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Abstract. In order to make reliable financial predictions, one must be able to accurately
predict how prices will change in extremely volatile markets, such as Bitcoin. In order
to enhance prediction accuracy, this study presents a hybrid model that combines the
two prominent statistical approaches, the Hidden Semi-Markov Model (HSMM) and the
Hidden Markov Model (HMM). As a stochastic framework, the HMM connects visible
price changes to a hidden state. A probability matrix captures the temporal linkages
evident in price dynamics by describing transitions between states. Emission probabilities
govern the possibility of seeing specific prices linked with these concealed states and
improve the association between states and actual prices. On the flip side, the HSMM
improves upon the HMM by adding duration dependencies, which let states have different
durations. A state duration distribution enables this feature, which in turn gives more
information about the time-varying nature of prices. Across a range of error metrics, our
data shows that the HSMM performed better than the HMM. Notably, the HSMM attained
an MAE of 0.0246, an MSE of 0.0014, and an RMSE of 0.0372. When compared, the
HMM achieved RMSE is 0.0672, MAE is 0.0446, and MSE is 0.0514. Cryptocurrency
markets are notoriously volatile, and these results show that the HSMM does a better job
of accounting for non-linear behaviors and temporal variability.

1. Introduction

According to [1] and [2], the fact that financial markets exhibit complex and uncertain
behavior makes correct modeling a formidable obstacle. The ability to predict market
trends, particularly changes in prices and returns, is crucial for investors, financial ana-
lysts, and traders. According to [3] and [4], conventional time-series models often fail to
account for the complex interdependencies and varying lengths of time that states might
last in financial data. We propose a hybrid approach to modeling that combines Hidden
Semi-Markov Models (HSMM) with Hidden Markov Models (HMM) to address these
limitations.

HMM and HSMM are widely used in stochastic modeling, particularly for identi-
fying and predicting latent regimes in sequential data [5], [6]. The Hidden Markov
Model (HMM) provides a probabilistic framework to model the transitions between hid-
den states, assuming that the underlying process follows the Markov property. However,
HMMs suffer from an implicit limitation where state durations are exponentially dis-
tributed, leading to unrealistic assumptions about the persistence of states in real-world
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financial time series. In contrast, HSMM extends HMM by allowing variable state du-
rations, making it better suited for financial data modeling where market states, such as
bullish or bearish trends, persist for varying periods [7],[8].

Financial markets exhibit regime-switching behavior where price returns transition be-
tween different latent states, such as high-volatility, low-volatility, and neutral phases
[9],[10]. Traditional econometric models, such as Autoregressive Integrated Moving Av-
erage (ARIMA) and Generalized Autoregressive Conditional Heteroskedasticity (GARCH),
fail to explicitly capture these hidden structures [11], [12].

HMM provides an efficient method to infer hidden regimes by modeling market states
as unobserved stochastic processes [13],[14]. However, its assumption of geometric state
duration limits its applicability in financial time series, where state persistence varies over
time. HSMM addresses this limitation by explicitly modeling state durations, allowing the
model to capture more realistic market dynamics [15], [16]. The combination of HMM
and HSMM thus provides a powerful tool for understanding and predicting financial mar-
ket behavior.

2. Formulation of Problem

Particularly in the financial markets, where trends frequently exhibit complicated be-
haviors, it is critical to correctly model data in time series analysis in order to uncover
underlying patterns. Combining models, such as Hidden Semi-Markov Models (HSMM)
with Hidden Markov Models (HMM), is a typical way to increase the accuracy of fore-
casts. In this formulation, the mathematical concepts that control the interaction between
HMM and HSMM are outlined, and the significance of hybrid models is discussed, with
a focus on their properties [17], [18].

One such statistical framework is the Hidden Markov Model (HMM), which uses a
Markov process with hidden states to model the system in question. When both the
present and the past have an impact on the outputs, this paradigm becomes useful. In fi-
nancial data analysis, for example, ’bullish’ and ’bearish’ market conditions may change
over time, impacting returns in ways that aren’t immediately apparent. The following
mathematical elements constitute an HMM.

- States: A collection of hidden states S , representing the various conditions the pro-
cess can occupy at any time t. - Observations: A series of events or outputs O that can
be observed. - Transition Probabilities: P(S t |S t−1), indicating the likelihood of moving
from one state to another. - Emissions: The probabilities for producing a specific output
based on the current state, denoted as P(Ot |S t). - Initial Distribution: The probability
distribution for the initial state.

The core equations of HMM are:

P(S t |S t−1) = ai j (2.1)

where ai j is the transition probability from state i to state j.

P(Ot |S t) = b j (2.2)

where b j is the probability of observing Ot given that the system is in state j.
HMMs are useful for capturing the temporal dependencies in sequence data. By infer-

ring hidden states, they can model data with underlying structures that exhibit transitions
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over time. The adaptability of HMMs allows analysts to identify patterns in financial
returns, detect regime shifts, and forecast potential future movements based on current
states.

HSMM extends the capabilities of HMM by allowing for varying durations of hidden
states. Unlike HMM, where each state is assumed to have a fixed duration of one time
step, HSMM recognizes that the time spent in each state can be influenced by a distribu-
tion. In an HSMM, the following configurations are employed:

- State Duration: Determines how long the system remains in each hidden state before
transitioning, modeled using a probabilistic duration distribution.

The key equations governing HSMM include:

P(S t |S t−1) = ai j (2.3)

P(Dt = d|S t = j) = p j(d) (2.4)

where p j(d) is the probability of staying in state j for duration d.

P(Ot |S t = j) = b j (2.5)

The HSMM effectively captures the timing and duration of various market states, mak-
ing it suitable for financial markets where the length of bullish and bearish trends influ-
ences investment choices. This model enhances flexibility and leads to better prediction
accuracy and stronger representations of market behavior. By merging the strengths of the
HMM for modeling states and the HSMM for incorporating duration, the hybrid model
offers a comprehensive approach. It addresses the different regimes that investors may
face over various timeframes, improving predictions by considering both the states and
their persistence. Figure 1 presents the actual versus predicted returns from the Hidden
Markov Model (HMM). The graph highlights how well the model tracks price fluctuations
between 2015 and 2025.

Figure 1. Actual and predicted using HMM

58



NAGARAJ NAIK*

Figure 2 shows the transition matrix for the Hidden Markov Model (HMM). This ma-
trix provides the probabilities of moving between different states, where higher values
suggest a greater chance of staying in the same state.

Figure 2. HMM Transition Matrix

Figure 3 displays the average values for each hidden state in the Hidden Markov Model
(HMM). The bar chart clearly shows that State 0 exhibits a higher average return than
State 1, which suggests different behaviors between these two states.

Figure 4 displays the actual and predicted returns using the Hidden Semi Markov
Model (HSMM). Figure 5 illustrates the transition matrix for the hybrid model that com-
bines the Hidden Markov Model (HMM) and Hidden Semi-Markov Model (HSMM).
This matrix highlights the probabilities of transitioning between multiple states, demon-
strating the enhanced dynamics captured by the hybrid approach. Figure 6 displays the
means of each hidden state in the Hidden Semi Markov Model (HSMM). Notably, State
2 shows a significantly higher mean return compared to State 0 and State 1, indicating its
dominant influence in the model’s prediction of returns.

Given a set of 10 hypothetical stock returns:

R = {0.012,−0.006, 0.003,−0.008, 0.015,−0.002, 0.007, 0.010,−0.011, 0.005} (2.6)

We assume a three-state HMM with the following mean returns:

µ0 = 0.010, µ1 = −0.005, µ2 = 0.002 (2.7)
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Figure 3. Means of each Hidden State

Figure 4. HMM and HSMM Hybrid model Actual and Predicted

The transition probability matrix is:

T =

0.8 0.15 0.05
0.2 0.6 0.2
0.1 0.25 0.65

 (2.8)

Using the Viterbi algorithm, we assign the most probable states to each return:
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Figure 5. HMM and HSMM Hybrid Transition Matrix

Figure 6. Means of each Hidden State

Day Return Hidden State

1 0.012 S 0
2 -0.006 S 1
3 0.003 S 2
4 -0.008 S 1
5 0.015 S 0
6 -0.002 S 2
7 0.007 S 0
8 0.010 S 0
9 -0.011 S 1
10 0.005 S 261
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The predicted returns are determined by the mean of the assigned states:

Day Hidden State Predicted Return

1 S 0 0.010
2 S 1 -0.005
3 S 2 0.002
4 S 1 -0.005
5 S 0 0.010
6 S 2 0.002
7 S 0 0.010
8 S 0 0.010
9 S 1 -0.005
10 S 2 0.002

The error metrics are calculated as follows:
Mean Absolute Error (MAE):

MAE =
1
n

n∑
i=1

|Ri − R̂i| (2.9)

MAE = 0.0028 (2.10)
Mean Squared Error (MSE):

MSE =
1
n

n∑
i=1

(Ri − R̂i)2 (2.11)

Root Mean Squared Error (RMSE):

RMSE =
√

MSE (2.12)

Table 1. Comparison of HMM and HSMM Error Measures

Error Measure HMM HSMM

Mean Absolute Error (MAE) 0.0446 0.0246
Mean Squared Error (MSE) 0.0514 0.0014
Root Mean Squared Error (RMSE) 0.0672 0.0372

As shown in Table 1, the Hidden Semi-Markov Model (HSMM) significantly outper-
formed the Hidden Markov Model (HMM) across all error measures. Specifically, the
HSMM achieved a Mean Absolute Error (MAE) of 0.0246, compared to the HMM’s
MAE of 0.0446, indicating its superior ability to model price dynamics more accurately.

3. Conclusions

The rapid rise of cryptocurrencies has necessitated the development of advanced fore-
casting methods to navigate the inherent volatility of digital assets. This study has ex-
plored the effectiveness of two prominent statistical frameworks: the Hidden Markov
Model (HMM) and the Hidden Semi-Markov Model (HSMM), in forecasting price move-
ments. We presented a hybrid approach that leverages the strengths of both models to
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enhance predictive accuracy. Our findings indicate that the HSMM significantly outper-
forms the HMM in capturing the complex dynamics of price changes. The HSMM excels
in accounting for how long a state lasts, which is crucial for financial time series that show
unpredictable patterns.under order to help with decision-making under uncertain market
conditions, HSMM includes a distribution for state duration, which makes it easier to see
how prices fluctuate over time.

Three metrics were measured by HSMM: MAE (0.0246), MSE (0.0014), and RMSE
(0.0372), according to our research. In contrast, the HMM produced RMSE is 0.0672,
MAE is 0.0446, and MSE is 0.0514. These results stress the significance of picking the
right modeling approaches that react to the asset’s actions.

An example of how well these methods can complement one another is the hybrid
model that combines HMM and HSMM. In order to stay flexible when markets shift
and new trends emerge, this integrated framework can be adjusted to fit specific market
conditions or other financial instruments.

Other uncertain financial assets may potentially benefit from our study’s conclusions.
Successful risk management, commodity price fixing, and stock market prediction are all
possible using the methods presented here. Deep learning and other machine learning
approaches can further improve the performance of the model. Market sentiment, reg-
ulatory changes, and macroeconomic indicators are examples of exogenous factors that
could benefit from further investigation on how to include them into models. With this
addition, we may be able to better understand the drivers of price movements and make
more accurate predictions. Furthermore, to determine the suggested models’ resilience
and dependability, performance evaluation over long time horizons and varied market
situations is crucial.

Data availability

Data used is publicly available: https://finance.yahoo.com/quote/BTC-USD/history/

Acknowledgments (All sources of funding of the study must be disclosed)

This research received no external funding.

Conflict of interest

The authors declare no conflicts of interest
References

References
[1] H. Zheng, J. Wu, R. Song, L. Guo, and Z. Xu, “Predicting financial enterprise stocks and economic data

trends using machine learning time series analysis,” Applied and Computational Engineering, vol. 87,
pp. 26–32, 2024.
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