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Abstract. Five continued fractions of orders twenty-two and forty-four are

derived from Ramanujan’s general continued fraction identity. Additionally,
the corresponding theta functions for these continued fractions were obtained,

along with several partition identities that were established using the colored

partition of integers.

1. Introduction

One of Ramanujan’s notable contributions lies in the area of q continued fractions.
The most famous among them is Rogers-Ramanujan continued fraction R(q). This
concept was initially presented by Rogers [12] in 1894. In 1912, Ramanujan reex-
amined the continued fraction. He documented several explicit values of R(q) in
his notebooks, as well as in his first correspondence with Hardy, which were later
validated by Watson and Ramanathan [14, 15]. For further information, one may
refer [3, 5, 6] for more details. In 2017, Surekha [13] established modular relations
related to continued fractions of order sixteen, drawing parallels to the Rogers-
Ramanujan continued fraction. Following this, Saikia and Rajkhowa [8, 9] made
significant contributions by developing continued fractions of various orders that
resemble the Rogers-Ramanujan continued fractions and by formulating modular
identities for these fractions. Additionally, they applied these concepts to develop
color partition identities based on partition theory.

1.1. Preliminaries. Throughout this paper, we consider for any complex num-
bers a and q, define the q-product (δ; q)∞ as

(δ; q)∞ :=

∞∏
t=0

(1− δqt), |q| < 1. (1.1)

For simplicity, we often write

(δ1; q)∞(δ2; q)∞(δ3; q)∞...(δm; q)∞ = (δ1, δ2, δ3, ..., δm; q)∞.

The general theta function f(l,m) interms of Ramanujan [4, p. 34] is defined as

f(l,m) =

∞∑
t=−∞

lt(t+1)/2mt(t−1)/2. (1.2)
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The f(l,m) interms of Jacobi’s triple product identity [4, p. 35, Entry 19] can be
stated as

f(l,m) = (−l; lm)∞(−m; lm)∞(lm; lm)∞ = (−l,−m, lm; lm)∞. (1.3)

The special cases of f(l,m) are the theta-functions ϕ(q),ψ(q) and f(−q) [4, p. 36,
Entry 22 (i)-(iii)] are given by

ϕ(q) := f(q, q) =

∞∑
t=−∞

qt
2

=
(−q;−q)∞
(q;−q)∞

, (1.4)

ψ(q) := f(q, q3) =

∞∑
t=0

qt(t+1)/2 =
(q2; q2)∞
(q; q2)∞

, (1.5)

f(−q) := f(−q,−q2) =
∞∑

t=−∞
(−1)tqt(3t−1)/2 = (q; q)∞. (1.6)

After Ramanujan, define
χ(q) = (−q; q2)∞. (1.7)

Ramanujan documented numerous continued fractions in his notebooks, with the
most renowned being the Rogers-Ramanujan continued fraction of order 5. R(q)
defined by

R(q) := q1/5
(q, q4; q5)∞
(q2, q3; q5)∞

= q1/5
f(−q,−q4)
f(−q2,−q3)

=
q1/5

1 +
q

1 +
q2

1 +
q3

1 + ...

, |q| < 1.

(1.8)
Ramanujan documented several general identities related to continued fractions in
his notebook. One such identity that he noted is the following general continued
fraction identity [4, p. 24, Entry 12]. Suppose that w,m and q are complex
numbers with |wm| < 1 and |q| < 1, or that w = m2t+1 for some integer t. Then,

(w2q3; q4)∞(m2q3; q4)∞
(w2q; q4)∞(m2q; q4)∞

=
1

1− wm+
(w −mq)(m− wq)

(1− wm)(q2 + 1) +
(w −mq3)(m− wq3)

(1− wm)(q4 + 1) + ...

.

(1.9)
By selecting specific values for w and m, along with an appropriate choice for q,
it is possible to derive a q-continued fraction of a particular order that adheres to
theta function identities similar to those associated with R(q). This paper focuses
on continued fractions of orders twenty-two and forty-four. By replacing q by q11/2

in (1.9), setting {w = q1/4,m = q21/4}, {w = q3/4,m = q19/4}, {w = q5/4,m =
q17/4}, {w = q7/4,m = q15/4} and {w = q9/4,m = q13/4} and simplifying us-
ing the results {(q27; q22)∞ = (q5; q22∞)/(1 − q5)}, {(q26; q22)∞ = (q4; q22∞)/(1 −
q4)}, {(q25; q22)∞ = (q3; q22∞)/(1 − q3)}, {(q24; q22)∞ = (q2; q22∞)/(1 − q2)}, and
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{(q23; q22)∞ = (q; q22∞)/(1 − q)}, we obtain the following continued fractions of
order twenty two respectively.

R1(q) =q
1/4 f(−q5,−q17)

f(−q6,−q16)

=
q1/4(1− q5)

(1− q11/2) +
q11/2(1− q1/2)(1− q21/2)

(1− q11/2)(1 + q11) +
q11/2(1− q23/2)(1− q43/2)

(1− q11/2)(1 + q22) + ...

.

(1.10)

R2(q) =q
3/4 f(−q4,−q18)

f(−q7,−q15)

=
q3/4(1− q4)

(1− q11/2) +
q11/2(1− q3/2)(1− q19/2)

(1− q11/2)(1 + q11) +
q11/2(1− q25/2)(1− q41/2)

(1− q11/2)(1 + q22)...

.

(1.11)

R3(q) =q
5/4 f(−q3,−q19)

f(−q8,−q14)

=
q5/4(1− q3)

(1− q11/2) +
q11/2(1− q5/2)(1− q17/2)

(1− q11/2)(1 + q11) +
q11/2(1− q27/2)(1− q39/2)

(1− q11/2)(1 + q22) + ...

.

(1.12)

R4(q) =q
7/4 f(−q2,−q20)

f(−q9,−q13)

=
q7/4(1− q2)

(1− q11/2) +
q11/2(1− q7/2)(1− q15/2)

(1− q11/2)(1 + q11) +
q11/2(1− q29/2)(1− q37/2)

(1− q11/2)(1 + q22) + ...

.

(1.13)
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and

R5(q) =q
9/4 f(−q,−q21)

f(−q10,−q12)

=
q9/4(1− q)

(1− q11/2) +
q11/2(1− q9/2)(1− q13/2)

(1− q11/2)(1 + q11) +
q11/2(1− q31/2)(1− q35/2)

(1− q11/2)(1 + q22) + ...

.

(1.14)

In the same way, we have the following five continued fractions of order forty four
respectively from (1.9) given by

P1(q) =q
5 f(−q,−q43)
f(−q21,−q23)

=
q5(1− q)

(1− q11) +
q11(1− q10)(1− q12)

(1− q11)(1 + q22) +
q11(1− q32)(1− q34)

(1− q11)(1 + q44)...

. (1.15)

P2(q) =q
4 f(−q3,−q41)
f(−q19,−q25)

=
q4(1− q3)

(1− q11) +
q11(1− q8)(1− q14)

(1− q11)(1 + q22) +
q11(1− q30)(1− q36)

(1− q11)(1 + q44)...

. (1.16)

P3(q) =q
3 f(−q5,−q39)
f(−q17,−q27)

=
q3(1− q5)

(1− q11) +
q11(1− q6)(1− q16)

(1− q11)(1 + q22) +
q11(1− q28)(1− q38)

(1− q11)(1 + q44)...

. (1.17)

P4(q) =q
2 f(−q7,−q37)
f(−q15,−q29)

=
q2(1− q7)

(1− q11) +
q11(1− q4)(1− q18)

(1− q11)(1 + q22) +
q11(1− q26)(1− q40)

(1− q11)(1 + q44)...

. (1.18)
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and

P5(q) =q
f(−q9,−q35)
f(−q13,−q31)

=
q(1− q9)

(1− q11) +
q11(1− q2)(1− q20)

(1− q11)(1 + q22) +
q11(1− q24)(1− q42)

(1− q11)(1 + q44)...

. (1.19)

To obtain the above continued fraction, we replace q by q11 in (1.9), then set the
values {w = q5,m = q6},{w = q4,m = q7}, {w = q3,m = q8}, {w = q2,m =
q9}, {w = q,m = q10} and then simplifying using the results {(q45; q44)∞ =
(q; q44)∞/(1− q)}, {(q47; q44)∞ = (q3; q44)∞/(1− q3)},
{(q49; q44)∞ = (q5; q44)∞/(1− q5)}, {(q51; q44)∞ = (q7; q44)∞/(1− q7)},
{(q53; q44)∞ = (q9; q44)∞/(1 − q9)}, respectively. In Section 2, we prove some
theta function identities for the above given continued fraction of order twenty
two and forty four. Using colour partition of integers, we deduce some partition
theoretic results from the theta function identities in Section 3.

2. Theta-function identities for Ri(q) and Pi(q)

In this section, we prove some theta-function identities for the continued fractions
Rt(q) and Pt(q) for t = 1, 2, 3, 4 and 5.

Theorem 2.1. For t = 1, 2, 3, 4 and 5, We have

1

Rt(q)
±Rt(q) =

ϕ(∓q11/2)f(±q(2t−1)/2,±q(22−(2t−1))/2)

q(2t−1)/4f(−q5−(t−1),−q5+t)ψ(q11)
.

Proof. from (1.10), we obtain

1√
R1(q)

−
√
R1(q) =

f(−q7,−q15)− q3/4f(−q4,−q18)√
q3/4f(−q4,−q18)f(−q7,−q15)

(2.1)

From [4, p.46, Entry 30(i) and (ii)], we have

f(l,m) = f(l3m, lm3) + lf(m/l, l5m3). (2.2)

Setting (l = −q1/4,m = q21/4) and (l = q1/4,m = −q21/4) in (2.2) we obtain,

f(−q1/4, q21/4) = f(−q6,−q16)− q1/4f(−q5,−q17) (2.3)

and

f(q1/4,−q21/4) = f(−q6,−q16) + q1/4f(−q5,−q17). (2.4)

Employing (2.3) in (2.1), we find that

1√
R1(q)

−
√
R1(q) =

f(−q1/4, q21/4)√
q1/4f(−q5,−q17)f(−q6,−q16)

. (2.5)

Similarly, from (1.10) and applying (2.4), we deduce that

1√
R1(q)

+
√
R1(q) =

f(q1/4,−q21/4)√
q1/4f(−q5,−q17)f(−q6,−q16)

. (2.6)
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Combining (2.5) and (2.6), we get

1

R1(q)
−R1(q) =

f(−q1/4, q21/4)f(q1/4,−q21/4)
q1/4f(−q5,−q17)f(−q6,−q16)

. (2.7)

Again [4, p.46,Entry 30 (i),(iv)] , we note that

f(l, lm2)f(m, l2m) = f(l,m)ψ(lm) (2.8)

and

f(l,m)f(−l,−m) = f(−l2,−m2)ϕ(−lm). (2.9)

Setting (l = −q5,m = −q6) in (2.8) and (l = −q1/4,m = q21/4) in (2.9), we obtain

f(−q5,−q17)f(−q6,−q16) = f(−q5,−q6)ψ(q11) (2.10)

and

f(−q1/4, q21/4)f(q1/4,−q21/4) = f(−q1/2,−q21/2)ϕ(q11/2), (2.11)

respectively. Employing (2.10) and (2.11) in (2.7), we complete the proof (i).
Squaring (2.6), we obtain

1

R1(q)
+R1(q) =

f2(q1/4,−q21/4)
q1/4f(−q5,−q17)f(−q6,−q16)

− 2. (2.12)

From [4, p.46,Entry 30 (v),(vi)], we note that

f2(l,m) = f(l2,m2)ϕ(lm) + 2af(m/l, l3m)ψ(l2m2). (2.13)

Setting (l = q1/4,m = −q21/4) in (2.13), we obtain

f2(q1/4,−q21/4) = f(q1/2, q21/2)ψ(−q11/2) + 2q1/4f(−q5,−q6)ψ(q11). (2.14)

Employing (2.14) and (2.10) in (2.12). By simplifying, we get the result. The
proofs for the other identities are analogous to the above proof, thus we will not
include them. □

Theorem 2.2. We have,

(i)
1

P1(q)
± P1(q) =

ϕ(∓q11)f(±q10,±q12)
q5ψ(q22)f(−q,−q21)

,

(ii)
1

P2(q)
± P2(q) =

ϕ(∓q11)f(±q8,±q14)
q4ψ(q22)f(−q3,−q19)

,

(iii)
1

P3(q)
± P3(q) =

ϕ(∓q11)f(±q6,±q16)
q3ψ(q22)f(−q5,−q17)

,

(iv)
1

P4(q)
± P4(q) =

ϕ(∓q11)f(±q4,±q18)
q2ψ(q22)f(−q7,−q15)

and

(v)
1

P5(q)
± P5(q) =

ϕ(∓q11)f(±q2,±q20)
qψ(q22)f(−q9,−q13)

.

Proof. Proofs of (i)− (v) are identical proofs of Theorem (2.1), so omit the proofs.
□
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3. Applications to colored partitions

The theta-function identities derived in Theorems 2.1 and 2.2 can be used to derive
some colour partition identities. First we give the defnition of colour partition of
a positive integer n and its generating function.
“A partition of a positive integer n has l colors if there are l copies of n available
and all of them are viewed as distinct objects. Partitions of a positive integer into
parts with colors are colored partitions.

(qr±; qs)∞ := (qr, qs−r; qs)∞,

where r and s are positive integer and r < t. For example, (q2±; q8)∞ means
(q2, q6; q8)∞ which is (q2; q8)∞ (q6; q8)∞.
For example, the colored partitions of 2 are given as 2, 1r+1r, 1g+1g and 1r+1g.
Where we use r (red) and g (green) to distinguish the two colors of 1. Also

1

(qa; qb)m∞
,

is the generating function where all the parts are congruent to a (mod b) and have
m colors.”

Theorem 3.1. Let X1(n) indicate the number of ways to partition the integer.
n divided into segments that are consistent with ±3,±8,±19,±22 (mod 44) with
the stipulation that the components congruent to ±8 and ±22 (mod 44) have two
distinct colors. Let X2(n) indicate the number of ways to partition the integer.
n divided into segments that are consistent with ±3, ±14, ±19 or ±22 (mod 44)
such that parts congruent to ±14 and ±22 (mod 44) have two distinct colors. Let
X3(n) indicate the number of ways to partition the integer. n divided into segments
that are consistent with ±8, ±11 and ±14 (mod 44) have two distinct colors.Then
for any positive integer n ≥ 3,

X1(n)−X2(n− 3)−X3(n) = 0.

Proof. Employing (1.11), (1.4) and (1.5) and replacing q by q2 we obtain,

(q14±; q44)∞
(q8±; q44)∞

− q3
(q8±; q44)∞
(q14±; q44)∞

− (q3±, q19±; q44)∞(q22±; q44)2∞
(q8±, q14±; q44)∞(q11±; q44)2∞

= 0. (3.1)

Dividing by (q3±, q8±, q14±, q19±; q44)∞(q22±; q44)2∞,we obtain,

1

(q8±, q22±; q44)2∞(q3±, q19±; q44)∞
− q3

1

(q14±, q22±; q44)2∞(q3±, q19±; q44)∞

− 1

(q8±, q11±, q14±; q44)2∞
= 0. (3.2)

The quotients mentioned above serve as the generating functions for X1(n), X2(n)
and X3(n), respectively. Hence, is equivalent to

∞∑
n=0

X1(n)q
n − q

∞∑
n=0

X2(n− 3)qn −
∞∑

n=0

X3(n)q
n = 0, (3.3)
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where we set X1(0) = X2(0) = X3(0) = 1. By equating the coefficients of qn on
both sides, we obtain the desired outcome.
Theorem 3.1 is illustrated in the table 1 below: □

Table 1. The case n=3 for the above theorem

X1(3) = 1 X2(0) = 1 X3(3) = 0
3r

Theorem 3.2. Let Y1(n) indicate the number of ways to partition the integer. n
divided into segments that are consistent with ±5,±6,±17 or ±22 (mod 44) with
the stipulation that the components congruent to ±6 and ±22 (mod 44) have two
colors. Let Y2(n) indicate the number of ways to partition the integer. n divided
into segments that are consistent with ±5,±16,±17 or ±22 (mod 44) such that
parts congruent to ±16 and ±22 (mod 44) have two colors. Let Y3(n) indicate
the number of ways to partition the integer. n divided into segments that are
consistent with ±6,±11 and ±16 (mod 44) have two colors.Then for any positive
integer n ≥ 5,

Y1(n)− Y2(n− 5)− Y3(n) = 0.

Proof. Employing (1.12), (1.4) and (1.5) and replacing q by q2 we obtain,

(q16±; q44)∞
(q6±; q44)∞

− q5
(q6±; q44)∞
(q16±; q44)∞

− (q5±, q17±; q44)∞(q22±; q44)2∞
(q6±, q16±; q44)∞(q11±; q44)2∞

= 0. (3.4)

Dividing by (q5±, q6±, q16±, q17±; q44)∞(q22±; q44)2∞,we obtain,

1

(q6±, q22±; q44)2∞(q5±, q17±; q44)∞
− q5

1

(q16±, q22±; q44)2∞(q5±, q17±; q44)∞

− 1

(q6±, q11±, q16±; q44)2∞
= 0. (3.5)

The quotients mentioned above serve as the generating functions for Y1(n), Y2(n)
and Y3(n), respectively. Hence, is equivalent to

∞∑
n=0

Y1(n)q
n − q

∞∑
n=0

Y2(n− 5)qn −
∞∑

n=0

Y3(n)q
n = 0, (3.6)

where we set Y1(0) = Y2(0) = Y3(0) = 1. By equating the coefficients of qn on
both sides, we obtain the desired outcome.
Theorem 3.2 is illustrated in the table 2 below: □

Table 2. The case n=5 for the above theorem

X1(5) = 1 X2(0) = 1 X3(5) = 0
3r

Conclusion: The other theta function identities can also be verified using the theory
of partition. So omit the proof of other identities.
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