves of constant projective curvature.

The first regular curves can be found in cubics and theorem 16 repeats the
known result that projective classes of regular cubics can be described by one
parameter. We give explicit formula to find this parameter.

The second important class of regular curves delivers by extremals of Study
functional (cf. [7]). The corresponding Euler equation has order 10 and there-
fore projective classes of such extremals can be described by two parameters.
Theorem 16 gives a constructive way to compute them.

2. Jets of curves
Let P2 be the real projective plane and let Jk be the manifold of k - jets of
non-parametrized curves on the plane P2. If L ⊂ P2 is a plane curve we denote
by [L]ka ∈ Jk the k -jet of the curve at the point a ∈ L.

We denote by πk,l : Jk → Jl, k > l, the natural projections:

πk,l : [L]ka 7−→ [L]la.

The structure of jet - manifolds can be described as follows: obviously J0 =
P2, and the fibres π−1

1,0 (a) , a ∈ P2, of the projection π1,0 are projectivizations
of the tangent planes P (TaP

2) = P1, and fibres π−1
k,k−1

(
[L]k−1

a

)
, when k ≥ 2,

are affine lines.
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The vector spaces associated with them are

Skτ ∗a ⊗ νa,

where τ ∗a = T ∗
a L - cotangent space, and νa = TaP

2/TaL - normal space to a
curve.

Let (x, u) be an affine chart on the plane and let (x, u, u1, ...., uk) be the
natural coordinates in the space of k -jets.

Here
ui

(
[L]ka

)
=

∂ih

∂xi
(b) ,

if L = Lh
def
= {u = h (x)} is a graph of function h in a neighborhood of point

a = (b, h (b)) .
In these coordinates the affine action is given by tensors

θ =
λ

k!
dxk ⊗ ∂u ∈ Skτ ∗a ⊗ νa,

and has the form

(x, u, u1, ..., uk−1, uk) 7−→ (x, u, u1, ..., uk−1, uk + λ) ,

where ∂u = ∂umodTaL.
Any smooth curve L ⊂ P2 determines curves L(k) ⊂ Jk, k-th prolongations

of L, formed by points [L]ka where point a runs over curve L.
The action of projective group SL3 (R) can be prolonged in manifolds Jk

in the natural way:
φ(k) : [L]ka 7−→ [φ (L)]ka

where φ is a projective transformation.

3. Model curves
The use of model curves is based on the following observation. Assume that we
have a class M of plane curves which is projectively invariant and such that for
any point xk ∈ Jk there is a unique curve L = L (xk) ∈ M such that xk = [L]ka,
for a = πk (xk) . Then points xk+1 = [L (xk)]

k+1
a can be taken as basic points

in the affine line π−1
k+1,k (xk) and the corresponding section m : Jk → Jk+1 we

consider as the zero section in the line bundle πk+1,k : Jk+1 → Jk.
Let now L ⊂ P2 be an arbitrary curve. Then curves L(k+1) ⊂ Jk+1 and

m
(
L(k)

)
⊂ Jk+1 differs on element ΘL ∈ Sk+1T ∗

L ⊗ νL.
The last tensor is a projective differential invariant of order (k + 1) in the

sense that
φ∗
(
Θφ(L)

)
= ΘL,

for arbitrary projective transformation φ.
Below we’ll realize this scheme for different classes of projective curves.
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3.1 Straight Lines

Let M be the class straight lines on the projective plane. Obviously, for any
point x1 ∈ J1 there is a unique line L (x1) , such that x1 = [L (x1)]

1
a.

Therefore , the above construction leads us projective differential invariant
of order 2

Θ2L ∈ S2T ∗
L ⊗ νL.

If L = Lh is the graph of function u = h (x) in the affine coordinates, then the
restriction of tensor Θ2 on this curve has the form:

Θ2L = h′′ (x)
dx2

2!
⊗ ∂u.

We write
Θ2 = u2

dx2

2!
⊗ ∂u

in the jet coordinates and
Θ2L = Θ2|L(2)

h
.

Denote by Π2 ⊂ J2 the submanifold, where Θ2 = 0.
Then the points

Π2 (L) = Π2 ∩ L(2)

are precisely inflection or flex points on the curve, i.e. points where tangent
lines have 2-rd order contact with the curve.

3.2 Quadrics

Let M be now the class of quadrics on the projective plane.
In affine coordinates each such quadrics is defined by the equation:

Q2 = a11u
2 + 2a12xu + a22x

2 + 2a1u + 2a2x + a3 = 0.

Taking derivatives of Q2 up to order 5 and eliminating a′s coefficients we arrive
at equation (

9 u5u2
2 + 40 u3

3 − 45 u2u4u3

)
u2 = 0.

If we really will consider only quadrics (u2 6= 0), then we get the Monge
equation:

9 u5u2
2 + 40 u3

3 − 45 u2u4u3 = 0,

or
u5 =

5u3u4

u2

− 40

9

u3
3

u2
2

.

In other words, for any point x4 ∈ J4 \ π−1
4,1 (Π2) there is a unique quadric

Q (x4) such that [Q (x4)]
4
a = x4.
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Therefore, as above, for any curve L we have projective differential invari-
ant

Θ5L ∈ S5T ∗
L ⊗ νL,

where

Θ5L =

(
h(5) − 5

h(3)h(4)

h(2)
+

40

9

(
h(3)
)3

(h(2))
2

)
dx5

5!
⊗ ∂u,

or
Θ5 =

(
u5 −

5u3u4

u2

+
40

9

u3
3

u2
2

)
dx5

5!
⊗ ∂u

in jet coordinates in the domain J5 \ π−1
5,2 (Π2) .

Denote by Π5 ⊂ J5 \ π−1
5,2 (Π2) the submanifold, where Θ5 = 0.

Then the points
Π5 (L) = Π5 ∩ L(5)

we call Monge points.
They are the points where osculating quadrics have 5-th order contact with

the curve.

3.3 Cubics

Let M be now the class of cubics on the projective plane.
In affine coordinates each such quadrics is defined by the equation:

Q3 = a111u
3 + 3a112u

2x + 3a122ux2 + a222x
3

+a11u
2 + 2a12xu + a22x

2 + 2a1u + 2a2x + a3 = 0.

Taking derivatives of Q3 up to order 9 and eliminating a′s coefficients we arrive
at equation (see, for example, [6]):

u2P7u9 + P8 = 0,

where P8 is a polynomial of degree 10 and order 8,

P7 = 7 (60)−3 det(M7)

is a a polynomial of degree 8 and order 7, and

M7 =

∥∥∥∥∥∥∥∥∥∥
120 u3 30 u4 6 u5 u6 u7/7
360 u2 120 u3 30 u4 6 u5 u6

−180 u2
2 0 20 u3

2 10 u3u4 2 u3u5 + 5u4
2/4

0 180 u2
2 120 u3u2 30 u4u2 + 20 u3

2 6 u5u2 + 10 u3u4

0 0 180 u2
2 180 u3u2 60 u3

2 + 45 u4u2

∥∥∥∥∥∥∥∥∥∥
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more explicitly

P7 = −33600 u2u3
6u4 − 810 u2

5u3u4u7 + 1134 u2
5u3u5u6 − 756 u2

4u3
2u5

2

+13230 u2
4u3u4

2u5 − 2835 u2
5u4u5

2 − 12600 u2
3u3

3u4u5 − 189 u2
6u6

2

−7875 u2
3u3

2u4
3 + 720 u2

4u3
3u7 − 4725 u2

4u4
4 + 11200 u3

8

+1890 u2
5u4

2u6 + 6720 u2
2u3

5u5 + 31500 u2
2u3

4u4
2 − 3150 u2

4u3
2u4u6

+162 u2
6u5u7.

Therefore,

u9 = − P8

u2P7

for cubics.
In other words, for any point x8 ∈ J8 \

(
π−1

8,2 (Π2) ∪ π−1
8,7 (Π7)

)
, where Π7 =

P−1
7 (0) ⊂ J7, there is a unique cubic Q (x8) such that [Q (xx)]

8
a = x8.

Therefore, as above, for any curve L we have projective differential invari-
ant

Θ9L ∈ S9T ∗
L ⊗ νL,

where
Θ9 =

(
u9 +

P8

u2P7

)
dx9

9!
⊗ ∂u

in jet coordinates in the domain J9 \
(
π−1

9,2 (Π2) ∪ π−1
9,7 (Π7)

)
.

Denote by Π9 ⊂ J9 \
(
π−1

9,2 (Π2) ∪ π−1
9,7 (Π7)

)
the submanifold, where Θ9 = 0.

Then the points
Π9 (L) = Π9 ∩ L(9)

we call Monge cubic points.
They are the points where osculating cubics have 9-th order contact with

the curve.

3.4 General Polynomial forms

Let M be now the class of curves on the projective plane, having degree n.
Each such polynomial is defined by k (k + 3) /2 coefficients. Hence, taking
derivatives up to order j = k (k + 3) /2 and eliminating these coefficients we
arrive at equation of the form Pjuj + Pj−1

4. SL3 (R)-orbits in the jet spaces

4.1 J2-orbits

The action of the projective group on the manifold of 1-jets is obviously tran-
sitive.
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The stabilizer of point (0, 0, 0) ∈ J1 is formed by matrices

A =

∥∥∥∥∥∥
a11 a12 0
0 a22 0

a31 a32 a33

∥∥∥∥∥∥ .

Action of such matrices on the fibre of projection π2,1 : J2 → J1 has the form:

A(2) : (0, 0, 0, u2) 7−→
(
0, 0, 0, a−3

11 u2

)
.

Therefore, there is the only one open regular orbit Π20 = J2 \ Π2 and the
singular orbit Π2:

J2 = Π20 ∪ Π2,

and points
p20 = (0, 0, 0, 1) ∈ Π20, p2 = (0, 0, 0, 0) ∈ Π2

can be taken as representatives.

4.2 J3-orbits

Consider the action of the stabilizer of point (0, 0, 0, 1) from the regular orbit
Π20 on the fibre of projection π3,2 : J3 → J2.

This stabilizer is formed by matrices

A =

∥∥∥∥∥∥
a11 a12 0
0 a2

11a
−1
33 0

a31 a32 a33

∥∥∥∥∥∥
and their action is the following affine action:

A(3) : (0, 0, 0, 1, u3) 7−→ (0, 0, 0, 1, αA u3 + βA) ,

where
αA = a33a

−1
11 , βA = 3 (a11a31 − a12a33) a−2

11 .

Therefore, Π30 = π−1
3,2 (Π20) is the open regular orbit.

The stabilizer of the point (0, 0, 0, 0) from the singular orbit Π2 formed by
matrices

A =

∥∥∥∥∥∥
a11 a12 0
0 a22 0

a31 a32 a33

∥∥∥∥∥∥
which act in the following way

A(3) : (0, 0, 0, 0, u3) 7−→
(

0, 0, 0, 0,
a33

a4
11

u3

)
.
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Therefore, the preimage π−1
3,2 (Π2) of the singular orbit is a union of two orbits

Π32 = {(x, u, u1, 0, 0)} and Π31 = π−1
3,2 (Π2) \ Π31 and J3 has the following

decomposition of SL3 (R)-action:

J3 = Π30 ∪ Π31 ∪ Π32,

where Π30 is the regular open orbit.
The following points

p30 = (0, 0, 0, 1, 0) ∈ Π30, p31 = (0, 0, 0, 0, 1) ∈ Π31, p32 = (0, 0, 0, 0, 0) ∈ Π32

can be taken as representatives of the orbits.

4.3 J4-orbits

Consider the action of the stabilizer of point (0, 0, 0, 1, 0) from the regular orbit
Π30 on the fibre of projection π4,3 : J4 → J3.

This stabilizer is formed by matrices

A =

∥∥∥∥∥∥
a11 a11a31a

−1
33 0

0 a2
11a

−1
33 0

a31 a32 a33

∥∥∥∥∥∥
with the following affine action:

A(4) : (0, 0, 0, 1, 0, u4) 7−→
(
0, 0, 0, 1, 0, a2

33a
−2
11 u4 +

(
6a33a32 − 3a2

31

)
a−2

11

)
.

Therefore, Π40 = π−1
4,3 (Π30) is an open regular orbit.

The stabilizer of point (0, 0, 0, 0, 1) from the singular orbit Π31 is formed
by matrices

A =

∥∥∥∥∥∥
a11 a12 0
0 a2

11a
−1
33 0

a31 a32 a33

∥∥∥∥∥∥
with the following affine action

A(4) : (0, 0, 0, 0, 1, u4) 7−→
(
0, 0, 0, 0, 1, a33a

−1
11 u4 + 8a31a

−1
11

)
.

Therefore, Π41 = π−1
4,3 (Π31) is an orbit.

Finally, the stabilizer of point (0, 0, 0, 0, 0) from Π32 is formed by matrices

A =

∥∥∥∥∥∥
a11 a12 0
0 a22 0

a31 a32 a33

∥∥∥∥∥∥
with the following action

A(4) : (0, 0, 0, 0, 0, u4) 7−→
(
0, 0, 0, 0, 0, a3

33a22a
−4
11 u4

)
.
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Therefore, the preimage π−1
4,3 (Π32) of the singular orbit Π32 is a union of two

orbits Π43 = {(x, u, u1, 0, 0, 0)} and Π42 = π−1
4,3 (Π31) \ Π43.

Summarizing, we see that there is the only one open and regular orbit Π40

and three singular orbits Π41, Π42 and Π43 :

J4 = Π40 ∪ Π41 ∪ Π42 ∪ Π43.

The following points

p40 = (0, 0, 0, 1, 0, 0) ∈ Π40, p41 = (0, 0, 0, 0, 1, 0) ∈ Π41,

p42 = (0, 0, 0, 0, 0, 1) ∈ Π42, p43 = (0, 0, 0, 0, 0, 0) ∈ Π43

can be taken as representatives of the orbits.

4.4 J5-orbits

Let’s begin with preimage of regular orbit Π40.
The stabilizer of point (0, 0, 0, 1, 0, 0) is formed by matrices

A =

∥∥∥∥∥∥
a11 a11a31a

−1
33 0

0 a2
11a

−1
33 0

a31
a2
31a33

2
a33

∥∥∥∥∥∥
and has the following action on the fibre:

A(5) : (0, 0, 0, 1, 0, 0, u5) 7−→
(
0, 0, 0, 1, 0, 0, a3

33a
−3
11 u5

)
.

Therefore, the preimage π−1
5,4 (Π40) of the regular orbit is a union two orbits:

the singular one Π5 and the open regular orbit Π50 = π−1
5,2 (Π20) \ Π5.

The stabilizer of point (0, 0, 0, 0, 1, 0) from the singular orbit Π41 is formed
by matrices

A =

∥∥∥∥∥∥
a11 a12 0
0 a3

11a
−2
33 0

0 a32 a33

∥∥∥∥∥∥
and acts in the following way

A(5) : (0, 0, 0, 0, 1, 0, u5) 7−→
(
0, 0, 0, 0, 1, 0, a2

33a
−2
11 u5 − 10a12a

2
33a

−3
11

)
.

Therefore, Π51 = π−1
5,4 (Π41) is an orbit.

The stabilizer of point (0, 0, 0, 0, 0, 1) from the singular orbit Π42 is formed
by matrices

A =

∥∥∥∥∥∥
a11 a12 0
0 a4

11a
−3
33 0

a31 a32 a33

∥∥∥∥∥∥
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and acts in the following way

A(5) : (0, 0, 0, 0, 0, 1, u5) 7−→
(
0, 0, 0, 0, 0, 1, a33a

−1
11 u5 + 15a31a

−1
11

)
.

Therefore,Π52 = π−1
5,4 (Π42) is an orbit too.

Finally, the stabilizer of point (0, 0, 0, 0, 0, 0) from the singular orbit Π43 is
formed by matrices

A =

∥∥∥∥∥∥
a11 a12 0
0 a22 0

a31 a32 a33

∥∥∥∥∥∥
and acts as following

A(5) : (0, 0, 0, 0, 0, 0, u5) 7−→
(
0, 0, 0, 0, 0, 1, a3

33a
−6
11 u5

)
.

Therefore, the preimage π−1
5,4 (Π43) is a union of two orbits:

Π54 = {(x, u, u1, 0, 0, 0, 0)}

and
Π53 = π−1

5,4 (Π43) \ Π54.

Summarizing, we conclude that SL3 (R)-action in J5 has the following orbit
decomposition:

J5 = Π50 ∪ Π5 ∪ Π51 ∪ Π52 ∪ Π53 ∪ Π54,

where Π50 is the only regular open orbit.
The following points

p50 = (0, 0, 0, 1, 0, 0, 1) ∈ Π50, p5 = (0, 0, 0, 1, 0, 0, 0) ∈ Π5,

p51 = (0, 0, 0, 0, 1, 0, 0) ∈ Π51, p52 = (0, 0, 0, 0, 0, 1, 0) ∈ Π52,

p53 = (0, 0, 0, 0, 0, 0, 1) ∈ Π53, p54 = (0, 0, 0, 0, 0, 0, 0) ∈ Π54

can be taken as representatives of the orbits.

4.5 J6-orbits

Let’s begin with preimage of regular orbit Π50. The stabilizer of point p50 is
formed by matrices

A =

∥∥∥∥∥∥
a33 a31 0
0 a33 0

a31
1
2
a31a

−1
33 a33

∥∥∥∥∥∥
which act in the following way

A(6) : (0, 0, 0, 1, 0, 0, 1, u6) 7−→
(

0, 0, 0, 1, 0, 0, 1, u6 +
3a31

a33

)
,
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and therefore Π60 = π6,5 (Π50) is an open regular orbit.
The stabilizer of the point p5 is formed by matrices

A =

∥∥∥∥∥∥
a11 a11a31a

−1
33 0

0 a2
11a

−1
33 0

a31
1
2
a2

31a
−1
33 a33

∥∥∥∥∥∥
with the following action:

A(6) : (0, 0, 0, 1, 0, 0, 0, u6) 7−→
(
0, 0, 0, 1, 0, 0, 0, a4

33a
−4
11 u6

)
.

Therefore, preimage π6,5 (Π5) is a union of three orbits

π6,5 (Π5) = Π+
61 ∪ Π−

61 ∪ Π62

with the following representatives

p+
61 = (0, 0, 0, 1, 0, 0, 0, 1) , p−61 = (0, 0, 0, 1, 0, 0, 0,−1) ,

p62 = (0, 0, 0, 1, 0, 0, 0, 0) .

The stabilizer of the point p51 = (0, 0, 0, 0, 1, 0, 0) ∈ Π51 contains matrices

A =

∥∥∥∥∥∥
a11 0 0
0 a3

11a
−2
33 0

0 a32 a33

∥∥∥∥∥∥
and acts in the following way

A(6) : (0, 0, 0, 0, 1, 0, 0, u6) 7−→
(
0, 0, 0, 1, 0, 0, 0, a3

33a
−3
11 u6 + 40a−3

11 a32a
2
33

)
.

Therefore, Π63 = π−1
6,5 (Π51) is an orbit.

The stabilizer of the point p52 = (0, 0, 0, 0, 0, 1, 0) ∈ Π52 formed by matrices

A =

∥∥∥∥∥∥
a11 a12 0
0 a4

11a
−3
33 0

0 a32 a33

∥∥∥∥∥∥
and acts in the following way

A(6) : (0, 0, 0, 0, 0, 1, 0, u6) 7−→
(
0, 0, 0, 1, 0, 0, 0, a2

33a
−2
11 u6

)
.

Therefore, π−1
6,5 (Π52) is a union of three orbits

π−1
6,5 (Π52) = Π+

64 ∪ Π−
64 ∪ Π65
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with representatives

p+
64 = (0, 0, 0, 0, 0, 1, 0, 1) , p−64 = (0, 0, 0, 0, 0, 1, 0,−1) ,

p65 = (0, 0, 0, 0, 0, 1, 0, 0) .

The stabilizer of the point p53 = (0, 0, 0, 0, 0, 0, 1) ∈ Π53 formed by matrices

A =

∥∥∥∥∥∥
a11 a12 0
0 a5

11a
−4
33 0

a13 a32 a33

∥∥∥∥∥∥
with the following action

A(6) : (0, 0, 0, 0, 0, 0, 1, u6) 7−→
(
0, 0, 0, 0, 0, 0, 1, a33a

−1
11 u6 + 24 a31a

−1
11

)
.

Therefore, Π66 = π−1
6,5 (Π53) is an orbit with representative

p66 = (0, 0, 0, 0, 0, 0, 1, 0) .

Finally, the stabilizer of the point p54 = (0, 0, 0, 0, 0, 0, 1) ∈ Π54 is formed by
matrices

A =

∥∥∥∥∥∥
a11 a12 0
0 a22 0

a13 a32 a33

∥∥∥∥∥∥ ,

which act in the following way:

A(6) : (0, 0, 0, 0, 0, 0, 0, u6) 7−→
(
0, 0, 0, 1, 0, 0, 0, a4

33a
7
11u6

)
.

Therefore, the preimage π−1
6,5 (Π54) is a union of two orbits Π67 and Π68 with

representatives

p67 = (0, 0, 0, 0, 0, 0, 0, 1) and p68 = (0, 0, 0, 0, 0, 0, 0, 0)

respectively.
Summarizing, we get the following result.

Theorem 4.1. SL3 (R)-action in J6 splits into the following orbit decomposi-
tion:

J6 = Π60 ∪ Π+
61 ∪ Π−

61 ∪ Π62 ∪ Π63 ∪ Π+
64 ∪ Π−

64 ∪ Π65 ∪ Π66 ∪ Π67 ∪ Π68,

with the following representatives

p60 = (0, 0, 0, 1, 0, 0, 1, 0), p+
61 = (0, 0, 0, 1, 0, 0, 0, 1) ,

p−61 = (0, 0, 0, 1, 0, 0, 0,−1) , p62 = (0, 0, 0, 1, 0, 0, 0, 0) ,

p63 = (0, 0, 0, 0, 1, 0, 0, 0) , p+
64 = (0, 0, 0, 0, 0, 1, 0, 1) ,

p−64 = (0, 0, 0, 0, 0, 1, 0,−1) , p65 = (0, 0, 0, 0, 0, 1, 0, 0) ,

p66 = (0, 0, 0, 0, 0, 0, 1, 0) , p67 = (0, 0, 0, 0, 0, 0, 0, 1) ,

p68 = (0, 0, 0, 0, 0, 0, 0, 0) .

252



As a corollary of this theorem we get the following SL3 (R)−classification
of 6-jets of projective curves.

Theorem 4.2. Let L ⊂ P2 be a smooth projective curve. Then for any point
a ∈ L there are projective coordinates (x, y) such that x (a) = y (a) = 0 and
the curve can be written in the form y = p (x) + ε (x) , where function ε (x)
has seventh order of smallness and polynomial p (x) has one of the following
form:

p60 (x) = x2 + x5, p±61 (x) = x2 ± x6, p±64 = x4 ± x6,

p62 (x) = x2, p63 (x) = x3, p65 = x4, p66 = x5, p67 = x6, p68 = 0,

where polynomials pij correspond to orbits Πij.

4.6 Stabilizers of regular orbit

The open orbit Π60 = J6 \ π6,2 (Π2) \ π6,5 (Π5) we call regular, and elements
of this orbit we also call regular. A point a ∈ L on a smooth projective curve
we call regular if [L]6a ∈ Π60 , if not the point is calling singular. It was
to note that our definitions differ from the standard ones: both regular and
singular points belong to smooth curve, and their singularity has projective
nature .Remark also that the previous theorem states that the regular orbit is
connected even though singular orbits Π2 and Π5 have codimension 1.

Before to consider differential invariants of projective curves we’ll finish this
section by description of stabilizers of regular point in Jk, when k = 2, 3, 4, 5, 6.

Take 2-jet p20 = (0, 0, 0, 1) . Then the stabilizer is a 4-dimensional group
and consist of matrices

St2 =


∥∥∥∥∥∥
1 α 0
0 β−1 0
γ δ β

∥∥∥∥∥∥
 ,

where (α, γ, δ) ∈ R3, β ∈ R\0.
For 3-jet p30 = (0, 0, 0, 1, 0) the stabilizer is a 3-dimensional group and

consist of matrices

St3 =


∥∥∥∥∥∥

1 α 0
0 β−1 0

αβ γ β

∥∥∥∥∥∥
 ,

where (α, γ) ∈ R2, β ∈ R\0.
For 4-jet p40 = (0, 0, 0, 1, 0, 0) the stabilizer is a 2-dimensional group and

consist of matrices

St4 =


∥∥∥∥∥∥

1 α 0
0 β−1 0

αβ 1
2
α2β β

∥∥∥∥∥∥
 ,
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where α ∈ R, β ∈ R\0.
For 5-jet p50 = (0, 0, 0, 1, 0, 0, 1) the stabilizer is a 1-dimensional group and

consist of matrices

St5 =


∥∥∥∥∥∥
1 α 0
0 1 0
α 1

2
α2 1

∥∥∥∥∥∥
 ,

and for 6-jet p60 = (0, 0, 0, 1, 0, 0, 1, 0) the stabilizer is trivial.

5. Projective Invariants

5.1 Relative Invariants

As we have seen, functions

P2 = u2,

P5 = u5 −
5u3u4

u2

+
40

9

u3
3

u2
2

determine singular orbits Π2 and Π5.
Therefore, they are relative invariants of the SL3 (R)- action.
Indeed, it is easy to check that

X(2) (P2) = α2 (X) · P2,

where

X =
(
2 a1,1x + a2,2x + a1,2u + a1,3 − a3,1x

2 − a3,2xu
)
∂x

+
(
a1,1u + 2 a2,2u + a2,1x + a2,3 − a3,1xu− a3,2u

2
)
∂u

is a general element of Lie algebra sl3 (R), and

α2 (X) = −3 ( a1,2 − a3,2x) u1 − 3 a1,1 + 3 a3,1x

the corresponding 1-cocycle.
Also

X(5) (P5) = α5 (X) · P5,

where

α5 (X) = −6 (a1,2 − a3,2x) u1 + 3 a3,2u− 9 a1,1 + 9 a3,1x− 3 a2,2.

It is also easy to see that the function P7 is a relative invariant.
Indeed,

X(7) (P7) = α7 (X) · P7,
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where

α7 (X) = −32 ( a1,2 − a3,2x) u1 − 40 a1,1 + 40 a3,1x− 8 a2,2 + 8 a3,2u.

Cocycles α2, α5 and α7 are not independent, and we have

16α2 + 8α5 − 3α7 = 0.

Another relative invariant we can get from the volume form Ω = dx ∧ du
because

X (Ω) = α0 (X) Ω,

where
α0 (X) = 3 a1,1 + 3 a2,2 − 3 a3,1x− 3 a3,2u,

and
α0 − 2α2 + α5 = 0.

The last relative invariant we get from the contact form ω = du− u1dx.
In this case

X(1) (ω) = α1 (X) ω,

where 1-cocycle α1 has the following form

α1 (X) = −(a1,2 − a3,2x)u1 + a1,1 + 2 a2,2 − a3,1x− 2 a3,2u,

and
2α0 − 3α1 + α2 = 0.

These relations between 1-cocycles allow us to construct the following in-
variant tensors.

Theorem 5.1. The following tensors on jet spaces are SL3 (R)-invariants:

Function
Q7 =

P7

P
8/3
5 P

16/3
2

∈ C∞ (π−1
7,6 (Π60)

)
.

Differential 1-form

ω5 =
P

2/3
5

P
5/3
2

ω ∈ Ω1 (Π50) .

Differential 2-form
Ω5 =

P5

P 2
2

Ω ∈ Ω2 (Π50) .
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5.2 Algebra of projective differential invariants

Let’s denote by τk and νk the vector bundles on Jk induced by projection πk,1

from the canonical bundles τ1, ν1 on J1, where

τ1

(
[L]1a

)
= TaL,

ν1

(
[L]1a

)
= TaP

2�TaL.

As we have seen symmetric differential forms

Θ2 = u2
dx2

2!
⊗ ∂u ∈ S2 (τ ∗2 )⊗ ν2

and
Θ5 =

(
u5 −

5u3u4

u2

+
40

9

u3
3

u2
2

)
dx5

5!
⊗ ∂u ∈ S5 (τ ∗5 )⊗ ν5

are SL3 (R)-invariants.
Remark that all bundles τk and νk are 1-dimensional. Therefore, there

exists a symmetric 3-form σ ∈S3 (τ ∗5 ) such that

Θ5 = 60 σ ·Θ2.

We call σ as Study 3-form.
This form is obviously SL3 (R)-invariant and in affine coordinates can be

written as follows
σ =

P5

P2

dx3.

In addition to Study form we introduce a Study derivation as a such total
derivation ∇ that

σ (∇,∇,∇) = 1.

Once more, in affine coordinates this derivation has the form

∇ =
P

1/3
2

P
1/3
5

d

dx
.

This is SL3 (R)-invariant derivation.
It is easy to check that invariant Q7 is an affine function in u7 having the

form

Q7 =
P

2/3
2

P
5/3
5

u7 + · · · .

Applying the Study derivation we get an 8-th differential invariant

Q8 = ∇ (Q7) =
P2

P 2
5

u8 + · · · , (5.1)

256



and

Q9 = ∇ (Q8) =
P

4
3

2

P
7
3

5

u9 + · · · .

Continue in this way we get differential invariants in each order k ≥ 7 :

Qk = ∇k−7 (Q7) =
P

k−5
3

2

P
k−2
3

5

uk + · · ·

These relations show that differential invariants Q7, . . . , Qk, separate
SL3 (R)-orbits in Jk if their projection to J6 coincides with regular orbit Π60.

We call such orbits regular.
Let us specify now the notion of differential invariant for this SL3 (R)-

action.
First of all remark that all bundles πk,k−1 : Jk → Jk−1 are affine, when k ≥

2. Therefore, we can talk about functions which are polynomial, or algebraic
in derivatives uk, k ≥ 2.

We say that a function f defined in open and dense domain in manifold
k-jets Jk is a SL3 (R)-differential invariant (or simply projective differential
invariant) of order k if

• X(k) (f) = 0, for any vector field X ∈ sl3 (R) , and

• function f is a polynomial with respect to uσ, σ ≥ 2, and P
±1/3
2 , P

±1/3
5 .

Theorem 5.2. 1. Any projective differential invariant of order k is a poly-
nomial of invariants Q7, ...., Qk.

2. The algebra differential invariants separates regular orbits.

Proof. We’ll use induction in k. Let Q be a differential invariant of order
k which is a polynomial of degree n in uk. Then, due to fact that Qk is a
polynomial of degree 1 in uk, we can represent Q in the following way

Q = anQ
n
k + · · · a1Q + a0,

where ai are functions on (k − 1)-jets.
Applying vector fields X ∈ sl3 (R) to both sides of this relation, we get

X(k−1) (an) Qn
k + · · ·+ X(k−1) (a1) Qk + X(k−1) (a0) = 0.

Therefore, X(k−1) (ai) = 0 for all i = 0, ..., n,X ∈ sl3 (R) , and we can use
induction. 2

257



6. Projective equivalence of plane curves

6.1 SL3 (R)- action

Let L and L̃ be smooth plane curves, and let L(k), L̃(k) ⊂ Jk be their prolonga-
tions. We say that L and L̃ are projectively equivalent if g (L) = L̃, for some
element g ∈ SL3 (R) .

Let’s
Qk (L) = Qk|L(k)

be the value of invariant Qk on the curve L.
Function Q7 (L) is called projective curvature of the curve.
We will consider such curves L that function Q7 (L) is a local coordinate

on it. It is equivalent that function ∇ (Q7) = Q8 does not vanish on L.
To distinguish this situation we say that curve L is a regular at point

a ∈ L, if its 5-jet belongs to the regular orbit, [L]5a ∈ Π50, and Q8 (L) does not
vanish at point a ∈ L.

Therefore, in a neighborhood of a regular point function Q7 (L) is a local
coordinate and

Q8 (L) = Φ (Q7 (L))

for some smooth function Φ.
We call this function defining function of the curve.
We say that two plane curves L and L̃ are projectively equivalent at points

a ∈ L and ã ∈ L̃ if there exist a projective transformation φ such that φ (a) = ã

and image φ (L) of curve L and L̃ coincide in a neighborhood of point ã.

Theorem 6.1. Two plane curves L and L̃ are projectively equivalent in neigh-
borhoods of regular points a ∈ L and ã ∈ L̃ if and only if Q7 (L) (a) =

Q7

(
L̃
)

(ã) and their defining functions coincide in a neighborhood of point
Q7 (L) (a).

Proof. The necessity condition is obvious. Let’s prove the sufficiency, and
let Φ be the defining function. Consider ordinary differential equation

Q8 − Φ (Q7) = 0 (6.1)

of the 8-th order.
Curves L and L̃ are local solutions of this equation.
Relation (5.1) shows that solutions of the above differential equation are

uniquely defined by their 8-jets.
Values of Q7 and Q8 on 8-jets [L]8a and [L̃]8ea equal and therefore these jets

belong to the regular orbit. Therefore,

φ(8)
(
[L]8a

)
= [L̃]8ea,
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for some projective transformation φ.
Moreover, projective transformations are symmetries of differential equa-

tion (6.1). Hence, φ (L) is a solution (6.1) too. But 8-jets of L̃ and φ (L) at
point ã equal. Therefore, due to uniqueness of solutions, L̃ = φ (L) . 2

Theorem 2 allows us to get normal forms of plane curves in a neighborhood
of regular point.

Theorem 6.2. Let L be a plane curve and let a ∈ L be a regular point.
Then there are affine coordinates (x, y) in a neighborhood a ∈ L, such that
x(a) = y (a) = 0, and curve L is given by equation y = Y (x) , where

Y (x) = x2 +
2

5
x5 +

108

35
k7x

7 +

(
1

2
+

81

35
k8

)
x8 +

(
1944

35
k2

7 +
54

35
k9

)
x9 +

+

(
54

5
k7 +

2916

25
k7k8 +

162

175
k10

)
x10 + · · · ,

and ki are values of Qi (L) at point a.

Remark 6.3. If Φ is the defining function of the curve then coefficients ki

can be computed as follows:

k8 = Φ (k7) , k9 = Φ′ (k7) Φ (k7) , k10 = Φ′′ (k7) Φ2 (k7) + Φ′ (k7)
2 Φ (k7) .

6.2 Cubics

As an example of application of the above theorem let’s consider cubic curves.
As we have seen these curves are solutions of equation

u2P7u9 + P8 = 0.

The left hand side of the equation is an obviously relative invariant.
This invariant can be written in terms of the known invariants as follows:

(P2P5)
5

(
−12600 Q7 Q9 + 14175 Q2

8 + 1225 Q8 − 259200 Q3
7 +

343

36

)
.

Therefore, if the cubic curve is an irreducible, i.e. is not union of quadric
and straight lines, then this curve satisfies the 9-th order differential equation

−12600 Q7 Q9 + 14175 Q2
8 + 1225 Q8 − 259200 Q3

7 +
343

36
= 0. (6.2)

The leading term of the last equation has the form

−12600
Q7P

4
3
2

P
7
3

5

u9 + · · · .
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Singularities for this equation in regular orbit belong to hyper surface

Q7 = 0.

In other words, on cubic curves we have three types of singularities:

• general singular points : 5-jet of the curve belongs to a singular orbit,

• non regular points: invariant Q8 vanishes,

• projectively flat points : projective curvature Q7 vanishes.

Theorem 6.4. Two plane connected cubic curves are projectively equivalent
if and only if there are regular points on them where projective curvatures and
their Study derivatives coincide.

Proof. The proof of local projective equivalency is similar to proof of the-
orem 5. The rest follows from the fact that cubics are algebraic curves. 2

Remark 6.5. This result can be reformulated as follows. Let L be a plane
curve. Define a new plane curve I (L) as a image of the map a ∈ L 7−→
(Q7 (L) (a) , Q8 (L) (a)) ∈ I (L) , and let I0 (L) ⊂ I (L) is the image of regular
points. Then the above theorem claims, that two connected cubics L and L̃

are projectively invariant if and only if I0 (L) = I0

(
L̃
)

.

7. Special curves on projective plane

7.1 W -curves

Two classes of projective curve we get from description of singular orbits:
straight lines and quadrics. The third class come from the description of sin-
gularities for cubics: these are curves of zero projective curvature, or solutions
of differential equation of 7-th order:

Q7 = 0.

This class is a subclass of so-called W -curves, introduced by Lie and Klein in
([4]).

Namely, straightforward computations show the following lemma is valid.

Lemma 7.1. SL3 (R)-orbits are transversal to curve L(8) at points where Q8 6=
0.
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Therefore, curves L for which SL3 (R)-orbits of prolongations L(8) have
dimension less then 9 should be solutions of the differential equation Q8 = 0.

In other words, such curves have constant projective curvature. They are
called W -curves (see, [3] ).

It follows from the above lemma that trajectories of vector fields from our
Lie algebra sl3 are W -curves. Counting dimensions shows that the dimension
of the space of solutions passing through a point a ∈ P2 for the differential
equation Q8 = 0 at regular point a ∈ P2 equals 7 that coincide with dimension
of nonparametric trajectories of vector fields from sl3.

The 3-rd description of W -curves was proposed by Klein and Lie. Namely,
let’s take three straight lines l1, l2 and l3 on projective plane which are in
general position and a plane curve L. Considering tangent line TaL as a straight
line on the plane, we define a number jL (a) to be equal the value of j-invariant
for 4 points [a, TaL ∩ l1, TaL ∩ l2, TaL ∩ l3] on TaL. Consider now such curves
for which j-number jL is a constant. They are also W -curves.

We have the following equivalent description of regular W -curves (see also
[3]).

Theorem 7.2. 1. W -curves are solutions of 8-th order differential equa-
tion Q8 = 0.

2. W -curves are non parametrized trajectories of vector fields from the
projective Lie algebra sl3.

3. W -curves are curves of constant projective curvature.

4. If projective curvature Q7 (L) of a curve L is a constant and equal k 6= 0,
then the j-number of this curve equal k3

k3−λ
, where λ = 675

21 952
.

Corollary 7.3. If a regular cubic is a W -curve then its projective curvature
equals

7 3
√

5

360
,

and j-number equals

− 76

98 297 351
.

7.2 Study extremals

Another class of curves we obtain from the Study differential.
To this end let’s consider the following functional

L 7−→
∫

L

3
√

σ,
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or in affine coordinates

y (x) 7−→
∫ b

a

3

√
9 y(5) (y(2)) 2 + 40 (y(3))

3 − 45y(2)y(3) y(4)

y(2)
dx,

assuming that L is not a straight line, and call it Study functional.
Straightforward computations show that the following theorem is valid.

Theorem 7.4. Extremals of the Study functional are solutions of the following
differential equation of the 10-th order:

P5

P 2
2

(Q10 − 24Q7Q8) = 0. (7.1)

Corollary 7.5. W -curves are extremals of the Study functional.

Corollary 7.6. If a regular cubic L is an extremal of the Study functional
then L is the W -curve.

8. Defining functions
In this section we consider a behavior of defining functions for cubics and Study
extremals. It is worth to note that for straight lines, quadrics and W -curves
the defining functions do not exist.

8.1 Cubics

Let Φ be the defining function of a cubic L considered in a neighborhood
of regular point. Then, applying the Study derivative to the relation Q8 =
Φ (Q7) , we get Q9 = Φ′ (Q7) Φ (Q7) . Relation (6.2) can be rewritten now as a
differential equation for defining function Φ (τ):

343

36
− 259200 τ 3 − 12600 τΦΦ′ + 14175 Φ2 + 1225 Φ = 0.

Integrating this equation we get the following relation between invariants Q7

and Q8 which depends on arbitrary constant c and has the following form

F 3 + cGQ7
9 = 0,

where

F =
49

147456
Q8

4 +
343

3317760
Q8

3 +

(
2401

199065600
+

7

192
Q7

3

)
Q8

2

+

(
− 49

25920
Q7

3 +
16807

26873856000

)
Q8 (8.1)

+

(
Q7

3 − 343

1036800

)(
Q7

3 − 343

9331200

)
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and

G = 117649− 6401203200 Q7
3 + 18151560 Q8 + 583443000 Q8

2+ (8.2)
87071293440000 Q7

6 − 493807104000 Q7
3Q8

+3174474240000 Q7
3Q8

2 + 7001316000 Q8
3 + 28934010000 Q8

4.

In other words, regular cubics are projectively defined by constant c.

8.2 Study extremals

Rewriting Euler equation (7.1) in terms of defining function we get the follow-
ing differential equation

Φ2Φ′′ + ΦΦ′2 − 24τΦ = 0.

Integrating, we get the following relation between invariants Q7 and Q8 :

Q2
8 −

(
8Q3

7 − c1Q7 + c2

)
= 0, (8.3)

which depends on two arbitrary constant c1 and c2.
Summarizing, we arrive at the following description of non singular cubics

and Study extremals.

Theorem 8.1. • Projective classes of regular cubics are defined by an
arbitrary constant c, where

F 3 + cGQ7
9 = 0,

and expressions for invariants F and G are given in (8.1) and (8.2).

• Projective classes of regular Study extremals are defined by relation (8.3)
depending on two arbitrary constants c1 and c2.
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