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Abstract. In this paper it is observed that blocks behave like an edge of a

graph with multiple vertices. This intutive notion of analogy between blocks
and edges of a graph motivated to define block paths in a graph. It is observed

that every graph is a block tree (B-Tree). Varieties of block-degrees and ex-

pressions for sum of block degrees are obtained. New graphs, semitotal-block-
cutvertex graph, total-block-cutvertex graph and semitotal block-vertex-edge

graph arising from the given graph are defined and expressions for the num-

ber of edges in the new graphs are derived. Several bounds for number of
blocks and cutvertices in a graph are obtained. A new class of graphs called

block regular graphs are introduced and their properties are studied.

1. Introduction

Throughout the discussion in this paper by a graph G, we mean a finite, undi-
rected, simple connected graph with vertex set V (G) and edge set E(G). The
terminologies not presented here can be found in [6]. A vertex v ∈ V is a cutvertex
if G − v is disconnected and such an edge is a bridge. G is separable if it has a
cutvertex otherwise it is nonseparable. A maximal connected nonseparable sub-
graph is a block of G. A maximal complete subgraph is a clique. Let B(G) and
C(G) denote the set of all blocks and cutvertices of G respectively. All through
the discussion, we consider |V (G)| = p and |E(G)| = q called the order and size
of the graph, while |B(G)| = m and |C(G)| = n. If a block b ∈ B(G) contains a
cutvertex c ∈ C(G) then we say that b and c incident to each other. Two blocks
in G are adjacent if there is a common cutvertex incident on them. On the other
hand, two cutvertices are adjacent if there is a common block incident on them. A
block-graph BG(G) is a graph with vertex set B(G) and any two vertices in BG(G)
are adjacent if and only if the corresponding blocks are adjacent in G. Similarly, a
cutvertex graph CG(G) is defined. Further, a block- cutvertex graph BC(G) is a
tree with vertex set B(G)∪C(G) and a cutvertex c ∈ C(G) and a block b ∈ B(G)
are adjacent in BC(G) if and only if c is incident on the block b. A block-vertex
tree bp(G) as defined by V.R.Kulli [11] is a tree with vertex set B(G)∪ V (G) and
a vertex v ∈ V (G) and a block b ∈ B(G) are adjacent in bp(G) if and only if v is
incident on the block b. It is observed that BG(BG(G)) = CG(G). A graph G is
a block-graph of some graph if and only if every block is a clique in G. A similar
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characterization is true for a cutvertex graph also. We have observed that a block
behaves like an edge of a graph with multiple vertices. This intuitive notion lead
us to define block paths in a graph.

2. Block degree and cutvertex degree

Two vertices u,w ∈ V, are vv-adjacent if they incident on the same block.
Then vv-degree of u = dvv(u), is the number of vertices vv-adjacent to u. Simi-
larly, vb-degree (vertex-block degree) dvb(u) of a vertex u, is the number of blocks
incident on u. For any noncutvertex w ∈ V, dvb(w) = 1 and for any cutvertex
c ∈ C(G), dvb(c) ≥ 2. bv-degree (block vertex-degree) of a block f, dbv(f) is the
number of vertices in the block f and be-degree (block edge- degree) of a block
f, dbe(f) is the number of edges in the block f . bb-degree (block block-degree) of
a block h, dbb(h) is the number of blocks adjacent to h. Finally, cutvertex degree
of a block b, dc(b) is the number of cutvertices incident on b. Let △vv(G) and
δvv(G) denote the maximum and minimum vv-degrees of G respectively. Then
△vb(G), δvb(G),△bv(G), δbv(G),△be(G), δbe(G),△bb(G), δbb(G),△c(G) and δc(G)
are similarly defined. A block b is a pendant block if dc(b) = 1. One can also
find several new degree concepts in graphs defined and studied in [3, 8, 9]. The
following results appear in [5, 7]. Those results in our terminologies read as follows.

Proposition 2.1. For any graph G with m blocks and n cutvertices,∑
u∈V

(dvb(u)− 1) = m− 1 Harary [8] (2.1)

∑
h∈B(G)

(dc(h)− 1) = n− 1 Gallai [6] (2.2)

Corollary 2.2. For any graph G with p vertices,∑
h∈B(G)

(dbv(h)− 1) = p− 1 (2.3)

Proof. Infact, dbv(h) = dc(h)+ number of noncutvertices of h. Noting that there
are p− n noncutvertices in any graph, we have

∑
h∈B(G)(dbv(h)− 1)

=
∑

h∈B(G)(dc(h)− 1) + p− n = n− 1 + p− n = p− 1 using equation (2.2).

□

It is interesting to see that sum of vb-degree of all cutvertices and sum of
cutvertex degree of all blocks are equal.

Theorem 2.3. For any graph G with m blocks and n cutvertices,∑
c∈C(G)

dvb(c) =
∑

h∈B(G)

dc(h) = m+ n− 1 (2.4)

∑
u∈V (G)

dvb(u) =
∑

h∈B(G)

dbv(h) = p+m− 1 (2.5)
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Proof. For each noncutvertex u, dvb(u) = 1. Therefore noncutvertices contribute
null to the sum in (2.1) and hence equation (2.1) can be written as m − 1 =∑

c∈C(G)(dvb(c)− 1). This yields
∑

c∈C(G) dvb(c) = m+ n− 1. Now from Gallai’s

result (2.2), we have n − 1 =
∑

h∈B(G) dc(h) − m. Hence
∑

h∈B(G) dc(h) = m +

n − 1. Thus the result (2.4) is proved. Again from (2.1),
∑

u∈V (dvb(u) − 1) =∑
u∈V dvb(u) − p = m − 1. Then

∑
u∈V dvb(u) = p + m − 1. Also from (2.3),∑

h∈B(G)(dbv(h)−1) =
∑

h∈B(G) dbv(h)−m = p−1. Therefore
∑

h∈B(G) dbv(h) =

p+m− 1 which yeilds the equation (2.5).
□

Corollary 2.4. Let BP (G) and BNP (G) denote the set of all pendant and non-
pendant blocks of G respectively. Let mp = |BP (G)| and mNP = |BNP (G)|, so
that m = mp +mNP . Then,∑

h∈BNP (G)

dc(h) = mNP + n− 1 (2.6)

Proof. Since each pendant block has only one cutvertex, each pendant block con-
tributes one to the sum in (2.4). Therefore

∑
h∈B(G) dc(h) =

∑
h∈BNP (G) dc(h) +

mp = m+n−1. This yields
∑

h∈BNP (G) dc(h) = (m−mp)+n−1 = mNP+n−1. □

In the next result we get a lower bound for sum of the squares of vb-degree of
all cutvertices using well known Cauchy-Schwarz inequality,∑n

i=1 |aibi| ≤
√∑n

i=1 |ai|2
√∑n

i=1 |bi|2 where ai and bi are integers.

Proposition 2.5. For any graph G with m blocks and n cutvertices,∑
c∈C(G)

(dvb(c))
2 ≥ (m+ n− 1)2

n
(2.7)

∑
h∈B(G)

(dbv(h))
2 ≥ (p+m− 1)2

m
(2.8)

Further, these bounds are sharp.

Proof. Taking ai = dvb(ci) and bi = 1 in the above Cauchy-schwarz inequality,
we get (

∑n
i=1 dvb(ci))

2 ≤ n
∑n

i=1(dvb(c))
2. The equation (2.7) now follows from

equation (2.4). The bound is attained for any B-path and B-complete graph. The
equation can (2.8) be proved similarly and hence we omit the proof.

□

The line graph L(G) of a graph G is a graph with vertex set as edges of G and
any two vertices in L(G) are adjacent if and only if the corresponding edges are
adjacent in G. It is well known (see [1]) that the sum of edge degrees of all edges
of a graph G is given by

∑
x∈E(G) d(x) = 2qL

∑
u∈V (G)([d(u)]

2)− 2q, where qL is

the number of edges in L(G). Analogusly, we obtain an expression for the sum of
bb-degree of all blocks in a graph.
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Theorem 2.6. Let G be any graph and qb and qc denote the number of edges in
the block graph BG(G) and cutvertex graph CG(G).Then,∑

h∈B(G)

dbb(h) = 2qb =
∑

c∈C(G)

[dvb(c)]
2 − (m+ n− 1) (2.9)

2qc =
∑

h∈B(G)

[dc(h)]
2 − (m+ n− 1) (2.10)

Proof. Since vertices of BG(G) are blocks of G, bb-degree of a block is the de-
gree of the corresponding vertex in BG(G). Hence 2qb =

∑
u∈V (BG(G)) d(u) =∑

h∈B(G) dbb(h). As every block in BG(G) is a clique, each cutvertex in G yield

(
dvb(c)
2 ) edges in BG(G). Then qb =

∑
c∈C(G)(

dvb(c)
2 ) = 1

2

∑
c∈C(G)[(dvb(c))

2 −
dvb(c)] =

1
2 [
∑

c∈C(G)[dvb(c)]
2 − (m + n − 1)] using equation (2.4). Then the re-

sult (2.9) follows. The proof of (2.10) is similar and hence we omit the proof. □

Remark 2.7. As the edges of G can be partitioned in to blocks of G, it is immediate
that

∑
h∈B(G) dbe(h) = q.

2.1. Vertex graph and sum of vv-degree. Similar to cutvertex graph, we
define vertex graph PG(G) of a graph, whose vertex set is V (G) and any two
vertices in PG(G) are adjacent if and only if they are vv-adjacent in G. We
observe that PG(PG(G)) = PG(G). Interestingly, a vertex graph also admits same
characterization as that of cutvertex graph. A graph G is a vertex graph of some
graph if and only if every block of G is a clique in G. Also PG(G) ∼= G if and only
if every block of G is a clique in G.

Theorem 2.8. Let G be any graph and qp denote the number of edges in the vertex
graph PG(G). Then,∑

u∈V (G)

dvv(u) = 2qp =
∑

h∈B(G)

[dbv(h)]
2 − (p+m− 1) (2.11)

Proof. Since vv-degree of a vertex is the degree of the corresponding vertex in
PG(G), we have

∑
u∈V (G) dvv(u) =

∑
u∈V (PG(G)) d(u) = 2qp. As every block in

PG(G) is a clique, each block in G yield (
dbv(h)
2 ) edges in PG(G). Then qp =∑

h∈B(G)(
dbv(h)
2 ) = 1

2

∑
h∈B(G)[(dbv(h))

2 − dbv(h)] =
1
2 [
∑

h∈B(G)[dbv(h)]
2 − (p +

m− 1)] using equation (2.5). Thus the equation (2.11) follows. □

The following result provides a lower bound for sum of bb-degree of all blocks
when number of blocks and cutvertices are known.

Proposition 2.9. For any graph G with m blocks and n cutvertices,∑
h∈B(G)

dbb(h) ≥
(m− 1)(m+ n− 1)

n
(2.12)

∑
u∈V (G)

dvv(u) ≥
(p− 1)(p+m− 1)

m
(2.13)

Further, these bounds are sharp.
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Proof. From Proposition 2.5 and Theorem 2.6, we have

∑
h∈B(G)

dbb(h) ≥
(m+ n− 1)2

n
− (m+ n− 1)

=
m2 + n2 + 1 + 2mn− 2n− 2m−mn− n2 + n

n

=
(m− 1)2 + n(m− 1)

n
=

(m− 1)(m+ n− 1)

n

The bound is sharp is evident from the fact that any B-path and B-complete
graph attain the bound. The result (2.13) can be proved similarly. □

2.2. Bounds on number of blocks and cutvertices in a graph. If G has
atleast one cutvertex then there exist at least two pendant blocks and hence δc(G)
is always equal to 1. For such a graph, if u is a noncutvertex, then dvb(u) = 1.
Therefore δvb(G) is always equal to 1. Hence we introduce two parameters defined
as δcvb(G) = minc∈C(G){dvb(c)} and δNPc(G) = minh∈BNP (G){dc(h)}.

It is well known that pδ
2 ≤ q ≤ p∆

2 . Along these lines, the next results provide
bounds for number of blocks and cutvertices.

Theorem 2.10. For any graph G, with m blocks, mNP nonpendant blocks and n
cutvertices,

q

∆be
≤ m ≤ q

δbe
(2.14)

p− 1

∆bv − 1
≤ m ≤ p− 1

δbv − 1
(2.15)

n− 1

∆c − 1
≤ mNP ≤ n− 1

δNPc − 1
(2.16)

m− 1

∆vb − 1
≤ n ≤ m− 1

δcvb−1
(2.17)

Further, these bounds are sharp.

Proof. By Remark 2.7,
∑

h∈B(G) dbe(h) = q. Then mδbe ≤
∑

h∈B(G) dbe(h) = q ≤
m∆be. Hence
q

∆be
≤ m ≤ q

δbe
follows. Again from Theorem 2.3, we havemδbv ≤

∑
h∈B(G) dbv(h) =

p+m− 1 ≤ m∆bv. This yields equation (2.15). Similarly from Corollary 2.4, we
have (mNP )(δNPc) ≤

∑
b∈BNP (G) dc(b) = mNP + n− 1 ≤ (mNP )∆c which yields

equation (2.16) .
Finally, from Theorem 2.3, we have mδcvb ≤

∑
c∈C(G) dvb(c) = m+n− 1 ≤ n∆vb.

This yields equation (2.17).
For any tree T with p vertices m = q = p− 1, δbv = ∆bv = 2 and δbe = ∆be = 1.

Hence any tree attain both upper and lower bounds in (2.14) and (2.15). For any
B-path BPm with m blocks ∆c = δNPc = 2,∆vb = δcvb = 2,mNP = m − 2 and
n = m − 1. Now one can verify that any B-path attains upper and lower bounds
in (2.16) and (2.17). Thus the bounds are sharp.

□
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3. Semitotal-block-cutvertex graph and Total-block-cutvertex graph

Semitotal graphs and Total graphs are well studied in [2, 12]. Further, semitotal
block graph and total block graph are defined by V.R.Kulli [10]. On the similar
lines, we define two new graphs arising from the given graph. The blocks and
cutvertices of a graph are called its members. Semitotal block-cutvertex graph
Tbc(G) of a graph G is a graph with vertex set B(G)∪C(G) and any two vertices
in Tbc(G) are adjacent if and only if the corresponding cutvertices are adjacent
or the corresponding members are incident. It is easy to note that Tbc(G) =
BC(G)∪CG(G). The total block cutvertex graph TBC(G) of a graph G is a graph
with vertex set B(G) ∪ C(G) and any two vertices in TBC(G) are adjacent if and
only if the corresponding members are adjacent or incident. Again we note that
TBC(G) = BC(G) ∪ CG(G) ∪BG(G).

We are now ready to detrmine the number of edges in the above newly defined
graphs. In what follows by q(G) we mean the number of edges in the corresponding
graph G.

Theorem 3.1. Let G be a graph with m blocks and n cutvertices. Let qbc and qBC

denote the number of edges in Tbc(G) and TBC(G) respectively. Then,

qbc =
1

2
[(m+ n− 1) +

∑
h∈B(G)

(dc(h))
2] (3.1)

qBC =
1

2
[

∑
h∈B(G)

(dc(h))
2 +

∑
c∈C(G)

(dvb(c))
2] (3.2)

Proof. We first prove the following
Claim : For any graph G,

∑
h∈BNP (G)

[(dc(h))
2 − dc(h)] =

∑
h∈B(G)

[(dc(h))
2 − dc(h)] (3.3)

The proof of the claim follows from the fact that, for any pendant block
f, dc(f) = 1 and hence all pendant blocks contribute null to the sum on the
right hand side of equation (3.3).
To prove (3.1). Since every cutvertex yields dvb(c) edges in BC(G), the number
of edges in BC(G) =

∑
c∈C(G) dvb(c) = m+n−1. Further, all the cutvertices inci-

dent to a nonpendant block are mutually adjacent, every nonpendant block h yields

(
dc(h)
2 ) edges in CG(G). Hence the number of edges in CG(G) =

∑
h∈BNP (G)

(
dc(h)

2

)
.

Then,
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qbc = q(BC(G)) + q(CG(G))

(Since Tbc(G) = BC(G) ∪ CG(G))

= m+ n− 1 +
∑

h∈BNP (G)

(
dc(h)

2

)
= m+ n− 1 +

1

2

∑
h∈BNP (G)

[(dc(h))
2 − dc(h)]

= m+ n− 1 +
1

2

∑
h∈BNP (G)

(dc(h))
2 − 1

2

∑
h∈BNP (G)

dc(h)

= m+ n− 1− 1

2
(mNP + n− 1) +

1

2

∑
h∈BNP (G)

(dc(h))
2

(using Corollary 2.4)

=
1

2
(2m−mNP + n− 1) +

1

2

∑
h∈BNP (G)

(dc(h))
2

=
1

2
[(m+mP + n− 1) +

∑
h∈BNP (G)

(dc(h))
2]

(since m−mNP = mp).

=
1

2
[(m+ n− 1) +

∑
h∈BNP (G)

[(dc(h))
2] +mP ]

=
1

2
[(m+ n− 1) +

∑
h∈B(G)

(dc(h))
2].

To prove (3.2).

qBC =q(BC(G)) + q(CG(G)) + q(BG(G))

= m+ n− 1 +
∑

h∈BNP (G)

(
dc(h)
2 ) +

1

2
[
∑

c∈C(G)

[dvb(c)]
2]− (m+ n− 1)]

(using Theorem 2.6)

= m+ n− 1 +
1

2
[

∑
h∈B(G)

[(dc(h))
2 − dc(h)] +

∑
c∈C(G)

[dvb(c)]
2 − (m+ n− 1)]

(using eqation (3.3))

= m+ n− 1 +
1

2
[

∑
h∈B(G)

[dc(h)]
2 − (m+ n− 1) +

∑
c∈C(G)

[dvb(c)]
2 − (m+ n− 1)]

(using Theorem 2.3)

=
1

2
[

∑
h∈B(G)

[dc(h)]
2 +

∑
c∈C(G)

[dvb(c)]
2]
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□

3.1. Semitotal-block-vertex graph and total block-vertex graph.
In the above graphs if we replace C(G) by V (G) we get two different graphs.
The blocks and vertices of a graph are called its members. Semitotal block-vertex
graph Tbp(G) is a graph with vertex set V (G) ∪ B(G) and any two vertices in
Tbp(G) are adjacent if and only if corresponding vertices are vv-adjacent or the
corresponding members are incident. In this case Tbp(G) = bp(G) ∪ PG(G). The
total block-vertex graph TBP (G) is a graph with vertex set V (G)∪B(G) and any
two vertices in TBP (G) are adjacent if and only if the corresponding members are
vv-adjacent or adjacent or incident to each other. Further, TBP (G) = bp(G) ∪
PG(G) ∪BG(G). Expressions for the number of edges in these graphs are derived
in the next theorem.

Theorem 3.2. Let G be a (p,q) graph with m blocks and n cutvertices. Let qbp
and qBP denote the number of edges in Tbp(G) and TBP (G) respectively. Then,

qbp =
1

2
[(p+m− 1) +

∑
h∈B(G)

[dbv(h)]
2] (3.4)

qBC =
1

2
[p− n+

∑
h∈B(G)

[dbv(h)]
2 +

∑
c∈C(G)

[dvb(c)]
2] (3.5)

Proof. Result (3.4) can be proved in a similar way as in Theorem 3.1. Therefore
we prove (3.5) only. Since every block h yields dbv(h) edges in bp(G), we have the
number of edges in

bp(G) =
∑

h∈B(G)

dbv(h) = p+m− 1

Therefore

qBC =q(bp(G)) + q(PG(G)) + q(BG(G))

= p+m− 1 +
1

2

[ ∑
h∈B(G)

[dbv(h)]
2 − (p+m− 1)

]

+
1

2

[ ∑
c∈C(G)

[dvb(c)]
2 − (m+ n− 1)

]
(using Theorem 2.4 and Theorem 2.6)

=
1

2
[p− n+

∑
h∈B(G)

[dbv(h)]
2 +

∑
c∈C(G)

[dvb(c)]
2]

□

3.2. Semitotal-block-vertex-edge graph and total block-vertex- edge
graph.
We now define the most generalized total graphs. The blocks, vertices and edges
of a graph are called its members. Semitotal block-vertex-edge graph Tbpe(G) is a
graph with vertex set V (G) ∪ B(G) ∪ E(G) and any two vertices in Tbpe(G) are
adjacent if and only if corresponding vertices are vv-adjacent or the corresponding
members are incident. A vertex edge graph Ve(G) is a bigraph with vertex set as

27



BOUNDS ON NUMBER OF CUTVERTICES AND BLOCKS OF A GRAPH

V (G) ∪ E(G) and a vertex v ∈ V and an edge x ∈ E(G) are adjacent in Ve(G)
if and only if v is incident on the edge x. A block edge graph be(G) is a bigraph
with vertex set B(G) ∪ E(G) and a block b ∈ B(G) are adjacent if and only if
the edge x is incident on the block b. we observe that Tbpe = PG(G) ∪ be(G) ∪
Ve(G)∪ bp(G). The total block-vertex-edge graph TBPE(G) is a graph with vertex
set V (G) ∪ B(G) ∪ E(G) and any two vertices in TBPE(G) are adjacent if and
only if the corresponding members are vv-adjacent or adjacent or incident to each
other. It is not hard to see that TBPE(G) = Tbpe(G)∪BG(G)∪L(G). We now aim
at getting expressions for the number of edges in these generalized total graphs.

Theorem 3.3. Let G be a (p,q) graph with m blocks and n cutvertices. Let qbpe
and qBPE denote the number of edges in Tbpe(G) and TBPE(G) respectively. Then,

qbpe =
1

2
[6q + (p+m− 1) +

∑
h∈B(G)

[dbv(h)]
2] (3.6)

qBC =
1

2
[4q + (p− n) +

∑
u∈V (G)

[d(u)]2 +
∑

c∈C(G)

[dvb(c)]
2 +

∑
h∈B(G)

[dbv(h)]
2] (3.7)

Proof. To prove (3.6). Since each edge is incident on two vertices, there are 2q
edges in Ve(G). As every edge is incident on a unique block, there are q edges in
be(G). Then

qbpe = q(PG(G)) + q(be(G)) + q(Ve(G)) + q(bp(G))

=
1

2

[ ∑
h∈B(G)

[(dbv(h))
2]− (p+m− 1)

]
+ q + 2q + (p+m− 1)

=
1

2

[
6q + (p+m− 1) +

∑
h∈B(G)

[(dbv(h))
2]

]

To prove (3.7).

qBPE = qbpe + q(BG(G)) + q(L(G))

=
1

2
[6q + (p+m− 1) +

∑
h∈B(G)

(dbv(h))
2] +

1

2

[ ∑
c∈C(G)

(dvb(c))
2

− (m+ n− 1)

]
+

1

2

[ ∑
u∈V (G)

(d(u))2 − 2q

]

=
1

2

[
4q + (p− n) +

∑
u∈V (G)

(d(u))2 +
∑

c∈C(G)

(dvb(c))
2 +

∑
h∈B(G)

(dbv(h))
2

]
□
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Figure 1. The Cactus K(4)

4. B-regular graphs

The new degree concepts paved the way to define varieties of block regular
graphs. A graph G is said to be BVk- regular if dbv(h) = k for every h ∈ B(G).
A graph G is BEk- regular if dbe(h) = k for every h ∈ B(G). Similarly if
dvb(c) = k for every cutvertex c ∈ C(G), then G is a VBk- regular graph. If
dbb(h) = k for every block h ∈ B(G) then G is a BBk- regular graph. On
the other hand, if dc(f) = k for every nonpendant block f , then G is a Ck -
regular (cutvertex k regular) graph. Finally, if dvv(c) = k for every cutvertex
c ∈ C(G), then G is a VVk-regular graph. Any path Pn is a BE1, BV 2, C2, V B2
and V V 2-regular graph. Any B-path BPm in which every block has k vertices
and r edges is a BEr,BV k,C2 and V B2 and V V (2k − 2) regular graph. Any
tree T is a BV2 and BE1 regular graph.The cactus K(i) for i ∈ N , has vertex
set V (K(i)) = {ak|k = 1, 2, ......, i + 1}; {bj |j = 1, 2, ......, 2i} and the edge set
E(K(i)) = {akb2k−1, ak+1b2k−1|k = 1, 2, ......, i}; {akb2k, ak+1b2k|k = 1, 2, ......, i}.
The Cactus K(4) shown in Figure 1 is a BE4, BV4, C2,VB2 and VV6 regular
graph. We observe that, in general any Cactus K(i) is a B-path with i blocks and
all the blocks being the cycle Ci. Hence K(i) is a BEi, BV2, C2,VB2 and VV(2i-2)
regular graph.

Proposition 4.1. If G is a connected BVk- regular graph with k ≥ 3 and m blocks,
then

p = m(k − 1) + 1 (4.1)

mk ≤ q ≤ mk(k − 1)

2
(4.2)

Proof. If G is a connected BVk- regular graph with k ≥ 3, then every block of G
has exactly k vertices. Then mk =

∑
h∈B(G) dbv(h) = p+m−1 from Theorem 2.3.

Therefore p = m(k − 1) + 1 and the result (4.1) follows. A block with k vertices
with minimum number of edges is the cycle Ck, and every cycle Ck has k edges
and hence mk ≤ q. Similarly, a block with k vertices with maximum number of
edges is a complete graph Kk, which has (k2) edges, and thus we have q ≤ m(k2).
Then the result (4.2) follows. □

In the next proposition we characterize the BVk - regular graphs attaining

q = mk and q = mk(k−1)
2 . The result being straight forward from the above proof.

Proposition 4.2. If G is a connected BVk- regular graph with k ≥ 3 and m blocks,
then
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(i) q = mk if and only if every block of G is a cycle Ck.

(ii) q = mk(k−1)
2 if and only if every block of G is a clique Qk

Proposition 4.3. Let G be a connected BEk- regular graph with m blocks, then
(i) q = mk
(ii) m(r − 1) + 1 ≤ p ≤ m(k − 1) + 1

where r is a least positive integer such that the clique Qr has k edges.

Proof. Since G is BEk -regular graph, every block of G contains k edges. A
block containing k edges with minimum number of vertices must be a clique Qr

in G. If every block of G contains atleast r vertices then mr ≤
∑

h∈B(G) dbv =

p +m − 1 which yields lower bound in (ii). Simlarly, a block containing k edges
with maximum number of vertices is the cycle Ck in G. If every block of G contains
atmost k vertices, then mk ≥

∑
h∈B(G) dbv = p+m− 1 which yields upper bound

in (ii). □

Proposition 4.4. Let G be a BEk- regular graph with m blocks, then
(i) p = m(r−1)+1 if and only if every block of G is a clique Qr where r is a least
positive integer such that the clique Qr has k edges.
(ii) p = m(k − 1) + 1 if and only if every block of G is a cycle Ck

Proof. The result follows from the fact that a block containing k edges with mini-
mum number of vertices must be a clique Qr and a block containing k edges with
maximum number of vertices is a cycle Ck. □

Conclusion: B-regular graph structures are important in the study of biotechnol-
ogy to get unique type of group cell structures. It finds its application in the study
of regular structure of hydrocarbons in organic chemistry and crystal structure in
crystallography. Recently, mixed block domination parameters are studied and
using the maximum block degree, several bounds for mixed block domination are
obtained in [4, 13]. The following problems are kept open.
Open Problem 1. Characterize all VBk regular graphs

Open Problem 2. Characterize all VVk regular graphs
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