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Abstract

The Riemann-Hilbert boundary value problem for generalized ana-
lytic functions in Smirnov classes is under consideration. The domain is
supposed simply connected with Lyapunov or Radon boundary without
cusps. In the work the special representation for generalized analytic
functions of Smirnov classes is built. This representation has indepen-
dent interest.
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1. Introduction. Basic definitions
Riemann-Hilbert problem for complex holomorphic functions in the classic
Smirnov classes was studied in the works: [1] for the Lyapunov boundaries and
[2] for domains with Radon boundaries. Smirnov classes for the generalized
analytic functions for the first time were introduced by K.M. Musaev [3].
Later he investigated various properties of these classes in [4]–[8]. Boundary
value problems are not considered except «jump problem» [8]. Some new
properties of these classes (including criteria for the solvability of boundary
value problems for Hardy class of generalized analytic functions) were received
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in [9]–[14]. In this paper Riemann-Hilbert problem for generalized analytic
functions is reduced to 2D integral equations. This approach generalizes the
scheme, developed by I.N. Vekua [15, Chapter 4, § 7] for a unit circle and
Hölder up-to-edge solutions. For this purpose in the proposed work the special
representation «of the second type» is built for generalized analytic functions
in the domains with non-smooth boundaries.

This paper generalizes the results of the works of the author [1], [2], [10].
The main difficulty is the impossibility in the case of the non-smooth border to
reduce the problem by conformal mapping to one in Hardy class of generalized
analytic functions.

Let G is bounded simply connected domain in complex z-plane, z = x +
iy, , i2 = −1, with rectifiable boundary Γ = ∂G; G = G ∪ Γ; A(z), B(z) ∈
Ls(G) s > 2 1, are given complex functions. Without limiting the generality,
we assume that the point z = 0 is located inside G.

We consider in G canonical elliptic system in the complex entry

∂z̄w + A(z)w + B(z)w = 0, (1.1)

where w = w(z) = u(z) + iv(z) is unknown complex function, u and v are its
real and imaginary parts, ∂z̄ = 1/2(∂/∂x + i∂/∂y) is derivative in the Sobolev
sense.

The solution w(z) of the system (1.1) is called generalized analytic function
[15, p. 148].

Let {Gn} is the sequence of domains, which closures lie inside G. The
boundaries Γn of domains Gn are assumed rectifiable and convergent to Γ in
the sense, that every point of z ∈ G belongs to all Gn starting with some
number n.

Definition 1.1. We shall say the solution of the system (1.1) belongs to a
class Ep(A, B), p > 0, if for some constant Mp < ∞, fullfill the inequalities∫

Γn

|w(z)|p|dz| ≤ Mp(w), n = 1, 2, . . .

at least for one sequence of rectifiable curves with above formulated property.

When A = B ≡ 0 we get the classical Smirnov class Ep [16, p. 422], [17,
p. 90].

Smirnov classes Ep(A, B) are defined similarly if the coefficients A(z),
(B)(z) and w(z) are defined in the exterior area of G.

Remark 1. When we get the classical Smirnov class Ep, one can reduce the
investigation to the Hardy class Hp by conformal mapping ϕ = ϕ(ζ) the unit

1We use the notation from book [15].
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disk D : |ζ| < 1 onto domain G (see [16, p. 423], [17, pp. 91-92]). We cannot do
it in general case Ep(A, B), because the equation (1.1) transforms to equation

∂ζ̄w + A(ϕ(ζ))ϕ′(ζ)w + B(ϕ(ζ))ϕ′(ζ)w = 0,

with «bad» coefficients, which are not in Ls(D), s > 2 in general.

Let ϕ = ϕ(ζ) is one-to-one conformal mapping the unit disk D : |ζ| < 1
onto G. Without loss of generality we take ϕ(0) = 0. We denote the boundary
of the disk D as C.

Remark 2. As in the classic case (see [17, p. 91]) we can take in the defini-
tion 1.1 as the curves Γn only the images of the circles Cr = {ζ : |ζ| = r < 1}
under conformal mapping ϕ = ϕ(ζ) [11]. We denote this images as Γr and put
Γ1 = C.

Definition 1.2 ([17, p. 90]). The domain G is called V.I. Smirnov domain
or the domain of class C if harmonic function ln |ϕ′(ζ)| can be represented by
Poisson-Lebesgue integral. Equivalently: holomorphic function ln ϕ′(ζ) can be
represented by Schwartz integral of ln |ϕ′(eiσ)| (ζ = reiσ).

If z = z(s) is the parametrical equations of rectifiable curve Γ, where
s ∈ [0, S] is the length of arc on Γ (S is the length of the whole curve Γ), then
almost everywhere on Γ we have z′(s) = eiθ(s). This equality defines the angle
θ(s) to within 2π. Geometric meaning the angle θ(s) is obvious — this is the
angle of inclination the tangent to the curve Γ.

Definition 1.3 ([17, p. 19]). If the angle θ(s) can be selected so that the
function θ(s) has bounded variation on [0, S], then we call Γ Radon curve.

We always can define the function θ(s) for ∀s ∈ [0, S] when the modules
of jumps of θ(s) are less or equal π. Further we assume it’s done.

Definition 1.4 ([17, p. 20]). We call the point of the curve Γ the cusp point
if the module of jump of the function θ(s) is at this point equal π.

Definition 1.5 ([17, p. 14]). If the angle θ(s) can be selected so that the
function θ(s) ∈ Cα, 0 < α ≤ 1, in some neighborhood of arbitrary point of the
curve Γ, we call Γ Lyapunov curve.

Remark 3. Radon curves without cusp points and Lyapunov curves belongs
class C [17, p. 90].

Further we assume Γ Lyapunov curve or Radon curve without cusp points.
In this work we investigate Riemann-Hilbert (Hilbert) problem in the next

posing: to find in the domain G solution w = w(z) of the equation (1.1),
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w(z) ∈ Ep(A, B), p > 1, whose non-tangent limiting values on Γ satisfies
almost everywhere boundary condition

Re
{

λ(t)w(t)
}

= g(t), (1.2)

where t = t(s), s ∈ [0, S], is the affix of the point on Γ, λ = λ(t) is complex
measurable function defined on Γ and satisfies conditions 0 < k0 ≤ |λ(t)| ≤
k1 < ∞, k0, k1 are real constants, g(t) = g(t(s)) ≡ g(s) ∈ Lp(Γ) ≡ Lp[0, S]
is real function, defined on Γ. If we divide (1.2) by |λ(t)|, we get equivalent
boundary condition with |λ(t)| ≡ 1:

Re
{
e−iω(t)w(t)

}
= g(t), (1.3)

where ω(t) = arg λ(t). Further we assume |λ(t)| ≡ 1.
Further we shall use the notation f(t) ≡ f(t(s)) = f(s) for the function f

defined on Γ. If w(z) ∈ Ep(A, B), w(t) = w+(t), t ∈ Γ, mean the non-tangent
limit values on Γ when z → t ∈ Γ, z ∈ G. w−(t) mean the non-tangent limit
values on Γ when z → t ∈ Γ, z ∈ E \G, E is the complex z-plane.

Following [15, p. 179], we say that the equation

∂z̄w
∗ − A(z)w∗(z)−B(z)w∗(z) = 0, z ∈ G, (1.4)

is adjoint to the equation (1.1).
Generalizing [15, p. 301] we call the adjoint (homogeneous) problem to

(1.2) the problem of finding in G the solution of (1.4) w∗(z) ∈ Ep′(−A,−B),
1/p + 1/p′ = 1, which non-tangent limit values on Γ almost everywhere on Γ
satisfy boundary condition

Re {λ(t)t′(s)w∗(t)} = 0. (1.5)

Following [17, p. 190] (and [1], [2]) we assume that we can choose at least
one starting point s = 0 on Γ such that the function ω(s) satisfy the next
condition:

ω(s) = ω̃0(s) + ω̃1(s) + ω2(s), (1.6)

where ω̃0(s) is continuous function on [0, S] (at the ends we mean the one-
side continuity); ω̃1(s) is the function of finite variation on [0, S]; ω2(s) is
measurable function on [0, S] satisfying the next conditions:

|ω2(s)| ≤ νπ, 0 < ν <
1

2p
, 0 < ν <

1

2p′
,

1

p
+

1

p′
= 1. (1.7)

Without the loss of generality we assume [17, p. 190] that ω(0) = ω(S) and
ω̃1(s) is right-side continuous at the point s = 0. After these assumptions we
can rewrite (1.6) in the next form [17, p. 190]:

ω(s) = ω0(s) + ω1(s) + ω2(s), (1.8)
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where ω2(s) is former; ω1(s) is the jump function of ω̃1(s), {sk} is no more
than countable set of discontinuity points of ω̃1(s):

ω1(0) = 0, ω1(s) =
∑

0<sk<s

hk + [ω̃1(s)− ω̃1(s− 0)], 0 < s ≤ S,

hk = ω̃1(sk + 0) − ω̃1(sk − 0). The continuous on [0, S] function ω0(s) equals
to the sum ω̃0(s) + [ω̃1(s)− ω1(s)].

No more than countable set of jump points of the function ω(s) we denote
Ξ = {sk}.

If Γ is Radon curve, i.e. θ(s) is the function of finite variation, than for
θ(s) there is the expansion analogous (1.8) (with ω2(s) ≡ 0):

θ(s) = θ0(s) + θ1(s). (1.9)

Here the function θ0(s) is continuous on [0, S], and θ1(s) is the jump function
[17, p. 11–13]. The jumps of the function θ(s) we denote fn, and no more than
countable set of jump points of the function θ(s) we denote Θ = {sn}.

If Γ is Lyapunov curve then in (1.9) we get θ1(s) ≡ 0, θ(s) = θ0(s) ∈ Cα.
It’s obvious we can assume that the point s = 0 is not in the set Ξ ∪Θ.

Definition 1.6. We say that for the boundary value problem (1.2) ((1.3)) the
condition D is hold if:

1) when Γ is Lyapunov curve, in (1.8) or ω1(s) ≡ 0, or ω2(s) ≡ 0;
2) when Γ is Radon curve without cusp points, in (1.8) ω2(s) ≡ 0.

2. Supporting information
The problem under consideration for the equation (1.1) is reduced to the cor-
responding problem for holomorphic functions. The holomorphic problem in
turn is reduced to the problem in the unit disk [1], [2]. The index of the prob-
lem under consideration is defined through the index of the last problem in
the unit disk. We need some constructions from [1], [2] to define the index of
the problem.

We build on the disk D : |ζ| < 1 in the complex ζ-plain the function

Ψ(ζ) = Φ(ϕ(ζ)) [ϕ′(ζ)]
1/p

, (2.1)

where ϕ = ϕ(ζ) is one-to-one conformal mapping of the unit disk D on the
domain G, and Φ(z) is holomorphic function on G. It’s known [17, p. 91],
that Φ(z) ∈ Ep in G if and only if Ψ(ζ) ∈ Hp — Hardy class (class Ep in the
disk D).

As when |ζ| < 1 ϕ′(ζ) 6= 0, and the curve Γ is in the class C, for |ζ| < 1 one
can define univalent harmonic function arg ϕ′(ζ) and this function everywhere
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on the circle ζ = eiσ has non-tangent limit values. At every smooth point of
Γ the next relation takes place [17, p. 88, 272]:

arg ϕ′(eiσ) = θ(s(σ))− σ − π

2
. (2.2)

Owing to (2.1) the boundary value problem (1.3) for holomorphic function
Φ(z) is equivalent to the boundary value problem

Re
{
e−iν(σ)Ψ(ζ)

}
= g(t(ζ))|ϕ′(eiσ)|1/p, ζ = eiσ, (2.3)

where, with taking into account (2.2)

ν(σ) = ω(s(σ)) +
1

p

(
θ(s(σ))− σ − π

2

)
(2.4)

and the right side of (2.3) is in Lp(C).
Index of the boundary condition. If in (1.8) ω1(s) ≡ 0, Γ is Lyapunov

curve and (1.7) takes place, we call as index the boundary condition (1.3) (also
(1.2)) the number

κ =
1

2π
(ω0(S)− ω0(0)). (2.5)

Following [17, p. 215] we assume it integer. We use notation indΓλ(t) = κ,
where λ(t) is the coefficient of the boundary condition (1.2).

Let now in (1.8) ω2(s) ≡ 0 and Γ is Radon curve without cusp points.
Because the function s(σ) and inverse one are absolutely continuous [17, p. 87],
the function ν(σ) has finite variation and the next expansion, analogous (1.8),
(1.9):

ν(σ) = ν0(σ) + ν1(σ). (2.6)

Here the jump function ν1(σ) looks like:

ν1(σ) = ω1(s(σ)) +
1

p
θ1(s(σ)). (2.7)

It’s obvious, no more than countable set of jump points of the function
ν(σ) is the image of the set Ξ ∪ Θ under mapping σ(s) : [0, S] → [0, 2π]. We
enumerate by some way this set and denote one {σk}. It’s obvious, that jumps
of the function ν(σ) at the point σk is equal

nk = hk +
1

p
fk, where hk and fk (2.8)

are the jumps of the functions ω(s) and θ(s) at pre-image of the point σk in
[0, S]. At the point of continuity of one of this functions we assume its jump
equal zero.
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We denote n+
k and n−k accordingly positive jumps and modules of negative

jumps from (2.8). The points of this jumps we accordingly denote σ+
k and

σ−k . We arrange them in decrease sequences
{
n+

k

}
and

{
n−k

}
. We assume the

conjugate numbers p and p′
(

1

p
+

1

p′
= 1

)
satisfying the next relatons:

n−k
2π

6= 1

2p′
,

n+
k

2π
6= 1

2p
.

Following [17, p. 209] we denote
(p)
κ 1 the number satisfying

n−k
2π

>
1

2p′
, k = 1, 2, . . . ,

(p)
κ 1;

n−k
2π

<
1

2p′
, k >

(p)
κ 1; (2.9)

and
(p)
κ 2 the number satisfying

n+
k

2π
>

1

2p
, k = 1, 2, . . . ,

(p)
κ 2;

n+
k

2π
<

1

2p
, k >

(p)
κ 2. (2.10)

Further we denote n0 = n
(1)
0 − n

(0)
0 where n

(0)
0 = ν0(2π) − ν0(0), n

(1)
0 =

ν1(0 + 0) − ν1(2π − 0). Following [17, p. 206] we define the integer κ0 from
the relation

2n0 = 2π · κ0 + n+
0 , 0 ≤ n+

0 < 2π. (2.11)

In this case as index of the boundary condition (1.3) we define the integer

indΓλ(t) =
(p)
κ =

(p)
κ 1 −

(p)
κ 2 − κ0, (2.12)

provided that the solution of boundary value problem is searching in the class
Ep(A, B) (i. e. in this case index depends on the class in which solution is
searching).

If in (1.8) ω2(s) ≡ 0 and Γ is Lyapunov curve, we define the index analo-
gously with the simplification because in (2.7) θ1(s(σ)) ≡ 0 and in (2.8) fk = 0
for every k, i.e. the set Θ is empty.

Further everywhere if ω1(s) ≡ 0, we assume that Γ is Lyapunov curve,
and if ω2(s) ≡ 0, we assume that Γ is or Radon curve without cusp points, or
Lyapunov curve.

Index of the adjoint boundary condition. We shall mark by asterisk
all objects and quantities related the adjoint boundary condition. Now we
shall express the index of the adjoint boundary condition through the index of

the boundary condition (1.5) (κ or
(p)
κ ).

If Γ is Lyapunov curve and ω1(s) ≡ 0, it’s obvious

κ∗ = −κ − 1. (2.13)
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Let ω2(s) ≡ 0 and Γ is or Lyapunov curve or Radon curve without cusp
points.

Similar (2.3) we transform the boundary condition (1.5) to the view

Re
{
e−iν∗(σ)Ψ∗(ζ)

}
= 0, ζ = eiσ, (2.14)

where with allowance for (2.2) and searching the solution Ψ∗(ζ) in Ep′ , 1/p +
1/p′ = 1,

ν∗(σ) = −ω(s(σ)) +
1

p′

(
θ(s(σ))− σ − π

2

)
− θ(s(σ)).

It’s easy to see

ν∗(σ) = −
[
ω(s(σ)) +

1

p
(θ(s(σ))− σ) + σ

]
− π

2p′
. (2.15)

With allowance for (2.15), (2.9) and (2.10) we receive
(p)

κ∗
1 =

(p)
κ 2;

(p)

κ∗
2 =

(p)
κ 1.

If in (2.11) n+
0 = 0, then from (2.15) the relation κ∗

0 = κ0 − 2 is obvious
and we get

(p)

κ∗ = −
(p)
κ − 2. (2.16)

In general case (2.16) follow from the coincidence the number of the conditions
of solvability non-homogeneous problem (2.3), which is equal to the number

of linear independent solutions of the homogeneous problem (2.14) (
(p)

κ∗ + 1),

with −
(p)
κ − 1 [2]. As for n+

0 6= 0 formula (2.16) is not true, we can conclude
n+

0 = 0 always.

3. The formulation of the main results
Theorem 3.1. If in (1.8) ω1(s) ≡ 0 and Γ is Lyapunov curve, then at κ ≥ 0,
where κ is defined in (2.5), homogenous problem (1.1), (1.3) (at g(t) ≡ 0)
has exactly 2κ + 1 linear independent in the real sense solutions in the class
Ep(A, B), p > 1. Non-homogenous problem is solvable in Ep(A, B) at arbitrary
right side g(t) ∈ Lp(Γ) of the boundary condition.

If κ < 0 then the homogenous problem (1.1), (1.3) has not in Ep(A, B) non-
zero solution and non-homogenous problem has unique solution in Ep(A, B) if
and only if −2κ − 1 (real) conditions on the right side g(t) of the boundary
condition (1.3) are held:∫

Γ

g(s)eiω(s)w∗
k(t)t

′(s)ds = 0. (3.1)
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Here w∗
k(t) ∈ Ep′+ε(−A,−B), Ep+ε(−A,−B), k = 1, . . . ,−2κ − 1, is the full

system linear independent in the real sense solutions of the adjoint to (1.1),
(1.3) boundary value problem (1.4), (1.5) with index κ∗ = −κ − 1 ≥ 0, ε > 0
is little.

Theorem 3.2. If in (1.8) ω2(s) ≡ 0, and Γ is Lyapunov curve or Radon curve

without cusp points, then at
(p)
κ ≥ 0, where

(p)
κ is defined in (2.12), homogenous

problem (1.1), (1.3) (at g(t) ≡ 0) has exactly
(p)
κ + 1 linear independent in the

real sense solutions in the class Ep(A, B), p > 1. Non-homogenous problem
is solvable in Ep(A, B) at arbitrary right side g(t) ∈ Lp(Γ) of the boundary
condition.

If
(p)
κ < 0, homogenous problem (1.1), (1.3) has not non-zero solution in

Ep(A, B), p > 1, and non-homogenous problem has unique solution if and only

if −
(p)
κ − 1 (real) conditions on the right side g(t) of the boundary condition

(1.3) are held:∫
Γ

eiω(s)w∗
k(t(s))t

′(s)g(s)ds = 0, k = 1, 2, . . . ,−
(p)
κ − 1. (3.2)

Here {w∗
k(z)} ∈ Ep′(−A,−B) is the full system linear independent in the real

sense solutions of the adjoint to (1.1), (1.3) boundary value problem (1.4),
(1.5).

It should be noted then if
(p)
κ = −1, we get k = 0. It means uniquely

unconditionally solvability of the non-homogenous problem.

4. Supporting constructions
Lemma 4.1. We denote, as above, the complex plane by E. At 0 < β < 1

sup
t∈E,1/2<r<1

∫
Γr

|dz|
|t− z|β

< ∞. (4.1)

Proof. The integral
∫
Γr

|dz|
|t− z|β

monotonically increases by r with arbitrary

position of the point t [17, p. 77]. Hence, it’s enough to estimate this integral
at r = 1.

For ∀t ∈ Γ there is ε > 0 (independent on t) such, as the disk U ε
t = {z :

|t − z| < ε} has connected intersection with Γ [17, p. 21] (if Γ is Lyapunov
curve, it’s obvious).
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On the other hand, if σ and s are the arc abscises on Γ, corresponding the
points t and z, then there are such constants k3 > 0 and ε > 0, that

|σ − s| ≥ |t− z| ≥ k3|σ − s|, (4.2)

as soon as |σ − s| ≤ ε [17, p. 20].
Fix k3 > 0 and ε > 0 so, that intersection U ε

t ∩ Γ is connected arc ∀t ∈ Γ
and (4.2) is hold.

Let now the distance between t and Γ be ≥ ε. Then∫
Γ

|dz|
|t− z|β

≤ |Γ|ε−β, (4.3)

where |Γ| is the length of the curve Γ.
Consider the case when the distance between t and Γ less ε. Denote t0 ∈ Γ

the point, nearest to the point t and denote γε = U ε
t0
∩ Γ. Because all points

of the arc γε posed out of the disk with center at t and with radius |t− t0|, for
∀z ∈ γε we get the estimate:

|t− z| ≥ 1

2
|t0 − z|. (4.4)

Further, given the (4.2) and (4.4), we obtain:∫
γε

|dz|
|t− z|β

≤ 2

k3

∫
γε

ds

|σ − s|β
≤ 2

k3(1− β)
|γε|1−β, (4.5)

where |γε| is the length of the arc γε and σ is the arc abscissa of t0.
At the same time ∫

Γ\γε

|dz|
|t− z|β

≤ |Γ|ε−β. (4.6)

Comparing (4.3), (4.5) and (4.6), we get (4.1).

Lemma 4.2. The set Ep(A, B), p ≥ 1, with norm

‖w‖Ep =


∫
Γ

|w(z(s))|p|dz|


1/p

is the real Banach space.
Here w(z(s)) is non-tangent limit values on Γ of the function w(z) ∈

Ep(A, B).
In the case A(z) = B(z) ≡ 0 we obtain usual norm in classical Smirnov

space Ep.
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Proof. Is a literal repetition of the proof of the theorem 5 of work [12] with the
replacement Hp(A, B) to Ep(A, B) and the refers on [9] to refers on [11].

Denote
Tf(z) = − 1

π

∫∫
G

f(t)

t− z
dxdy, t = x + iy.

Here is some properties of the operator T .

Lemma 4.3 ([15, p. 60–65]). Operator T is completely continuous in
Lq(G), q ≥ 1.

Lemma 4.4. If f(t) ∈ Lq(G), 1 < q < 2, then Tf(z) ∈ Lγ(Γr), 0 < r ≤ 1,
where γ is arbitrary number, satisfying conditions 1 < γ <

q

2− q
, and there

are the next inequalities:

‖Tf‖Lγ(Γr) ≤ Mq,γ(G)‖f‖Lq(G), (4.7)

‖Tf(z + ∆z)− Tf(z)‖Lγ(Γr) ≤ M∗
q,γ(G)‖f‖Lq(G)|∆z|α, α > 0. (4.8)

Here the constants Mq,γ(G) and M∗
q,γ(G) depend on γ, q, G and do no depend

on r and f ; in (4.8) z and z + ∆z lay on Γr.

Proof. Inequality (4.7) is the direct consequence of lemma 1 from [11], see also
[15, p. 67–69]. We shall prove the inequality (4.8). The proof is based on the
reasoning from [15, p. 68].

At first we assume q < γ <
q

2− q
. We get:

|∆T | ≡ |Tf(z + ∆z)− Tf(z)| ≤ |∆z|
π

∫∫
G

|f(t)|dxdy

|t− z||t− z −∆z|
≤

≤ |∆z|
π

∫∫
G

|f(t)|
q
γ (|t− z||t− z −∆z|)−

1
γ
+α · |f(t)|q(

1
q
− 1

γ )×

×(|t− z||t− z −∆z|)−
2
q′ +α

dxdy,

where 2α =
1

γ
− 2

q
+ 1 > 0,

1

q
+

1

q′
= 1. Because

1

γ
+

γ − q

γq
+

1

q′
= 1, using

the Hölder inequality we obtain:

|∆T | ≤ |∆z|
π

∫∫
G

|f(t)|q(|t− z||t− z −∆z|)−1+γαdxdy

 1
γ

×

×

∫∫
G

|f(t)|qdxdy

 1
q
− 1

γ
∫∫

G

(|t− z||t− z −∆z|)−2+q′αdxdy

 1
q′

.

(4.9)
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For the last factor in (4.9) we have the estimate [15, p. 56]:∫∫
G

(|t− z||t− z −∆z|)−2+q′αdxdy

 1
q′

≤ Cq,γ(G)|∆z|
1
γ
−1, (4.10)

where the constant Cq,γ(G) depends only on γ, q, G.
Further, bearing in mind that 0 < αγ < 1, and using known inequality

(a + b)β ≤ aβ + bβ, a ≥ 0, b ≥ 0, 0 < β < 1, and lemma 4.1, we get (z = z(s)):∫
Γr

(|t− z||t− z −∆z|)−1+αγds =

= |∆z|−1+αγ

∫
Γr

∣∣∣∣ 1

t− z
− 1

t− z −∆z

∣∣∣∣1−αγ

ds ≤

≤ |∆z|−1+αγ


∫
Γr

ds

|t− z|1−αγ
+

∫
Γr

ds

|t− z −∆z|1−αγ

 ≤ C∗
q,γ(G)|∆z|−1+αγ,

(4.11)
where the constant C∗

q,γ(G) depends only on γ, q, G.
Comparing (4.9), (4.10) and (4.11) we obtain (4.8). It’s obvious, now we

can remove restriction γ > q.

Corollary 1. The map T : Lq(G) → Lγ(Γr), 1/2 < r ≤ 1, is completely
continuous.

Proof. It is directly derived from (4.2), (4.7), (4.8) and Arzelà-Ascoli theorem.

Lemma 4.5. Let the condition D is held and or index κ of the boundary value

problem (1.2) is non-negative, or index
(p)
κ ≥ −1. There exists such function

M(t, z), that

Re{λ(s)M(t, z(s))} = Re

{
λ(s) · 1

t− z(s)

}
, ∀z(s) ∈ Γ, (4.12)

where t is arbitrary point in G, with properties:
1) for every fixed t ∈ G M(t, z) ∈ Ep, p > 1;
2) for ∀q : 1 < q < 2, p <

q

2− q
, f(t) ∈ Lq(G)

TMf(z) = − 1

π

∫∫
G

f(t)M(t, z)dxdy ∈ Eγ, (4.13)
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∀γ : 1 < γ <
q

2− q
, γ ≤ p, and there is the estimation

‖TMf‖Eγ ≤ const‖f‖Lq(G), (4.14)

where the constant is independent on f ;
3) the operator TMf : Lq(G) → Eγ is completely continuous.

Proof. Consider in G Riemann-Hilbert boundary value problem (4.12) for the
holomorphic function M(t, z).

The right part of (4.12) we denote F (t, z(s)) ≡ F (t, s) ∈ L∞(Γ). Accord-
ingly to [1], [2], because the condition D is hold and or index κ is non-negative,

or index
(p)
κ ≥ −1, the problem (4.12) is unconditionally solvable in Ep and its

particular solution can be taken in the form

M(t, z) =
1

2
{Ψ(ζ(z)) + Ψ∗(ζ(z))} [ζ ′z(z)]1/p ,

Ψ(ζ) =
Z(ζ)

2πi

∫
C

F0(t, τ)

Z+(τ)
· dτ

τ − ζ
, Ψ∗(ζ) = Ψ

(
1

ζ

)
,

Ψ∗(ζ) =
ζκ+1Z(ζ)

2πi

∫
C

F0(t, τ)

Z+(τ)
· dτ̄

1− τ̄ ζ
.

(4.15)

Here κ equal or 2κ, or
(p)
κ , Z(ζ) is completely defined function from Hp+ε, ε > 0,

in D and in outside D, and [2]

Z−1(ζ) ∈ Hp+ε, Z(ζ), Z−1(ζ) ∈ Hp′+ε, 1/p + 1/p′ = 1;

Z+(t) = −e2iν(σ)Z−(t), t = eiσ ∈ C,

Z±(t) are non-tangent limiting values on C of the function Z(ζ) accordingly
inside and outside the disk D; ζ = ζ(z) is conformal mapping G onto D,
inverse to the mapping ϕ = ϕ(ζ),

F0(t, τ) = 2F (t, ϕ(τ))
[
ϕ′ζ(τ)

]1/p
eiω(ϕ(τ));

functions ω and ν are the same as in (2.4).
The statement 1) is proved.
Because Ep ⊂ Eγ, p ≥ γ > 1, and inclusion is continuous, obviously enough

to prove the remaining statements of lemma at γ = p.
Consider the expression

F1(z) = 2

∫∫
G

F (t, z)f(t)dxdy, t = x + iy, z ∈ Γ. (4.16)
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Given (4.12) and lemma 4.4, we get

‖F1‖Lp(Γ) ≤ const

∥∥∥∥∥∥
∫∫
G

|F (t, z)| · |f(t)|dxdy

∥∥∥∥∥∥
Lp(Γ)

≤ const‖f‖Lq(G),

where the constant depends only on p and q and is independent on f . Thus,
the mapping F1 : Lq(G) → Lp(Γ), setting by (4.16), is continuous.

Denote s + ∆s the arc abscissa of the point z + ∆z ∈ Γ (z = z(s)). Then
from (4.12), (4.8) and (4.2) we get

‖F1(s + ∆s)− F1(s)‖Lp(Γ) ≤ const‖f‖Lq(G)|∆s|α, α > 0,

where the constant depends only on p and q and is independent on f . It
follows, that the mapping F1 : Lq(G) → Lp(Γ) is completely continuous.

Further, by obvious way we get that the mapping F2 : Lq(G) → Lp(C),
defined by formula

F2(τ) = F1(z(τ)) ·
[
ϕ′ζ(τ)

]1/p
eiω(ϕ(τ)) ∈ Lp(C)

is completely continuous and we can use Fubini’s theorem to calculate TMf(z).
Thus,

TMf(z) = − 1

π
[ζ ′z(z)]1/p {

Ψf (ζ(z)) + Ψf
∗(ζ(z))

}
,

Ψf (ζ) =
Z(ζ)

4πi

∫
C

F2(τ)

Z+(τ)
· dτ

τ − ζ
,

Ψf
∗(ζ) =

ζκ+1Z(ζ)

4πi

∫
C

F2(τ)

Z+(τ)
· dτ̄

1− τ̄ ζ
.

(4.17)

Because the right sides of (4.17) map F2 ∈ Lp(C) → Hp continuously [17, p.
218], the maps Ψ, Ψ∗ : f ∈ Lq(G) → Hp, defined in (4.15), are completely
continuous, and we get (4.14) and the statement 3) of our lemma.

Lemma 4.6. Let the condition D is held and or index κ of the boundary value

problem (1.2) is non-negative, or index
(p)
κ ≥ −1. There exists such function

M̂(t, z), that

Re{λ(s)M̂(t, z(s))} = −Im

{
λ(s) · 1

t− z(s)

}
, ∀z(s) ∈ Γ,

where t is arbitrary point in G, with properties:
1) for every fixed t ∈ G M̂(t, z) ∈ Ep, p > 1;
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2) for ∀q : 1 < q < 2, p <
q

2− q
, f(t) ∈ Lq(G)

TM̂f(z) = − 1

π

∫∫
G

f(t)M̂(t, z)dxdy ∈ Eγ,

∀γ : 1 < γ <
q

2− q
, γ ≤ p, and there is the estimation

‖TM̂f‖Eγ ≤ const‖f‖Lq(G),

where the constant is independent on f ;
3) the operator TM̂f : Lq(G) → Eγ is completely continuous.

Proof is similar to the proof of lemma 4.5.
In assumptions of lemma 4.5 we introduce the operator

Pf = Tf − TM(Re f)− TM̂(Im f). (4.18)

Lemma 4.7. 1) For ∀q : 1 < q < 2, p <
q

2− q
, f(t) ∈ Lq(G) Pf(z) ∈ Lγ(Γ)

at ∀γ : 1 < γ <
q

2− q
, γ ≤ p, and we get the estimation

‖Pf‖Lγ(Γ) ≤ const‖f‖Lq(G),

where the constant is independent on f .
The map P : Lq(G) → Lγ(Γ) is completely continuous.
2) Operator P is completely continuous in Lq(G), 1 < q < 2.
3) For almost all z ∈ Γ и ∀q : 1 < q < 2, p <

q

2− q
, f(t) ∈ Lq(G)

Re{λ(z)Pf(z)} = 0.

Proof. The property 1) directly follow from the lemmas 4.4, 4.5, 4.6 and corol-
lary 1.

The maps T : Lq(G) → Lq(G), TM , TM̂ : Lq(G) → Ep are completely con-
tinuous (lemmas 4.3, 4.5, 4.6) and 1 < q < 2 < 2p, therefore Ep is continuously
included in Lq(G) (lemma 4.10, see below). Hence, we get the property 2).
The property 3) is direct corollary of (4.18), lemmas 4.5, 4.6 and Lebesgue’s
dominated convergence theorem.

Remark 4. If G is the unit disk, λ(t) = tn, n ≥ 0 — non-negative integer,
then the operator P coincides with the operator Pn, constructed by I.N. Vekua
in [15, p. 293].

In assumptions of lemma 4.5 now we introduce the operator

Pλw = P (Aw + Bw).
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Lemma 4.8. If w ∈ Lm(G), 1 < m < 2p, A(z), B(z) ∈ Ls(G), s > 2, then

for suitable m and for q :
1

m
+

1

s
=

1

q
, 1 < q < 2, we get p <

q

2− q
;

Aw + Bw ∈ Lq(G) and the next properties:
1) the operator Pλ is completely continuous in Lm(G);
2) Pλw(z) ∈ Lγ(Γ) at ∀γ : 1 < γ <

q

2− q
, γ ≤ p, and there is the

estimation
‖Pλw‖Lγ(Γ) ≤ const‖w‖Lm(G),

where the constant is independent on w; the map Pλ : Lm(G) → Lγ(Γ) is
completely continuous;

3) for almost all z ∈ Γ

Re{λ(z)Pλw(z)} = 0.

Proof. Obviously, at the expense of choice m we can consider 1 < q < 2. If
at the expense of choice m we can obtain q arbitrarily close to 2, then the
inequality p <

q

2− q
can be provided for any p > 1.

Let for every m, 1 < m < 2p, we get 1 < q(m) < q0 < 2, where

q0 = sup
1<m<2p

q(m) =
2ps

2p + s
. Then supremum on m : 1 < m < 2p of the

monotonically increasing on m function
q(m)

2− q(m)
equals

ps

2p + s− ps
, and at

the same time
p− ps

2p + s− ps
= p2 2− s

2p + s− ps
< 0.

Thus, in this case the ineqality p <
q

2− q
can be provided for any p > 1 too.

If it’s provided, then owing to Hölder inequality Aw +Bw ∈ Lq(G). Other
assertions of the lemma follow from lemma 4.7 and Hölder inequality.

We shall investigate the behavior of the norm of operator Pλ : Lm(G) →
Lm(G), in which A(z), B(z) — coefficients of the equation (1.1), under homo-
theties

z̃ = εz, ε > 0, (4.19)

of the domain G.

Lemma 4.9. The norm of operator

T0w = T (Aw + Bw) : Lm(G) → Lm(G),

where m is defined by lemma 4.8, under homotheties (4.19) has the asymptotics

O(εδ), where δ =
s− 2

2s
(m− 1) > 0.
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Proof. Under homothety (4.19) the coefficients of the equation (1.1) are trans-
formed by formulas

Ã(z̃) =
1

ε
A(z), B̃(z̃) =

1

ε
B(z). (4.20)

Here and further we mark by tilde the objects, depending on variable z̃. Ob-
viously, for investigating the norm of operator T0, without loss of generality
we can assume B(z) ≡ 0.

For the operator T0w = T (Aw) we get the estimation [15, p.64]:

‖T0w‖Lγ(G) ≤
1

πγ
[M(q′α, G)]

1/q′
M(γα, G)‖Aw‖Lq(G), (4.21)

where α =
1

γ
− 1

q
+

1

2
> 0,

1

m
+

1

s
=

1

q
, 1 < q < 2, 1 < γ <

2q

2− q
,

1

q
+

1

q′
= 1,

M(λ, G) = sup
z∈E

∫∫
G

|ζ − z|−2+λdξdη, ζ = ξ + iη. (4.22)

We note, that from the Hölder inequality one gets

‖Aw‖Lq(G) ≤ ‖A‖Ls(G) · ‖w‖Lm(G).

From here we obtain the corresponding estimation of the right side of (4.21)
through ‖w‖Lm(G).

We shall compare the factor before ‖w‖Lm(G) in the right side (4.21) before
transformation (4.19) and after one.

Taking into account (4.22), we shall get:

‖Ã‖
Ls( eG)

= ε
2−s

s ‖A‖Ls(G); M(λ, G̃) = ελM(λ, G);[
M(q′α, G̃)

]1/q′

= εα [M(q′α, G)]1/q′ ; M(γα, G̃) = εγαM(γα, G).
(4.23)

Denote Ñ the factor before ‖w‖Lm in the right side (4.21) after transformation

(4.19). From (4.23) we obtain Ñ = εδN , where δ = α(1 + γ) +
2− s

s
. If

we put γ = m, what owing to lemma 4.8 is possible, then finally one gets

δ =
s− 2

2s
(m− 1) > 0.

Lemma 4.10. If w(z) ∈ Ep(A, B), p > 1, then w(z) ∈ Lm(G), ∀m : 1 <
m < 2p, and the inclusion Ep(A, B) ⊂ Lm(G) is continuous, i. e., there is
inequality:

‖w‖Lm(G) ≤ const

[
M

(
m

m + µ
; Γ

)]1/p′ [
M

(
2µ

m + µ
; G

)]1/p

‖w‖Ep , (4.24)
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where 1/p + 1/p′ = 1, 0 < µ < 1,

M(λ; Γ) = sup
z∈E

∫
Γ

|z − ζ|−λds, (4.25)

M(λ; G) is defined by (4.22), the constant depends on G and coefficients A(z),
B(z), and is not dependent on w and homothety (4.19).

Proof. The first assertion is a special case of the theorem 4 from [11].

Remark 5. For holomorphic functions lemma 4.10 (without inequality) was
formulated in [18, p. 96]. Thus the proof has a mistake, which leads to the
wrong inequality for the norms. In this regard, we give the detailed proof
(based on the construction from [18, p. 96]).

At first let’s consider the case of holomorphic functions (i. e. the case
A(z) = B(z) ≡ 0).

Representing function Φ(z) ∈ Ep, p > 1, by Cauchy-Lebesgue integral [16,
p. 423-424], and using Hölder inequality with the exponents m = (2 − µ)p,

r = p/α and λ = p/(p− 1),
1

m
+

1

r
+

1

λ
= 1, we get

(2π)m

∫∫
G

|Φ(z)|mdxdy ≤
∫∫
G

∫
Γ

|Φ(t)||t− z|−1ds

m

dxdy ≤

≤
∫∫
G

∫
Γ

|Φ(t)|1−α|t− z|−β
(
|Φ(t)|α|t− z|β−1

)
ds

m

dxdy ≤

≤ ‖Φ‖αm
Lp(Γ)

∫∫
G

∫
Γ

|t− z|−βλds

m/λ ∫
Γ

|Φ(t)|p|t− z|(β−1)mds

 dxdy,

where
α =

1− µ

2− µ
, β =

m− 2 + µ

m + µ
.

Since βλ =
m

m + µ
, (1 − β)m =

2m

m + µ
, and also α + p/m = 1, from here we

obtain (4.24) in the case of holomorphic functions.
The general case (4.24) follows from proving special case and the basic

representation for generalized analytic functions of class Ep(A, B) [11]:

w(z) = Φ(z) exp{−T (A + B(w/w))(z)}, Φ(z) ∈ Ep, (4.26)

and formula (4.20). We have to take into account, that in (4.26) exp{−T (A+
B(w/w))} ∈ Cβ(G), β = (s − 2)/s, [15, p. 60] and it is not changed under
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homothety (4.19) (in the sense that the values of this expression coincide in
the corresponding points z̃ and z).

Lemma 4.11. The operator TM(Aw + Bw) : Lm(G) → Lm(G), defined by
(4.13), where m defined by lemma 4.8, A, B — coefficients of the equation
(1.1), is completely continuous. Under homotheties (4.19) its norm has as-
ymptotics O(εδ), where δ > 0.

The similar assertion takes place for TM̂(Aw + Bw).

Proof. Obviously, it’s enough to prove lemma for TM(Aw).
Complete continuity was proved in the proof of lemma 4.7. Now we shall

establish the asymptotics of the norm of operator TM(Aw).
From (4.17) we get [17, p. 218]:

‖TM(Aw)(z)‖Lp(Γ) ≤
2

π
‖ΨAw(ζ)‖Lp(C) ≤

≤ const‖F2(ζ)‖Lp(C) ≤ const‖F1(z)‖Lp(Γ),
(4.27)

where the constants under homothety (4.19) is not dependent on ε. Now we
estimate ‖F1(z)‖Lp(Γ).

From (4.13), (4.16), [15, p. 68] and Hölder inequality we get:

‖F1(z)‖Lp(Γ) ≤ 2π‖T (Aw)‖Lp(Γ) ≤

≤ 2

πp−1
[M(q′α; G)]1/q′ [M(1− pα; Γ)]1/p ‖A‖Ls(G)‖w‖Lm(G),

(4.28)

where 1/q′+1/q = 1, 2α = 1/p−2/q+1; M(λ; G) is defined by (4.22); M(λ; Γ)
is defined by (4.25). Denote the factor before ‖w‖Lm(G) in the right side (4.28)
by N1 and after transformation (4.19) denote the same factor Ñ1. Owing to
(4.20), (4.23) and M̃(λ; Γ̃) = ε1−λM(λ; Γ), we get Ñ1 = εδ1N1, where

δ1 = − 1

m
+

1

s
− p

(
1

q
− 1

2

)
+

1

2p
.

Further, substituting (4.27), (4.28) in (4.24), we obtain the inequality

‖TM(Aw)‖Lm(G) ≤ N‖w‖Lm(G),

where the factor N under homothety (4.19) is multiplied by εδ,

δ = δ(µ) = δ1 +
µ

m + µ
· p + 1

p
.

Put m = (2 − µ)p, where µ > 0 is little. Then, in view of the fact that
1

m
+

1

s
=

1

q
,

δ(µ) =
1

s
− p

(
1

(2− µ)p
+

1

s
− 1

2

)
+ µ

(
1

(2− µ)p + µ
· p + 1

p
− 1

2p(2− µ)

)
.
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Since at µ = 0 δ(0) =

(
1

2
− 1

s

)
(p− 1) > 0, at little µ > 0 δ(µ) > 0.

Remark 6. Using lemma 4.8 we can assume s enough closing to 2, and for
arbitrary large m, by choosing s we can provide q < 2.

Since the condition p <
q

2− q
in lemma 4.8 is equivalent the condition

1

m
<

1

2p
+

1

2
− 1

s
, at m close to 2p (and, may be large) it’s held provided

appropriate s.

The next statement is the obvious corollary of lemmas 4.9 and 4.11.

Lemma 4.12. After homothety (4.19) with sufficient little ε > 0 the operator
Pλ : Lm(G) → Lm(G) at some m : 1 < m < 2p becomes contraction operator.

Theorem 4.13. Let the condition D is held and or index κ of the boundary

value problem (1.2) is non-negative, or index
(p)
κ ≥ −1.

If w(z) ∈ Ep(A, B), p > 1, the next representation takes place:

w(z) + Pλw(z) = Φ(z), (4.29)

where Φ(z) ∈ Ep and almost everywhere on Γ

Re{λ(t)w(t)} = Re{λ(t)Φ(t)}, t ∈ Γ. (4.30)

If Φ(z) ∈ Ep, then the relation (4.29) uniquely defines the function w(z) ∈
Ep(A, B), satisfying almost everywhere on Γ condition (4.30). Formula (4.29)
establishes (real) liniar isomorphism between Banach spaces Ep(A, B) и Ep,
and also the operator Pλ : Ep(A, B) → Lp(Γ) is completely continuous.

Proof. If w(z) ∈ Ep(A, B), p > 1. there is the relation [11]:

w(z) + T (Aw + Bw)(z) =
1

2πi

∫
Γ

w(t)dt

t− z
∈ Ep. (4.31)

Imposing in [11] condition p >
s

2(s− 1)
is superfluous, because s > 2

always can be taken enough close to 2 and this condition will be held.
Subtracting from the both sides of (4.31) the holomorphic function

Φ∗(z) = TM{Re(Aw + Bw)}(z) + TM̂{Im(Aw + Bw)}(z),

which owing to lemmas 4.5 and 4.6 belongs to Ep, and denoting

Φ(z) =
1

2πi

∫
Γ

w(t)dt

t− z
− Φ∗(z) ∈ Ep,
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we obtain (4.29). The relation (4.30) follows from the property 3 of lemma
4.8.

Let now Φ(z) ∈ Ep and we shall assume Pλ : Lm(G) → Lm(G) is contrac-
tion operator at some m : 1 < m < 2p. Owing to lemma 4.12 we can do it
without loss of generality.

In this case the equation (4.29) is uniquely solvable in Lm(G) with arbitrary
right side from the same space. Because owing to lemma 4.10 Φ(z) ∈ Lm(G),
we get unique solution w(z) ∈ Lm(G), which, obviously, is in G the solution
of the differential equation (1.1). Owing to lemmas 4.4, 4.5 and 4.6∫

Γr

|Pλw(t)|pds < const < ∞, ∀r : 0 < r < 1,

where the constant is not dependent on r. From here we get w(z) ∈ Ep(A, B).
The relation (4.30) follows from lemma 4.8.

Thus, the operator I + Pλ, where I is identity mapping, carries out (real)
isomorphism Ep(A, B) and Ep. Here the operator Pλ : Ep(A, B) → Lp(Γ),
owing to lemmas 4.8 and 4.10, is completely continuous.

5. Proof of the main results

At κ ≥ 0 or
(p)
κ ≥ −1 the assertions of the theorems 3.1 and 3.2 directly follow

from the corresponding results for holomorphic functions [1], [2] and theorem
4.13. Really, in this case the operator I + Pλ carries out (real) isomorphism
the space of solutions in Ep of boundary value problem (1.3) for holomorphic
functions and the space of solutions in Ep(A, B) of boundary value problem
(1.1), (1.3).

Let’s consider the case of negative index. Now we shall prove the necessity
of conditions (3.1) and (3.2).

Let w∗(z) ∈ Ep′(−A,−B) is arbitrary solution of the homogeneous adjoint
problem (1.4), (1.5), and w(z) ∈ Ep(A, B) is the solution of the problem (1.1),
(1.3). Note, that there is equality [11]:

Im

∫
Γ

w(t)w∗(t)dt = 0.

From here we get:

0 = Im

∫
Γ

e−iω(s)w(t)eiω(s)w∗(t)t′(s)ds =

∫
Γ

g(s)eiω(s)w∗(t(s))t′(s)ds.

Owing to the results, proved for κ ≥ 0 and
(p)
κ ≥ −1, and relations (2.13),

(2.16), we obtain the necessity of conditions (3.1) and (3.2).
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Further, let w(z) ∈ Ep(A, B) is the solution of the homogeneous problem

(1.1), (1.3) at κ < 0 or
(p)
κ < 0. Then the function Φ(z) ∈ Ep in the represen-

tation w(z) by formula (4.26) is the solution of the homogeneous problem

Re{λ1(t)Φ(t)} = 0, t ∈ Γ, (5.1)

where
λ1(t) = e−iω(t) · exp {−T (A + Bw/w)} , (5.2)

and the indexes of the problems (1.3) and (5.1) coincide. Thus, owing to [1],
[2], Φ(z) ≡ 0 and the assertions of theorems 3.1 and 3.2 about homogeneous
problem with negative index are proved.

We pass to the analysis of the non-homogeneous problem at κ < 0, or
(p)
κ <

0 — even. We make the replacement of the required function w0(z) = znw(z),

where n = −κ or n = −
(p)
κ
2

. Then the function w0(z) satisfies the equation

∂z̄w0 + A(z)w0 + B0(z)w0 = 0, (5.3)

where B0(z) = B(z)
zn

zn , and boundary condition

Re
{

λ0(t)w0(t)
}

= g(t), t ∈ Γ, (5.4)

where λ0(t) = eiω(t) · (z)−n.
Given the domain G consists of the point z = 0, we get indΓλ0 = 0.
Owing to already proved parts of the theorems 3.1 and 3.2, the problem

(5.3), (5.4) has the solution w0(z) ∈ Ep(A, B0) (even the set of solutions,
depend on real parameter). Let w0(z) = Φ0(z)eχ(z) is the representation of the
kind (4.26), χ(z) = exp{−T (A + B0w0/w0)} = exp{−T (A + Bw/w)}, where
w(z) = w0(z)z−n. Obviously, that such determined function w(z) be (unique)
solution of the problem (1.1), (1.3) in Ep(A, B), necessary and sufficient that
the function Φ0(z) has a look Φ0(z) = znΦ(z), where Φ(z) ∈ Ep is the solution
of the boundary value problem

Re
{

λ2(t)Φ(t)
}

= g(t), t ∈ Γ, λ2(t) = eiω(t) · eχ(t). (5.5)

Because indΓλ2(t) = indΓλ(t) < 0, for existing (unique) solution Φ(z) ∈ Ep

of the problem (5.5) it is necessary and sufficient that the function g(t) satisfies
2n− 1 independent real conditions [1], [2]:∫

Γ

g(s)eiω(s)−χ(t(s))Φ∗
k(t(s))t

′(s)ds = 0, k = 1, . . . , 2n− 1, (5.6)

238



where {Φ∗
k(z)} is the full system of linear independent in real sense solutions

of the boundary value problem, adjoint to the problem (5.5).
From here it is evident the sufficiency of the conditions (3.1) and (3.2) in

the case under consideration.

If
(p)
κ < −1 is odd, we put n = −

(p)
κ + 1

2
and repeat all above reasoning with

some differences. The differences are the next: in (5.4) indΓλ0(t) = −1 and in

(5.6) a number of conditions equal −
(p)
κ − 1.
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