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Abstract. This paper introduces prime graceful digraphs, a novel class of di-

rected graphs with a labeling approach that integrates injectivity and prime-
related constraints. For a digraph with p vertices and q edges, vertex labels

are uniquely assigned from the set {1, 2, . . . , k}, where k = min(2p, 2q), and

edge labels are determined by the absolute difference of vertex labels modulo
k + 1. Additionally, adjacent vertex labels must have a greatest common

divisor of 1, emphasizing prime-related properties.

We apply this framework to cryptographic systems by representing cipher-
texts as labeled digraphs. Combining one-time pad encryption with prime

graceful labeling and cipher graph visualization enhances the security and

interpretability of encrypted messages. Through examples of diverse graph
structures, this work links graph theory and number theory, offering insights

for applications in combinatorial optimization, cryptography, and secure com-
munication.

1. Introduction

Graph labeling is a well-established and continually evolving area of study
within graph theory. One of the key concepts in graph labeling is graceful la-
beling, which was introduced by Rosa in 1967 [5].
A graceful labeling of a graphG = (V,E) with p vertices and q edges is a one-to-one
mapping γ of the vertex set V (G) into the set {1, 2, . . . , n}.This mapping satisfies
the condition that for each edge e = u, v ∈ E(G), the value γ(e) = |γ(u)− γ(v)| is
a one-to-one mapping of the edge set E(G) onto the set {1, 2, . . . , p}. A graph is
termed graceful if it admits such a graceful labeling.
The concept of prime labeling, which ensures that the greatest common divisor
(gcd) of the labels of adjacent vertices is 1, has been a topic of interest in graph
theory since its introduction by Tout, Dabboucy, and Howalla in 1982[8]. we adapt
the following known results:

Theorem 1.1[4] Alternating path(A
−→
Pn) admits prime pair labeling.

Theorem 1.2[4] Alternating cycle (A
−→
Cn) admits prime pair labeling.

Theorem 1.3[6] Directed cycle (A
−→
Cn(n ≥ 3)) admits indegree prime labeling.

Theorem 1.4[6] Instar k1,n (n ≥ 3) admits indegree Prime Labeling.
T.M.Selvarajan, R. Subramoniam[9] introduced the concept prime graceful graph.
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A graph G with p vertices and q edges is considered to have a prime graceful
labeling if there exists a vertex labeling function γ,mapping the vertices of G to
the set {1, 2, . . . , k} where k = min(2p, 2q).This labeling satisfies the condition
that gcd of γ(vi) and γ(vj) for adjacent vertices vi and vj is 1. Furthermore,an
injective function γ′,mapping the edges of G to {1, 2, . . . , k − 1} is defined by
γ′(vivj) = γ(vi)− γ(vj), ensuring all edge labels are distinct.

In this paper, we extend the concept of prime graceful labeling to directed
graphs (digraphs) by introducing prime graceful digraphs using the above defini-
tion.

Prime graceful digraphs combine the principles of graceful labeling with conditions
related to prime numbers, adding a new dimension to the study of digraphs.
By integrating this prime labeling constraint with graceful labeling, we define
prime graceful digraphs as follows:

Definition 1.1:
A prime graceful digraph D = (V,E) with p vertices and q edges is a one to one
mapping γ of the vertex set V (D) into the set {1, 2, . . . , k} where k = min(2p, 2q)
with the following properties:
a) For each edge e = −→uv ∈ E(D), The function γ : E(D) → {1, 2, . . . , k − 1} is
defined as γ(e) = (γ(u)− γ(v))mod(k + 1), and all edge labels are distinct.
b) For every pair of vertices u, v ∈ V (D), gcd(γ(u), γ(v)) = 1 .

A graph is called prime graceful if it has a prime graceful labeling.

The various common digraphs, such as path digraphs, star digraphs, cycle di-
graphs, bistar digraphs, friendship digraphs, triangular snake digraphs, and com-
plete bipartite digraphs, are shown to possess for certain orientation is prime
graceful labeling. These classes of digraphs exhibit the versatility and broad ap-
plicability of prime graceful labeling techniques.

2. Prime Graceful digraph

For standard terminology and notations related to graph we refer [1],[2],[3] and
[7].

In the following theorem, we demonstrate that path digraphs can be labeled in
a prime graceful manner, thereby enhancing our understanding of graph labeling
techniques and the unique characteristics of directed graphs.

Theorem 2.1. The unidirectional path digraph
−→
Pp is prime graceful.

Proof. Let D =
−→
Pp be a directed path digraph with p vertices and q = p − 1

edges. The vertices of the path are labeled α1, α2, . . . , αp, and the directed edges
are e1 = −−−→α1α2, e2 = −−−→α2α3,. . . ,ep−1 = −−−−−→αp−1αp.
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We define a mapping γ as a one-to-one function from the vertex set V (D) to
the set {1, 2, . . . , k}, where k = min(2p, 2q).
As q = p− 1,we have: k = min(2p, 2(p− 1)) = 2p− 2.
Thus, the vertices of D must be mapped to distinct values in the set {1, 2, . . . , 2q−
2}.
For each directed edge e = −→uv ∈ E(D), we define the edge label as γ(e) =
(γ(u)− γ(v))mod(k + 1).
In this case, k+1 = 2p− 1. The function γ(e) assigns distinct values to the edges
by computing the absolute difference between the labels of the adjacent vertices
and taking the modulus with respect to 2p− 1.

Furthermore, the mapping γ must satisfy the condition that for any two ver-
tices u, v ∈ V (D), the greatest common divisor gcd(γ(u), γ(v)) = 1. This condition
ensures that the labels assigned to the vertices of the path digraph are pairwise
coprime (i.e., relatively prime).

To construct a valid labeling for the directed path digraph D, we assign labels
to the vertices α1, α2, . . . , αp.
For each directed edge ei =

−−−−→αiαi+1, we compute the edge label: α(ei) = (α(vi)−
α(vi+1))mod(2p− 1), ensure that all edge labels are distinct.

Therefore, by constructing a prime graceful labeling that by satisfies both the
gcd condition and the distinct edge labeling condition, we conclude that a path
digraph is indeed prime graceful. □

The following theorem demonstrates that directed cycle, denoted as
−→
C p is prime

graceful.

Theorem 2.2. The unidirectional digraph
−→
C p is prime graceful.

Proof. Let
−→
C p be a directed cycle digraph with p vertices labeled v1, v2, . . . , vp and

edges ei=
−−−→vivi+1 for i = 1, 2, . . . , p−1, and the final edge ep = −−→vpv1 closing the cycle.

To prove that
−→
C p is prime graceful, we need to show that there exists a prime

graceful labeling γ on the vertices of
−→
C p that satisfies the following two conditions:

(1) We define the mapping γ that labels the vertex set V (
−→
C p) as a one-to-

one function: γ : V (
−→
C p) → {1, 2, . . . , k} where k = min(2p, 2q). For a

directed cycle, p = q, so k = 2p.
(2) For each directed edge ei = −−−→vivi+1, we define the incident function as:

γ(ei) = (γ(vi) − γ(vi+1))mod(k + 1).This ensures that all the values of
γ(ei) are distinct, making the incident function is injective.

(3) Finally, we need to show that for all pairs of adjacent vertices −−−→vivi+1 ∈
V (

−→
C p), the greatest common divisor gcd(γ(vi), γ(vi+1)) = 1, thereby sat-

isfying the coprime condition.
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Thus, The digraph
−→
C p is prime graceful. □

Another important class of digraphs is the star digraph, denoted as
−→
K1,p. Star

digraphs consist of a central vertex connected to p outer vertices or inner vertices
with directed edges, forming a hierarchical structure often seen in communication
and network models. The following theorem establishes that star digraphs also
admit prime graceful labeling.

Theorem 2.3. The star digraph
−→
K1,p is prime graceful.

Proof. Let {v0, v1, v2, ..., vp−1} be the p + 1 vertices of the star digraph with p
edges.
In star digraph one vertex v0 is adjacent with remaining p vertices.
We label the vertex v0 with 1 and remaining with {2, 3, 4, . . . , k} where k =
min(2p, 2q) = k = min(2(p+ 1), 2p) = 2p.
The gcd of adjacent vertices of each edge is 1.
Here we study the following cases:
1.Out-star The edge labels 1, 2, 3, ..., p are distinct with modulo (k + 1) where
k = 2p.
2.In-star The edge labels k, k − 1, ..., p are distinct with modulo (k + 1) where
k = 2p.

Hence
−→
K1,p is prime graceful digraph. □

A Friendship digraphs, denoted as
−→
F p, are characterized by a unique struc-

ture where multiple triangles share a common vertex, known as the ”friend.” This
digraph captures the essence of social networks, where one individual may have
connections to several others. The following theorem demonstrates that friendship
digraphs can also be labeled in a prime graceful.

Theorem 2.4. The friendship digraph
−→
F p is prime graceful.

Proof. The friendship digraph
−→
F p has 2(p+ 1) vertices and 3p edges.

In friendship digraph, one vertex of degree 2p is adjacent to the remaining 2p
vertices, label the vertex of 2p with 1. Choose a vertex from each cycle C3, label
it with 2, 3, ..., p+ 1 and label the remaining vertices with p+ 2, p+ 3, ..., k where
k = min{2(p+ 1), 3p}.
All the edge labels are distinct and gcd condition holds.

Hence
−→
F p is prime graceful. □

A triangular snake digraph is a directed graph consisting of a sequence of con-
nected triangles, where each subsequent triangle shares an edge with the previous
one. This graph can be represented as a sequence of vertices and directed edges,
where each edge is directed either within the triangles or between the triangles,
forming a ”snake-like” structure. The following proof discuses the prime graceful
labeling of the triangular snake digraph.
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Theorem 2.5. The triangular snake digraph
−→
T p is prime graceful.

Proof. Let
−→
T p represent a triangular snake digraph. The graph consists of 2p+ 1

vertices and 3p directed edges.

To demonstrate that Tp is prime graceful, we construct a labeling that satisfies
the prime graceful conditions as follows:

1. The digraph
−→
T p contains 2p + 1 vertices. We label the vertices of the tri-

angular snake digraph sequentially using integers from the set 1, 2, . . . , k, where
k = min(2n, 2m) = min(2(2p+1), 2(3p)) = 4p+2. Each vertex vi of Tp is assigned
a unique label from this set, ensuring that no two vertices share the same label.
2. For each directed edge e = −−→vivj , the edge label is defined as the absolute
difference between the labels of its endpoints,modulo k + 1. Specifically, γ(e) =
(γ(vi)− γ(vj))mod(k + 1), where k = 4p+ 2.

We must ensure that this edge labeling is injective, meaning each edge receives
a unique label. Since the triangular snake structure is regular, with directed edges
forming a repeating pattern of triangles, the injectivity of edge labels can be main-
tained by assigning distinct mod values within and between the triangles.

3. We must check that for every pair of adjacent vertices u and v, the greatest
common divisor gcd(γ(u), γ(v)) = 1. Since the vertex labels are consecutive in-
tegers, they are coprime. That is, for any two adjacent vertices vi and vi+1, we
have:
gcd(γ(vi), γ(vi+1)) = gcd(i, i+1) = 1. Thus, the GCD condition is satisfied for all
adjacent vertices in the triangular snake digraph.

Thus, the triangular snake digraph
−→
T p is prime graceful because it satisfies all

the conditions for prime graceful labeling. □

The complete bipartite digraph
−→
Km,n consists of two sets of m+n vertices, with

every vertex in one set is connected to every vertex in the other. In the following

proof, we demonstrate that
−→
Km,n admits a prime graceful labeling by satisfying

the injectivity and gcd conditions for both vertices and edges.

Theorem 2.6. The Complete bipartite digraph
−→
Km,n is prime graceful.

Proof. Let
−→
Km,n be the complete bipartite digraph with vertex sets

U = u1, u2, u3, . . . , um and V = v1, v2, v3, . . . , vn, where each ui is connected to
each vj by directed edges. The digraph has m+ n vertices and the total number
of edges is mn.
Label the vertices using integers from the set {1, 2, . . . , k}, where k = min(2(m+
n), 2mn)
For each directed edge e = −−→uivj , define the edge label as
γ(e) = (γ(ui) − γ(vj))mod(k + 1). This produces distinct edge labels since the
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values are distinct under modulo (k + 1).

For adjacent vertices ui and vj , we check that gcd(γ(ui), γ(vj)) = 1, ensuring
all vertex pairs are coprime.
Thus, Km,n satisfies the conditions of a prime graceful digraph. □

Theorem 2.7. The Bi-Star
−→
B (m,n) is prime graceful.

Proof. let D =
−→
B (m,n) represent the Bi-Star digraph, where V (D) = {vi, uj |0 ≤

i ≤ m, 0 ≤ j ≤ n} is the vertex set, with v0 and u0 are the apex vertices, and
vi, uj as the pendent vertices. Total vertices are p = m+ n+ 2.

The edge set is given by: E(D) = {−−→v0vi|1 ≤ i ≤ m} ∪ {−−→u0uj |1 ≤ j ≤ n} ∪ {−−→u0v0}.
Total edges are q = m+ n+ 1.

Now, define a labeling function f : |V (D) ∪ E(D)| → {1, 2, 3, ..., k}, where k =
min(2p, 2q) with f(v0) = 1, f(u0) = 3.

We label the vertices and edges as follows:

If all vi’s are labeled with even numbers and uj ’s with odd numbers then
f(−−→u0v0) = k + 1, f(vi) = 2i + 1 and f(uj) = 2m + 2j f(−−→v0vi) = 2i, f(−−→u0uj) =
2m+ 2j + 1; i = 2, 3, . . . ,m; j = 1, 2, 3, . . . , n

To prove that the Bi-Star is prime graceful labeling, we check the coprimeness
of the vertex and edge labels. We verify that f(−→uv) pair wise relatively prime
labeling, using the following conditions
f(v0) ⊥ f(u0), f(v0) ⊥ f(vi),f(u0) ⊥ f(uj), f(v0) ⊥ f(−−→v0vi), and f(u0) ⊥ f(−−→u0uj)
for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
Hence, Bi-Star is prime graceful digraph. □

Theorem 2.8. The digraph
−→
P n ∪

−→
C 4 is a prime graceful digraph.

Proof. Let
−→
P n represent the directed path graph with n vertices, and let

−→
C 4 de-

note the directed cycle graph with 4 vertices.

The vertex set for Pn is {v1, v2, . . . , vn} and vertex set for
−→
C 4 is {u1, u2, u3, u4}.

The combined set of−→
P n ∪

−→
C 4 is {v1, v2, . . . , vn, u1, u2, u3, u4}.

We check that the vertex labels satisfy the coprimality conditions:

(1) For any two adjacent vertices in
−→
P n

(e.g., vi and vi+1): gcd(f(vi), f(vi+1)) = gcd(i, i+ 1) = 1.
(2) For edges connecting ui to ui+1 in C4: gcd(f(vi), f(vi+1)) = 1.

(3) Similarly, we check for other pairs as needed.
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Since the labeling function f assigns distinct values to vertices and satisfies the
coprimality conditions for all pairs of adjacent vertices and edges, we conclude

that the digraph
−→
P n ∪

−→
C 4 is a prime graceful digraph. □

In today’s digital world, secure communication is essential to protect sensitive
information from cyber threats. Ensuring that only authorized individuals can
access confidential data is critical across various sectors, including finance, govern-
ment, and healthcare. One proven method of achieving unbreakable encryption is
the One-Time Pad (OTP), a cipher that is theoretically secure when used correctly.

In [10], Jaya Shruthy V. N. et al. discussed the encryption process using graph
labeling techniques. This article explores the integration of One-Time Pad encryp-
tion with digraph labeling methods, presenting an innovative approach to securing
messages. Beyond traditional encryption methods, it investigates how digraph-
based structures can represent ciphertexts, adding additional layers of complexity
and security.

3. Secure Communication with One-Time Pad and Graph Labeling
Integration

The integration of One-Time Pad encryption with graph labeling methods offers
a powerful way to secure communications. This combination ensures that messages
are not only encrypted but also visually represented through graphs, making it
easier for the intended recipient to decipher the message. In this section, we will
walk through the key steps in the process, starting with the transformation of the
plaintext into numerical form, followed by the encryption process using the OTP.
We will then explore how the ciphertext can be represented using graph structures
and how cipher clues assist in decryption.

3.1. Transformation of Text to Numerical Code. To begin the encryption
process, it is crucial that both the sender and the recipient have access to the
same One-Time Pad (OTP). The first step in this encryption technique is to
transform the plaintext message into a numerical sequence called the plaincode.
This conversion is typically performed using a predefined checkerboard system,
which is optimized for the English alphabet and common punctuation marks.

While many checkerboard systems can be used, the one employed in this method
specifically maps each letter of the English alphabet and common symbols to a
unique numeric value, ensuring that each character in the message can be repre-
sented numerically. For example, the letter ’a’ might be mapped to the number
1, and ’b’ to 60, and so on. Once the plaintext is converted into plaincode, the
message can be encrypted. However, it is important to note that this transfor-
mation alone does not provide enough security. Without further encryption, the
numerical representation of the message is still vulnerable to interception.

3.2. Encrypting the Numerical Code Using OTP. The plaincode is now
ready to be encrypted using the One-Time Pad (OTP). The OTP method is a
symmetric-key encryption system, meaning the same key is used for both encryp-
tion and decryption. To encrypt the plaincode, we combine each digit of the
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a
1

e
2

i
3

o
4

u
5

b
60

c
61

d
62

f
63

g
64

h
65

j
66

k
67

l
68

m
69

n
70

p
71

q
72

r
73

s
74

t
75

v
76

w
77

x
78

y
79

z
80

0
81

1
82

2
83

3
84

4
85

5
86

6
87

7
88

8
89

9
90

!
91

.
92

,
93

;
94

:
95

” ”
96

( )
97

?
98

Spc
99

Table 1. Numerical mapping of English alphabet and symbols

plaincode with the corresponding digit from the OTP key using modular arith-
metic (mod 10).

Before proceeding, the plaincode is grouped into blocks of six digits to facilitate
the encryption process. If any group contains fewer than six digits, it is padded
with additional spaces to complete the block. The OTP key is selected from a
pre-prepared table of random numbers. The key is matched to the sequence of
digits in the plaincode, and for each group, the corresponding digits from the OTP
key are added to the plaincode digits. The result of this addition is then reduced
modulo 10 to produce the ciphertext.

It is important to emphasize that the first group of the OTP key acts as a
”key indicator.” This key indicator identifies the OTP sheet being used but does
not participate in the arithmetic operation itself. The inclusion of a key indicator
ensures that both the sender and recipient are using the same OTP sheet. The
resulting ciphertext, now a sequence of numbers, can be safely transmitted to the
receiver.

762315 591027 483726 185903 736418 950732
214869 430816 902547 381674 728506 541869
849105 657320 923417 316875 104983 587294
430762 983620 152847 274581 563809 741690
358102 816473 904231 712690 325671 468920
539870 290674 783452 510938 120647 637258
894731 348917 253608 509183 146805 765493
514672 208341 729364 872905 193746 420985
356481 974312 568203 734895 267403 952681
134509 348760 473619 205873 782941 106253

Table 2. Random 6-Digit OTP Key Mapping

84



PRIME GRACEFUL LABELING IN DIRECTED GRAPHS AND APPLICATIONS

3.3. Graphical Representation of Ciphertext. Once the message has been
encrypted, it can be visualized using a graph-based structure known as the Ci-
pher Graph. This graph consists of nodes and directed edges, with each edge
representing a label derived from the ciphertext. The digraph is constructed us-
ing predefined graph structures, such as Cycle Graphs, Friendship Graphs, Fan
Graphs, and Star Graphs. These structures employ Prime Graceful Digraphs,
which are graph constructions that allow labels to be assigned in a way that pre-
serves mathematical properties beneficial for encryption.

The Cipher Graph allows the receiver to visually interpret the ciphertext, mak-
ing it easier to decode when the proper cipher clues are provided. The receiver
interprets the edge labels of the Cipher Graph based on the provided cipher clues,
which describe how the labels map back to the numerical ciphertext.

3.4. Decoding Assistance Through Cipher Clues. Cipher clues are an es-
sential component of the decryption process. These clues provide important in-
formation that allows the receiver to decipher the encrypted message. Along with
the OTP key, the receiver receives a set of cipher clues, which might include:

(1) Abbreviations for frequently used words or symbols.
(2) Structural hints about the cipher digraph used (e.g., which digraph struc-

ture was employed).
(3) Information about the connectivity of vertices and edges within the di-

graph.
(4) Information about the modulo 10 operation: if 0 appears, take the cipher

clue as *.

By using these clues, the receiver can accurately map the labels from the Cipher
Graph back to the numerical ciphertext and reverse the encryption process.

3.5. Decrypting Ciphertext Back to Plaintext. The decryption process in-
volves reversing the steps taken during encryption. To decrypt the ciphertext, the
receiver subtracts the digits of the ciphertext from the corresponding OTP key
digits, applying modular arithmetic (mod 10) in the process. After decryption,
the resulting numerical sequence is grouped into sets of six digits, allowing the
original plaintext to be reconstructed.

This process ensures that the message is securely encrypted during transmission
and can only be decrypted by the intended recipient who has access to both the
ciphertext and the cipher clues.

To better understand the application of the One-Time Pad (OTP) encryption
and decryption process, we now present a case study. In this case study, we will
walk through the encryption and decryption of a simple message using the OTP
technique. The example will demonstrate how the message is transformed into a
numerical sequence (plaincode), how it is encrypted with a randomly generated
OTP key, and how the ciphertext is decrypted back to its original plaintext. This
practical example will illustrate the effectiveness and security of the OTP method
in real-world communication.
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The decryption process involves reversing the steps taken during encryption.
To decrypt the ciphertext, the receiver subtracts the digits of the ciphertext from
the corresponding OTP key digits, applying modular arithmetic (mod 10) in the
process. After decryption, the resulting numerical sequence is grouped into sets of
six digits, allowing the original plaintext to be reconstructed.

This process ensures that the message is securely encrypted during transmission
and can only be decrypted by the intended recipient who has access to both the
ciphertext and the cipher clues.

Case Study: One-Time Pad Encryption Using Conversion Table

Let the plaintext be The eagle has landed successfully., by converting
the plaintext to plaincode using Table-1, we obtain the OTP encryption of the
plaincode to ciphertext, as shown in the table below

Plain Code KeyID 756529 921646 829965 174996 817062 262997 456161 274746 356868 799299

OTP Key 762315 591027 483726 185903 736418 950732 214869 430816 902547 381674 728506

Cipher Text 762315 247546 304362 904868 800304 767794 476756 886977 176283 637432 417795

Our cipher graph fig 1. is a combination of the Fan digraph
−→
F4 and the star

digraph
−−→
K1,9, both of which are prime graceful. The receiver uses prime graceful

labeling on this combined cipher graph to determine the edge labels, with the aid
of the cipher clue.

Figure 1. Combination of
−→
F4 and

−−→
K1,9 for message transmission

to the receiver

Using the cipher clue given to the receiver, the ciphertext can be determined.

−−→
F 1,3
4 ,

−−→
K1,5

1,8 ,
−−→
K1,8

1,8 ,
−−→
K1,6

1,8 ,
−−→
F 1,5
4 ,

−−→
K1,7

1,8

−−→
K1,7

1,8 , ∗,
−−→
K1,7

1,8 ,
−−−→
F 2,11
4 ,

−−→
K1,8

1,8 , ∗,
−−−→
F 5,13
4

−−→
K1,4

1,8 , ∗,
−−→
F 1,5
4 ,

−−→
K1,4

1,8 ,
−−→
K1,7

1,8 ,
−−→
F 1,3
4−−−→

F 2,11
4 , ∗,

−−→
K1,5

1,8 ,
−−−→
F 5,13
4 ,

−−→
K1,7

1,8 ,
−−−→
F 5,13
4

−−−→
F 5,13
4 , ∗, ∗,

−−→
K1,3

1,8 , ∗,
−−→
F 1,5
4

−−→
K1,8

1,8 ,
−−→
K1,7

1,8 ,
−−→
K1,8

1,8 ,
−−→
K1,8

1,8 ,
−−−→
F 2,11
4 ,

−−→
K1,5

1,8−−→
F 1,5
4 ,

−−→
K1,8

1,8 ,
−−→
K1,7

1,8 ,
−−→
K1,8

1,8 ,
−−→
K1,6

1,8 ,
−−→
K1,7

1,8

−−−→
F 5,13
4 ,

−−→
K1,9

1,8 ,
−−→
K1,7

1,8 ,
−−−→
F 2,11
4 ,

−−→
K1,8

1,8 ,
−−→
K1,8

1,8

−−→
F 1,2
4 ,

−−→
K1,8

1,8 ,
−−→
K1,7

1,8 ,
−−→
F 1,3
4 ,

−−−→
F 5,13
4 ,

−−→
K1,4

1,8−−→
K1,7

1,8 ,
−−→
F 1,4
4 ,

−−→
K1,8

1,8 ,
−−→
F 1,5
4 ,

−−→
K1,4

1,8 ,
−−→
F 1,3
4

−−→
F 1,5
4 ,

−−→
K1,2

1,8 ,
−−→
K1,7

1,8 ,
−−→
K1,7

1,8 ,
−−−→
F 2,11
4 ,

−−→
K1,6

1,8
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Here,
−−→
F i,j represents the Friendship graph, and

−−→
Ki,j denotes the Star graph,

where (i, j) specifies the edge label connecting vertices i and j based on the prime
graceful digraph labeling technique. Consequently, the ciphertext corresponding
to these edge labels is as follows:

Cipher Text 762315 247546 304362 904868 800304 767794 476756 886977 176283 637432 417795

By subtracting the ciphertext from the OTP key and applying modulo 10, the
plaincode is obtained.

Cipher Text 762315 247546 304362 904868 800304 767794 476756 886977 176283 637432 417795

OTP Key 762315 591027 483726 185903 736418 950732 214869 430816 902547 381674 728506

Plain Code KeyID 756529 921646 829965 174996 817062 262997 456161 274746 356868 799299

By referring to Table 1, we can convert the Plaincode back into Plaintext.

The process begins with the first Plaincode value, which is 7. Since it is greater
than 5, it is treated as a double-digit number, 75 (combined with the following
digit, 5), corresponding to the letter ’T’. The next digit, 6, also exceeds 5, so it
is combined with the subsequent digit to form 65, representing ’h’. A digit like
2, being less than 5, is taken as a single digit, which maps to ’e’. The code 99
denotes a space, and the sequence continues accordingly.

As a result, the Plaintext reads: The eagle has landed successfully.

4. conclusion

This paper introduces the concept of prime graceful digraphs, a novel approach
to the labeling of directed graphs that bridges graph theory and number theory.
Through a well-defined labeling function, we have assigned distinct vertex labels
from a specific set and imposed prime-related constraints on adjacent vertex pairs.
This framework paves the way for the identification of prime graceful digraphs,
creating new opportunities for further exploration in graph theory.

The examples provided, such as path digraphs, star digraphs, cycle digraphs,
bistar digraphs, friendship digraphs, triangular snake digraphs, and complete bi-
partite digraphs, illustrate the broad applicability of prime graceful labeling in
various graph structures. These constructions demonstrate how prime graceful
labeling provides a unique structure that can potentially enhance combinatorial
optimization problems and contribute to the development of efficient cryptographic
protocols.

In particular, the integration of prime graceful digraphs in cryptographic meth-
ods, such as one-time pad encryption and ciphertext graph representation, has the
potential to improve security by introducing complex, prime-based relationships
within cryptographic systems. Additionally, the encryption techniques explored
in this work, such as the use of OTP (One-Time Pad) keys and graph-based repre-
sentations of ciphertext, offer new possibilities for secure communication systems.
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The versatility of prime graceful labeling and its potential in cryptography
opens doors for future research. Specifically, it offers the possibility of developing
more sophisticated encryption schemes that blend graph theory, number theory,
and computational methods. Further studies could explore the development of
efficient algorithms for prime graceful labeling, investigate new applications in se-
cure communication, and provide a deeper understanding of the interplay between
graph structures and cryptographic security.
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