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Abstract. Let G be an undirected, simple, connected graph. If a graph

G has vertices labeled by degrees and edges labeled by the least of the

average of the degrees of their end vertices, then the graph is said to permit
average-degree edge labeling. This paper discusses the average degree edge

labeling of complete bipartite graphs, the join of the Path graph Pm and the

Complete graph Kn, and of various classes of trees. Using the average degree
labeling graph, we can determine the shortest path between the vertices.

Additionally, we have tried to develop an algorithm for spanning trees of

average degree labeled networks, both maximal and minimal.

1. Introduction

S.M. Hedge et al. defined the Edge Sum Labeling for the (n,m)-graph G.
Motivated by this labeling [4] and the definition of Average Degree Energy in [5],
we present a new sort of labeling called Average Degree Edge labeling of a graph.
Graph theory is essential in the study of network systems. In particular, biological
neural networks discussed in [2] and [6]. A brain network has two properties:
minimizing resource costs and maximizing information flow. [1] outlines the network
components. Minimum spanning trees have a direct impact on network architecture,
including computer networks, electricity grids, telecommunications networks, water
supply networks, and transportation networks. The minimal spanning tree (MST)
problem is a common and important basic in the planning and administration
of communication networks. A spanning tree is an essential data structure that
allows you to find connections quickly and within a small search space. It enables
efficient intra-connectivity while preserving the minimalist tree structure, making
it beneficial in contexts where merging data points is common. We refer to [3] and
[7] for all the terminology and the results of the labeling survey.

2. Preliminaries

Definition 2.1. The Bamboo Tree BT(n,m,k) is a tree obtained from k-copies of
the Path Pn of length n-1 and K1,m stars. Identify one of the two pendent vertices
of the jth path with the center of the jth star. Identify the other pendent vertex
of each path with a single vertex, w0.
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Definition 2.2. The Banana Tree B(m,k) is a tree obtained by connecting one
leaf of each of the m-copies of the star Sk with a single vertex that is distinct from
all stars.

Definition 2.3. The join of two graphs Pm andKn is a graph formed from disjoint
copies of Pm and Kn by connecting each vertex of Pm to each vertex of Kn, and
is denoted by Pm + Kn

Definition 2.4. The cycle cactus C
(n)
k consisting of n copies of the cycle of length

k is a connected separable graph in which every block is a cycle.

Definition 2.5. The shell graph C(n;n−3) is the join of the complete graph K1

and path graph,Pm, where n = m+1. A subdivided shell graph is a shell graph in
which the edges in the path of the shell are subdivided.

Definition 2.6. The windmill graph Wd(n,k) is the graph obtained by taking k
copies of complete graph Kn with a vertex in common.

Definition 2.7. A grid graph is a cartesian product of two path graphs, Pm and
Pn. It has mn vertices and 2mn-m-n edges.

Definition 2.8. Let G be a simple, connected, undirected graph without self loop
and parallel edges having n vertices v1, v2, . . . , vn. We define vertex degree labeling
of a graph G by a into function A : V (G) 7−→ {1, 2, ..., n− 1} such that

A(vi) = deg(vi), 1 ≤ i ≤ n.

Definition 2.9. The Average Degree Edge Labeling of a graph G is a into function

defined A∗ : E(G) 7−→ {1, 2, ..., n − 1} by A∗(vivj) = ⌊deg(vi)+deg(vj)
2 ⌋, for all

1 ≤ i, j ≤ n, where vivj is an edge in G.

Definition 2.10. A Graph G which admits a vertex degree labeling and Average
degree edge labeling is called Average Degree Labeled Graph. It is denoted
by ADL-graph.

3. Main Results

In this section, we discuss the average degree labeling of some class of trees, the
cactus graph, the join of Pm and Kn graph.

Theorem 3.1. Every Path Graph Pn, n ≥ 2 is an ADL graph.

Proof. Let G =Pn be a Path graph on n vertices, n ≥ 2. Let w1, w2, . . . , wn are the
vertices of a path graph such that d(w1) = d(wn) = 1, d(wi) = 2, ∀i = 2, 3, ..., n−1.
Define A : V (G) 7−→ {1, 2, ..., n − 1} by A(wi) = deg(wi), 1 ≤ i ≤ n and A∗ :

E(G) 7−→ {1, 2, ..., n− 1} by A∗(wiwj) = ⌊deg(wi)+deg(wj)
2 ⌋, ∀ 1 ≤ i, j ≤ n.

Therefore, the vertex degree labeling of G is

A(wi) =

{
1 i = 1, n

2 i = 2, ..., n− 1
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and the average degree edge labeling of G is

A∗(wiwj) =


1 i = 1, j = 2

1 i = n− 1, j = n

2 i = 2, ..., n− 2, j = 3, ..., n− 1; i < j

Thus, the Path graph, Pn is an ADL graph. □

Example 3.2. The path graph P6 shown in figure 1 is an ADL graph. The vertex
and edge labeling of P6 is given by,

A(wi) =

{
1 i = 1, 6

2 i = 2, ..., 5

and the average degree edge labeling of P6 is

A∗(wiwj) =


1 i = 1, j = 2

1 i = 5, j = 6

2 i = 2, ..., 4, j = 3, ..., 5; i < j

Figure 1. Path graph P6

Theorem 3.3. Every BT (n,m,k) Bamboo Tree is an ADL graph, for all n ≥ 2,
k ≥ 1.

Proof. Let G be a BT (n,m,k) bamboo tree with k(n+m-1)+1 vertices. Let w
(j)
i ,

v
(j)
s be the vertices of Path Graph Pn and star graph K1,m respectively. Let w

(0)
0

be the vertex adjacent to w
(j)
1 , 1 ≤ i ≤ k. The vertex degree labeling of G is

A(w
(j)
i ) =


k i = 0, j = 0

2 1 ≤ i ≤ n− 2, 1 ≤ j ≤ k

m+ 1 i = n− 1, 1 ≤ j ≤ k

and

A(v(j)s ) = 1, 1 ≤ s ≤ m, 1 ≤ j ≤ k

The edge labeling of G is discussed below with the following cases:
Case 1: When k is even, m is odd

A∗(w
(j)
i w

(j)
i+1) =


k+2
2 i = 0, 0 ≤ j ≤ k

m+3
2 i = n− 2, 1 ≤ j ≤ k

2 1 ≤ i ≤ n− 2, 1 ≤ j ≤ k

A∗(w
(j)
i v(j)s ) = ⌊m+ 2

2
⌋, i = n− 1, 1 ≤ j ≤ k, 1 ≤ s ≤ m
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Case 2: When k is even, m is even

A∗(w
(j)
i w

(j)
i+1) =


k+2
2 i = 0, 0 ≤ j ≤ k

⌊m+3
2 ⌋ i = n− 2 1 ≤ j ≤ k

2 1 ≤ i ≤ n− 2, 1 ≤ j ≤ k

A∗(w
(j)
i v(j)s ) =

m+ 2

2
, i = n− 1, 1 ≤ j ≤ k, 1 ≤ s ≤ m

Case 3: When k is odd, m is even

A∗(w
(j)
i w

(j)
i+1) =


⌊k+2

2 ⌋ i = 0, 0 ≤ j ≤ k

⌊m+3
2 ⌋ i = n− 2 1 ≤ j ≤ k

2 1 ≤ i ≤ n− 2, 1 ≤ j ≤ k

A∗(w
(j)
i v(j)s ) =

m+ 2

2
, i = n− 1, 1 ≤ j ≤ k, 1 ≤ s ≤ m

Case 4: When k is odd, m is odd

A∗(w
(j)
i w

(j)
i+1) =


⌊k+2

2 ⌋ i = 0, 0 ≤ j ≤ k
m+3
2 i = n− 2, 1 ≤ j ≤ k

2 1 ≤ i ≤ n− 2 1 ≤ j ≤ k

A∗(w
(j)
i v(j)s ) = ⌊m+ 2

2
⌋, i = n− 1, 1 ≤ j ≤ k, 1 ≤ s ≤ m

Thus, every BT (n,m,k)-Bamboo tree is an ADL graph. □

Example 3.4. The Bamboo tree BT (7,2,2), shown in Figure 2 is an ADL graph.
The vertex and edge labeling of BT (7,2,2) is given by

A(w
(j)
i ) =


2 i = 0, j = 0

2 1 ≤ i ≤ 6, 1 ≤ j ≤ 2

3 i = 6, 1 ≤ j ≤ 2

A(v(j)s ) = 1, 1 ≤ s ≤ 2, 1 ≤ j ≤ 3

A∗(w
(j)
i w

(j)
i+1) =


2 i = 0, 0 ≤ j ≤ 3

2 i = 6, 1 ≤ j ≤ 3

2 1 ≤ i ≤ 5 1 ≤ j ≤ 3

A∗(w
(j)
i v(j)s ) = 2, i = n− 7, 1 ≤ j ≤ 3, 1 ≤ s ≤ 2

Figure 2. BT (7,2,2) - Bamboo tree
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Theorem 3.5. Every B(m,k)-Banana tree with v as a root is an ADL graph,
k ≥ 2, n ≥ k.

Proof. Let w
(j)
i ; 1 ≤ i ≤ k, 1 ≤ j ≤ m be the vertices of m copies of star graph

Sk such that w
(j)
k−1 ∼ v and w

(j)
k−1 ∼ w

(j)
k and v be the root of a banana tree G =

B(m,k).
The vertex degree labeling of G is,

A(w
(j)
i ) =


k − 1 i = k, 1 ≤ j ≤ m

1 1 ≤ i ≤ k − 2, 1 ≤ j ≤ m

2 i = k − 1, 1 ≤ j ≤ m

and A(v) = m
The average degree edge labeling of G is

A∗(w
(j)
k−1v) =

{
⌊m+2

2 ⌋ 1 ≤ j ≤ m,m is odd
m+2
2 m is even

A∗(w
(j)
i w

(j)
i+1) =


⌊k+1

2 ⌋ w
(j)
i ∼ w

(j)
i+1, k is even

k+1
2 w

(j)
i ∼ w

(j)
i+1, k is odd

⌊k
2 ⌋ otherwise

Thus, every B(m,k)-Banana tree with v as a root is an ADL graph. □

Example 3.6. The Banana tree B(2,8) is shown in figure 3. The vertex labeling
of B(2,8) is given by,

A(w
(j)
i ) =


7 i = 8, 1 ≤ j ≤ 2

1 1 ≤ i ≤ 6, 1 ≤ j ≤ 2

2 i = 7, 1 ≤ j ≤ 2

A(v) = 2
and the average degree edge labeling of B(2,8) is

A∗(w
(j)
7 v) = 2, 1 ≤ j ≤ 2; m is even

A∗(w
(j)
i w

(j)
i+1) =

{
4 i = 7, j = 1, 2; k is even,

4 otherwise

Figure 3. B(2,8) - Banana tree
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Theorem 3.7. Every full Binary tree is an ADL graph.

Proof. Let wi, i=1,2,...,n are the vertices of a binary tree G. The vertex labeling
ofG is given by

A(wi) =


1 if wi is a pendent vertex of G

2 if wi is a root

3 otherwise

The average degree edge labeling of G is

A∗(wiwj) =


⌊ 5
2⌋ if d(wi)=2, d(wj)=3

2 if d(wi)=1, d(wj)=3

3 if d(wi) = d(wj)=3

Thus, every full Binary tree is an ADL graph. □

Theorem 3.8. Every graph G = Pm +Kn is an ADL graph.

Proof. Let G be the join of path graph Pm and complete graph Kn.
Let w1, w2, ..., wm and w

′

1, w
′

2, ..., w
′

n be the vertices of Pm and Kn respectively.
The vertex degree labeling of G is

A(wi) =

{
n+ 1 i = 1,m

n+ 2 2 ≤ i ≤ m− 1

and A(w
′

j) = n+m− 1, 1 ≤ j ≤ n

The average degree edge labeling ofG is

A∗(wiwj
′) =

{
⌊m+2n

2 ⌋ i = 1,m; 1 ≤ j ≤ n,

⌊ 2n+m+1
2 ⌋ 2 ≤ i ≤ m− 1; 1 ≤ j ≤ n,

A∗(w
′

jw
′

k) = n+m− 1, 1 ≤ j, k ≤ n

A∗(wiwi+1) =

{
⌊ 2n+3

2 ⌋ i = 1,m− 1

n+ 2 2 ≤ i ≤ m− 2

Thus, every G = Pm +Kn graph is an ADL graph. □

Theorem 3.9. Every cycle cactus C
(m)
n is an ADL graph for all n ≥ 3, m>1.

Proof. Let w
(j)
1 , w

(j)
2 , ..., w

(j)
n−1, w

(j)
n = v be the vertices of G = C

(m)
n , 1 ≤ j ≤ m,

with d(w
(j)
1 ) = 2 and d(v)=2m, 1 ≤ i ≤ n− 1.

The vertex degree labeling of G is defined by,

A(w
(j)
1 ) = 2, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m

and A(v) = 2m.
The average Degree edge labeling of G is given by

A∗(w
(j)
i w

(j)
i+1) = 2, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m
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A∗(w
(j)
i v) = m+ 1, i = 1, n− 1, 1 ≤ j ≤ m

Thus, every cycle cactus C
(m)
n is an ADL graph for all n ≥ 3, m>1. □

Theorem 3.10. Every Complete bipartite graph Km,n is an ADL graph for all
m,n ≥ 2.

Proof. Let w
(1)
1 , w

(1)
2 , ..., w

(1)
m and w

(2)
1 , w

(2)
2 , ..., w

(2)
n be the vertices of Bipartite

sets V1 and V2 respectively.
Vertex degree labeling A : V (G) 7−→ {1, 2, ...,max(m,n)} is defined by

A(w
(j)
i ) =

{
n if w

(j)
i ∈ V1

m if w
(j)
i ∈ V2

and Average Degree edge labeling is given by

A∗(w
(1)
i w

(2)
j ) =

{
⌊n+m

2 ⌋ 1 ≤ i ≤ m, 1 ≤ j ≤ n

Thus, Km,n is an ADL graph. □

Theorem 3.11. Every subdivided shell graph is an ADL graph.

Proof. Let G be a subdivided shell graph obtained by subdividing the edges of

Pm. It has 2m vertices and (3m-2) edges. Let v and w
(1)
i be the vertices of K1

and Pm respectively, 1 ≤ i ≤ m; and w
(2)
i be the vertex between w

(1)
i and w

(1)
i+1

after removing the edge w
(1)
i w

(1)
i+1 of Pm, 1 ≤ i ≤ m− 1.

The vertex degree labeling of G is

A(v) = m

A(w
(1)
i ) =

{
2 i = 1,m

3 2 ≤ i ≤ m− 1

A(w
(2)
i ) = 2, 1 ≤ i ≤ m− 1

The average degree edge labeling of G is

A∗(vw
(1)
i ) =

{
⌊m+2

2 ⌋ i = 1,m

⌊m+3
2 ⌋ 2 ≤ i ≤ m− 1

A∗(w
(1)
i w

(2)
j ) =

{
2 i = 1,m, j = 1,m− 1

⌊ 5
2⌋ 2 ≤ i ≤ m− 1, 2 ≤ j ≤ m− 2

Thus, every subdivided shell graph is an ADL graph. □

Theorem 3.12. Every windmill graph Wd(n,k) is an ADL graph, n ≥ 2, k ≥ 2.

Proof. Let G be a Wd(n,k) windmill graph obtained by taking k copies of complete
graph Kn with a vertex in common. Let w0 be the vertex in common and

w
(j)
1 , w

(j)
2 , ..., w

(j)
n−1, 1 ≤ j ≤ k, be the vertices of copies of Kn.

The vertex degree labeling of G is

A(w0) = k(n− 1)

A(w
(j)
i ) = n− 1; 1 ≤ i ≤ n− 1, 1 ≤ j ≤ k

71



NEHA H KUNDAR AND SUJATHA H S

and Average Degree edge labeling is given by

A∗(w
(j)
i w

(j)
l ) = ⌊n− 1⌋; w

(j)
i ∼ w

(j)
l ,

1 ≤ i, l ≤ n− 1, 1 ≤ j ≤ k

A∗(w
(j)
i w0) = ⌊ (n− 1)(k + 1)

2
⌋; 1 ≤ i ≤ n, 1 ≤ j ≤ k

Thus, every windmill graph Wd(n,k) is an ADL graph. □

Theorem 3.13. Every grid graph G = Pm × Pn is an ADL graph.

Proof. Let w
(1)
1 , w

(1)
2 , ..., w

(1)
m , w

(2)
1 , ..., w

(2)
m , ..., w

(n)
1 , w

(n)
2 , ..., w

(n)
m be the vertices

of G such that

deg(w
(1)
1 ) = deg(w

(n)
1 ) = deg(w(1)

m ) = deg(w(n)
m ) = 2

deg(w
(2)
1 ) = deg(w

(3)
1 ) = ... = deg(w

(n−1)
1 ) = 3

deg(w
(1)
2 ) = deg(w

(1)
3 ) = ... = deg(w

(1)
m−1) = 3

deg(w(2)
m ) = deg(w(3)

m ) = ... = deg(w(n−1)
m ) = 3

deg(w
(n)
2 ) = deg(w

(n)
3 ) = ... = deg(w

(n)
m−1) = 3

deg(w
(2)
2 ) = deg(w

(2)
3 ) = ... = deg(w

(2)
m−1) = deg(w

(3)
2 ) =

deg(w
(3)
3 ) = ... = deg(w

(3)
m−1 = ... = deg(w

(n−1)
2 ) =

deg(w
(n−1)
3 ) = ... = deg(w

(n−1)
m−1 ) = 4

The vertex degree labeling of G is

A(w
(j)
i ) =


2 i = 1,m, j = 1, n

3 i = 1,m, 2 ≤ j ≤ n− 1

2 ≤ i ≤ m− 1, j = 1, n

4 2 ≤ i ≤ m− 1, 2 ≤ j ≤ n− 1

The average degree edge labeling of G is

A∗(w
(j)
i w

(j)
i+1) =


⌊ 5
2⌋ i = 1,m− 1; j = 1, n

3 2 ≤ i ≤ m− 1; j = 1, n

4 2 ≤ i ≤ m− 1; 2 ≤ j ≤ n− 1

⌊ 7
2⌋ i = 1,m− 1; 2 ≤ j ≤ n− 1

A∗(w
(j)
i w

(j+1)
i ) =


⌊ 5
2⌋ i = 1,m; j = 1, n− 1

3 i = 1,m; 2 ≤ j ≤ n− 1

4 2 ≤ i ≤ m− 1; 2 ≤ j ≤ n− 1

⌊ 7
2⌋ 2 ≤ i ≤ m− 1; j = 1, n− 1

□
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4. Algorithms

The maximal and minimal spanning tree based on average degree
labeling:
The small world brain network is discussed in [1] and, inspired by their work, we
attempted to identify the maximal and minimal spanning trees of an ADL graph.
This finding may be valuable in future research on network theory. Let G be an
undirected, average degree labeled graph on ‘n’ vertices.

Algorithm 4.1. Below are the steps used in the algorithm to find a Maximal
spanning tree shown in flowchart, Figure 4.

Step 1: Let G be an ADL graph and we call edge labeling values as weights of G.
Step 2: Write the degrees of vertices and edges having weights in descending order.
Step 3: Start with a vertex having maximum degree and add the edges having

maximum weight from that vertex in T. If the graph has same vertex degree,
then continue in a similar manner.

Step 4: Omit the edges which forms a cycle and continue the process till we get
(n-1) edges in T.

Figure 4. Flow chart for maximal spanning tree for ADL graph

Algorithm 4.2. Below are the steps used in the algorithm to find a Minimal
spanning tree shown in flowchart, Figure 5.

Step 1: Let G be an ADL graph and we call edge labeling values as weights of G.
Step 2: Write the degrees of vertices and edges having weights in increasing order.

73



NEHA H KUNDAR AND SUJATHA H S

Step 3: Start with a vertex having minimum degree and add the edges in T having
minimum weight. If the graph has same vertex degree, then continue in a similar
manner.

Step 4: Omit the edges which forms a cycle and continue the process till we get
(n-1) edges in T.

Figure 5. Flow chart for minimal spanning tree for ADL graph

Example 4.3. Consider an ADL graph G with six vertices. Figure 6 shows the
maximal and minimal spanning trees for G.

Figure 6. Graph G, Maximal and Minimal Spanning trees

The shortest path principle based on average degree labeling is given
below:
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The shortest path Algorithms play a critical role in network and transportation
studies. However, previous evaluations of existing shortest-path methods were
mostly based on the distance or weight of an edge in the graph. Most computational
tests on shortest path algorithms have used randomly generated networks, which
may not accurately represent real road networks, as discussed in [8]. Dijkstra’s
algorithm can be used to determine the shortest path from one vertex in a graph
to every other vertex within the same graph based on distances. Our approach is
beneficial in determining the exact shortest path lengths in complex networks. This
provides a solid foundation for developing more efficient methods for complicated
network research. The approach can be modified to calculate approximate shortest
paths and other metrics in complex networks based on average degree labeling.

Algorithm 4.4. The main hypothesis of this algorithm works in the following
way:

Step 1: Choose a vertex (v) to determine the shortest path to other vertices in an
ADL graph (up to a few).

Step 2: Begin with a vertex v and look for an edge adjacent to the vertex w that
has the lowest degree. Add it to the path.

Step 3: Choose the next edge linked with vertex w that has the least labeling and
place it in the path.

Step 4: Continue from step 3 to add the remaining vertices to the path.

Example 4.5. Figure 7 shows the shortest path between the vertices v1 and v2.

Figure 7. Shortest path from v1 to v2 via all the vertices in G

Remark 4.6. (a) The regular graph with regularity r on n-vertices has a maximal
spanning tree whose weight is r(n-1).

(b) The running time complexity of algorithm is O(n2) where n is the number of
vertices.

5. Conclusion

The average degree labeling of graphs is investigated and shown to be outstanding
in the field of network theory analysis. Identifying minimal and maximal spanning
trees for undirected graphs is an interesting and difficult issue. This is accomplished
in the current study.
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