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ON CERTAIN RESULTS RELATED TO RAMANUJAN’S
¢-CONTINUED FRACTIONS

BHAGYALAKSHMI ADIGA AND D. ANU RADHA*

ABSTRACT. Continued fractions of various orders have been obtained from
Ramanujan’s general continued fraction identity. We present several identi-
ties involving theta functions related to these continued fractions, as well as
various color partition identities as an applications. Additionally, we have
derived vanishing coefficients and numerous algebraic relations.

1. Introduction

In this article, we give certain g-continued fractions of various orders that are
derived from Ramanujan’s general theta function identity. One of the significant
contributions made by Ramanujan pertains to the field of q continued fractions.
The most renowned of these is the Rogers-Ramanujan continued fraction, denoted
as R(q). This concept was first introduced by Rogers in 1894. In 1912, Ramanujan
revisited the continued fraction, providing numerous explicit values of R(g) in his
notebooks [7, 10, 11] and in his initial correspondence with Hardy. These values
were subsequently confirmed by Watson and Ramanathan [14, 15]. For further in-
formation, one may refer [3, 5, 6] for more details. Surekha [13] in 2017 introduced
modular relations associated with continued fractions of order sixteen, highlight-
ing similarities to the Rogers-Ramanujan continued fraction. Subsequently, Saikia
and Rajkhowa [8, 9] made noteworthy advancements by creating continued frac-
tions of different orders that bear resemblance to the Rogers-Ramanujan continued
fractions and by establishing modular identities for these fractions. Furthermore,
they utilized these ideas to formulate color partition identities grounded in parti-
tion theory. In this paper, we consider for all complex numbers. z and ¢, define
the g-product (z;¢)e as
o0
(@) = [[(1—2a"). ol <1. (L1)

t=0
For simplicity, we often write
(213 @)oo (223 @)oo (235 @)oo (2mi Qoo = (21, 22, 23, -+ Zmi @) oo-
The theta function f(z,y) as articulated by Ramanujan [4, p.34] is expressed as
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oo

flag) = 3 a2, (12)

t=—o0

Also, the f(z,y) interms of Jacobi’s triple product identity [4, p.35, Entry 19] can
be stated as

f@y) = (—2529)oc (Y3 2Y)oo (Y3 2Y) 0 = (-2, =Y, 2Y; 2Y)oo. (1.3
The special cases of f(z,y) are the theta-functions ¢(q), ¥(q) and f(—q) [4, p.36,
Entry 22 (i)-(iii)] are given by,

o0

_ _ 60w
#q) = fla.q)= > ¢ = @ D (1.4)

t=—o0

blg) = B P CE Ul WE (15)

= (¢54%)oo
0= f=a.—a*) = Y (D¢ = (g0). (1.6)
t=—o00
After Ramanujan, define
X(@) = (—=4;¢%)oo- (1.7)

Ramanujan documented numerous continued fractions in his notebooks, with the
most renowned being the Rogers-Ramanujan continued fraction of order 5 and has
recorded various general identities pertaining to continued fractions in his note-
book. Among these, he highlighted a specific general continued fraction identity
[4, p. 24, Entry 12]. Suppose that w, z and ¢ are complex numbers with |wz| < 1
and |g| < 1, or that w = 2**1 for some integer ¢. Then,

(¢ oo (226 4" )00 1

(w243 ¢")oo (2°¢5 4*) 0 (w — 2q)(z — wq)
(1 —wz)+
(w — 2¢°)(z — wg®)

(1 —wz2)(g*+1) +

(1.8)
In this study, we focus on the g-continued fractions of orders fifty and sixty six.
By selecting appropriate values for w and z, along with suitable powers of ¢, it is
possible to derive g-continued fractions of specific orders that fulfill theta function
identities similar to those associated with R(q).

(1 —w2)(¢* +1) +
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Theorem 1.1. We have, for i =0,1,3,4,5,6,8,9,10 and 11
wi(q) : = (2i+1)/4 S(@?7, ¢ ¢%) B (2i+1)/4f(_q127i’ —gB8+)
i) =¢q f(gi3+i,q37—i; ¢50) =4q F(—qi3F, —g 1)
qRiTD/4(1 — gl2—)
q25/2(1 _ q(2i+1)/2)(1 _ q(49—2i)/2)
q25/2(1 _ q(51+2z)/2)(1 - q(ggfgz)/g)
(1-¢»2)(g0 +1) +---
(1.9)

(1= /) +

(1—¢%/2)(¢% +1) +

Proof. By replacing q by ¢**/2 in ((1.8), setting the values, {s = ¢**/*,t = ¢*7/*},
{s = V4t = @), {s = ¢4t = V4, [s = ¢'T/4 ¢t = ¢34}, {s =
gt = 3T, {s = ¢t = ¢ {s = ¢Vt = M {s = ¢Tt =
B/, {s = ¢4t = ¢, {s = ¢'/*,t = ¢*/*} and simplifying using the
results that {(¢°';¢*") = (@:¢° )oo/(l - a)} {66~ = (q ¢°%)oo /(1 =
A} AP0 = (%6 /(1 - ¢}, {(q54,q5°) = (¢%¢)/(1 = ¢")},
{(6°%¢™) 00 = (¢% q50)oo/( °)} (@670 = (€767 00/ (1 — ")},

{(6°%¢™)00 = (¢% q50)oo/(1—q )} (@670 = (¢° ) /(1 =q%)},

{(¢°56 )0 = (€"56)0e/(1 = ™)}, {(6°%567) 0 = (q %070 /(1 = q"?)}, we

obtain the following ten continued fractions of order fifty, given Theorem 1.1. [

Theorem 1.2. We have, fori=20,2,3,5,6,8,9,11,12,14 and 15

Gilq): = q(2i+1)/4 f(q167i7q50+i5q66) _(2i+1)/4 f(=

f‘(ql7-|-i7 q49—i; q66) =4 f(_q17-i-i7 _q49—i)
q(21+1)/4(1 _ qlﬁ—i)

q33/2(1 _ q(2z+1)/2)(1 _ q(6572¢)/2)
33/2(1 67+2i)/2)(1

6—1
)

7q50+i)

(1—g%2)+

_ q( _ q(131—2i)/2)

(1= ¢33/2)(¢% + 1) + - -
(1.10)

(1= q%/2) (¢ + 1) + 2

Proof. we derive eleven continued fractions of order sixty-six, by replacing ¢ by
¢*3*/? in (1.8), setting the values, {s = ¢*%/4 t = ¢°%/4}, {s = ¢*/*,t = ¢°7/*},
{s = @@/t = V4, {s = ¢/t = B4, {s = ¢4t = ¢T/4), {s =
gt = Y {s = ¢t = @YY, {s = M = VY, {s = ¢TI =
@y, {s = q5/4 t = ¢SV and {s = ¢"/*,t = ¢%°/*}, and simplifying using

the results {(¢q%" g = (q; q66)oo/(1 — )} {(6°%4°%) 00 = (6% ¢%)0e/(1 — ¢*)},

{(d7%4%)0 = (g 4 oo/ (1 =)}, {(a716%)0c = (450%)00 /(1 = °)},
{075 4%)0 = (q77 oo/ (1 =q")}, {(a™;4%)0c = (¢54%)oe/(1 = ¢*)},
{(@75% )0 = (47107 )o0/ (1 - qw)}, {07 0% = (471000 /(1 — 4™},
{(@™50%)00 = (4"14%)oc /(1 = a"°)}, {(6%10%) 0 = (a"1¢%)oe/(1 = ¢' ")},

{(¢®%;¢%%) % = (¢'%;¢%%) /(1 — ¢*%)}, we obtain the following eleven continued
fractions of order sixty-six, respectively: O

The main objective of this paper is to establish theta-function identities for con-
tinued fractions of orders fifty and sixty-six. In Section 2, we define some theta
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function identities for continued fraction. In Section 3, we presents vanishing co-
efficient results associated with both orders. In section 4, we demonstrate how
theta-function identities can be utilized to derive colored partition identities, pro-
viding suitable examples.

2. Theta-function identities for w;(¢) and ((q)

This section is dedicated to, establishing theta-function identities for the continued
fractions of order 50 and order 66.

Theorem 2.1. Fori=0,1,3,4,5,6,8,9,10, and 11, we have
1 B(£q/2) f(Fq2iHD/2 5q01-20)/2)

wi(Q) Fwi(q) = gD/ (25) f(—q'2—1, —q13+1)
Proof. From (1.9), we obtain
1 g3, —BT) — M (=g, — 38
—Ver(d) = 4 1q4 q12) q38 L q13 q37)' (2.1)
wi(q) Va1 (=g, —¢%) f(—q"3, —¢%7)
From [4, pp.46, Entry 30 (ii) and (iii)], we note that
fx,y) = [Py, a9®) + 2 f(y/z, 2%y°). (2.2)
Putting {z = —¢'/*, y = ¢**/*} and {z = ¢*/*, y = —¢**/*} in (2.2), we get
F(=a"* ¢ = (=", —¢*) + (=¢"/") f(—=¢**, =¢**) (2:3)
and
f(ql/47 _q49/4) _ f(_q13’ _q37) + q1/4f(—q12, _q38). (24)
Using (2.3) in (2.1), we conclude that
1 _gl/4, g1/
—Vewi(g) = /4 f(12‘1 38q i 13 _37) (2.5)
wi(g) Va f(—a"2, —¢%) f(=¢"3, —¢%)
Similarly, from (1.9) and applying (2.4), we find that
1/4 _ 49/4
+Vwi(g) = AC i ) : (2.6)
wi(q) V@ A (=%, =) f(—q'3, —¢T)
Combining (2.5) and (2.6) we arrive at
1 F(=g M4, A4 f (g1, — 10/
—wi(q) = 1/(4 _ 12 _ gs( — 13 _ 33 : (2.7)
wi(q) 1 f(=¢", —a*) f(=q"% —¢*7)
Again, from [4, pp.46, Entry 30 (i)(iv)] we note
f@,ay?) [y, 2*y) = [z, 9)¢(zy) (2.8)
and
f(.T, y)f(_l‘7 _y) = f(_$25 —y2)¢(—l‘y) (29)
Putting {z = —¢'2, y = —¢"%} in (2.8) and {z = —¢'/*,y = ¢**/*} in (2.9), we get
F(=a'%, =) [(=4", =¢"") = f(=a"*, =) (¢*) (2.10)
and
f(—q1/4, q49/4)f(q1/4, _q49/4) _ f(_ql/27 _q49/2)¢(q25/2). (211)
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respectively. Using (2.10) and (2.11) in (2.7), we complete the proof first identity.
Squaring on both sides (2.6), we obtain

B P24, —q*/Y)
@) T T R, =)
Froml[4, pp.46, Entry 30 (v), (vi)], we note that
FPxy) = (@, 97)o(xy) + 22 f (y /2, 2°y) 0 (2*y?). (2.13)
Setting {z = ¢'/4, y = —¢*¥/*} we get
](-2((]1/47 _q49/4) — f(ql/27 q49/2)¢(_q25/2) + 2(]1/4‘](-(_q127 _q13),(/)(q25). (2.14)

Using (2.14) and (2.10) in (2.12) and simplifying, we arrive at (i). Proofs of other
theta function identities are similar, so we omit the proof. |

—2. (2.12)

Theorem 2.2. We have
1 +alg) = B(£¢33/2) f(Fq@TD/2, F4(65-20)/2)
Glg) ™™ q gD TAp(g33) f(—ql6—1, —qiT+i)

fori =0,2,3,5,6,8,9,11,12,,14 and 15
Proof. From (1.10) we obtain

_ q49) g/ f (=g, —g%)
— 4/ . 2.15
/Cl Culg \/q1/4f — ) f—q'7, —¢®) (2.15)
From [4, pp. 46, Entry 30 (ii) and (iii)], we note that
fay) = f(@Py, ay®) + 2 f(y/z, 2%y°). (2.16)
Setting z = —q'/%, y = ¢%/* and = = ¢*/*, y = —¢%/* in (2.16), we get
F(=q"*.¢%) = F(="", =" + (=¢"/) f(—=4¢"°, =¢*°), (2.17)
and
£ =g = F(=4'7, =¢") + ¢"/* F(=¢"%, —¢™°). (2.18)
Using (2.17) in (2.15), we obtain
1 f( 1/4 q65/4)
. 2.19
Va o) = Vi (=410, —¢) f(—¢'7, —¢*) (219
Similarly, from (1.10) and applying (2.18), we ﬁnd that
1 f( /4 65/4) 5
e . .20
ol alo = Va1 (=41, —¢) f(—¢'7, —¢") (220
Combining (2.19) and (2.20), we arrive at
1 (=g B FgH A g
Gila) ) = a4 f (¢, =) f(—q'7, —¢*) @21)
From [4, pp. 46, Entry 30 (i) and (iv)], we note
f(a,2y?) fy, 2%y) = f(a,y)P(zy), (2.22)
and
f(xa y)f(_xv _y) = f(_an —y2)¢(—$y) (223)
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Setting z = —¢'%, y = —¢'7 in (2.22) and = = —¢"/%, y = ¢%°/* in (2.23), we get
F(=a"% =) f(—=a"", —") = f(—=¢"%, —a")v(¢*), (2.24)
and
F=a"*, ¢ F(g*, =) = F(—¢"2, =) p(g*?). (2.25)

Using (2.24) and (2.25) in (2.21), we obtain the first identity.
Squaring both sides of (2.20), we obtain

1 f2(q1/4,_q65/4)

Gl " T T ) (220
From [4, pp. 46, Entry 30 (v) and (vi)], we note that
P ay) = f@*y")o(xy) + 2uf (y/z, 2y)(a?y?). (2:27)

Setting x = ¢'/4, y = —¢5/4

‘](-2((]1/47 _q65/4) — f(ql/z,q65/2)¢(—q33/2) + 2(11/4‘](-(_q167 _q17),(/)(q33). (2.28)

Using (2.28) and (2.24) in (2.26) and simplifying, we arrive at the first result.
Proofs of other theta function identities are similar, so we omit them. ([l

, we get

3. Vanishing Coefficients

In this section we obtain vanishing coefficients for continued fraction defined earlier
in section 1. For further details one can refer [2, 12].

Theorem 3.1.
(¢'%,¢°% ¢*°) =
@) =5 = D nd”
5 00)e
then, as,, 9 = 0.

Proof. The following p-dissection formula stated by Andrews and Bressoud [1]

(qm’qm’qk+l’qm k— l ik qpm qpm qpk+l+jm q(p j)ym—pk—1. qpm)
(¢, g™t % g~ ’“,q Z (g, qw=d)m=1, gk, q(m=k)p; grm).
(3.1)

Where all of the powers of ¢ in each of the infinite products on the right hand
side must be multiple of p and the integer k must satisfy ged(k,p) = 1 i.e.,
gcd(13,25) = 1.

Now, setting m = 50, k = 13, p =25 and [ = 25 in (3.1), we get

50 .50 1250 1250 3504505 ,900—505. 1250
(@6, ¢°%, ¢"* qugj 4 q 7.4q 57
25 425 413 25 505 41225—505 4325 ,925. ,1250
(9%,4%°,9"3, ¢7 507, q 7,432, ¢9%9;q12%0)

0 (q12507 q1250’ q ,q ’q1250) 13 (q12507 quBO7 q4007 q 7q1250)

=4q q
(q25’ q12257 q?>257 (19257 q1250)oo (q757 q11757 q325, q925’ q1250)oo

26 (q1250’ q12507 (]450, qSOO; q1250)OO ey

12 112 2 25. 412
(q125,q"1%5, 325, ¢925; ¢1250)

1250 1250 500 ,750. ,1250
30 (72,42, ¢°%, 4™ ") o

(q175’ qu757 q325’ q925; (11250)OO

+q
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RAMANUJAN’S ¢-CONTINUED FRACTIONS

52 (q1250’ q12507 (]550, q 7ql250) ((112507 (112507 q600, q ’q1250)
+q (q225 q1025 q325 q925 q1250) + q ( 275 975 q325 q925 q1250)
) ) ) )
+q78 (q1250 q12507 q650’ q 7q1250) N q (q1250, q12507 q700’ q ’q1250)
(q325 q925 q325’ q925 q1250) (q375 875 3257 q925 q1250)
104 (q1250 q12507 q7507 q 7(]12‘)0) (q1250 12507 q8007 q450’ q12a0)
+
q (q425 q825 q325 q925 q1250) q ( 475 775 q325, q925 q1250)
+q130 (q1200 q 7 q 7 q ) quJO) + q143 (q 125 07 q12007 q9007 q ) quJO)
(q525 q725 q325, q925 q1250) (q575 675 q325, q925 q1250)
_|_q156 (q1250 q1250, qQSO7 q?)()()7 q1250) N q ((]12507 q1250, ql(]()(]’ q250’ q1250)
(q q q325 q925 q1250) ( 675 575’ q325, q925’ q1250)oo
_|_q182 (q1250 q 1250 q1050’ q q1250)oc N q (q1250 q12507 q1100, q150; q1250)oo
(q q 25 q3257 q925’ q1250)oo ( 775 475’ q325’ q925; q1250)Oo
+q208 ((]12507 q1250) q1150’ q100; q1250)0o N q (q12507 q1250’ q12007 q50; q1250)0o
(q8257 q425’ qd25 q925. q1250) (q875’ q375, q325, q925; q1250)OO
+q234 (q1250 q1250 q1250 q q1250> N q247 (q12507 q1250, (113007 q—50; (11250>C>o
(q925 q q325 q925 quSO)OQ (qQ757 q2757 q325’ q925; ql250)OO

+q260 (q1250 q12 50 q1350 q —100. q1250)00 N q273 (q12507 q12507 q1400, q—150; q1250)oo
(q1025’ q225 q32 C] q1250) (q1075, q1757 q3257 q925; q1250)oc
_95
+q286 (q1250, q1250’ q1450 q 200’ q1250) 99 ((]12507 q12507 q1500’ q 200; q1250)
(q1125’ q125 q325 q q1250) (q11757 q75) q3257 q925; q1250)OO
1250 1250 1550 ,,—300

12 (q ,q ,q , q ;q1250)oo

122 2 2 25. 412
(q1225,¢%5, ¢3%5, ¢925; ¢1250)

+q3

Since the right-hand side of (3.2) involves extracting the terms containing ¢

we arrive at the result.

In the following table, we present the vanishing coefficients of the remaining g-series
expressions related to the continued fractions of order fifty. Proofs are identical to

the above Theorem 3.1, therefore, we omit them.

TABLE 1. Vanishing Coeflicients for Continued Fractions

g-series/continued fractions

vanishing coefficients

1 14 36 ’
w; (Q) Egll 39 ; Z;)LOZO /Bnqn /Bé5n+9 - O
1 16 34 50 -~ ,
wila) — ((qq Va qq°°))oo = 2nso ad" Vasnis =0
8 42 50
wi(q) = W = Z7010:0 ong" 025m45 =0

1 (4'%,6°%0%)
wg (@) (47,4*%:¢°%) 00

= Zf:o Elnqn

/ _
€95p422 = 0
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% 6 q44 qo() ) n
C%4 (Q) = W = ano Enq €25n4+10 = 0
ws(q) = % =m0 Gnd" Cosn+19 =0
wfol(Q) (((222 qu;fo))w = ZZO:O 77;1‘]” 77/25n+19 =0
wii(g) = % = 00" A2snq24 =0
wf:(Q) - (512147;14296;;1:00): =20 Hnd" Hospq24 =0

Theorem 3.2.

(@7, 4% ¢%%) o

oy (@967% 00 o
1) =7 ey = D nd"
n=0
then a33p+12 = 0.

Proof. The proof of Theorem 3.2 is identical proof of Theorem 3.1, so we omit the
proof.

In the following table , we present the vanishing coefficients of the g-series
expressions related to the continued fractions of order 50. Proofs are identical to
the proof of Theorem 3.1 ; therefore, we omit them.

TABLE 2. Vanishing Coefficients for Continued Fractions

g-series/Continued Fractions Vanishing Coefficients
Glg) = % =3 Bng" B33n+8 =0

G = ?2 Z:z Z:Z) =20 " Y33n+8 = 0

G (g) = Lpliled= = %0 enq” €31 =0

G lg) = % =2 n—oend” €33n+5 =0

Gl(q) ~ (8126 q5490 ;5666)00 = XnzoGnd" Casnts = 0

o @ = ((;8 qﬁsls,;::) = Yneo " N33n+18 = 0

G(q) = % =3 o And" A33ny27 =0

(lolq) = % =3 o énd” €33n+32 =0

G = G = Totownd" piasn+s2 = 0
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4. Some partition-theoretic results

Here, we derive colour partition identities from using Theorem 1.1 and 1.2. First,
we give the simple definition of colour partition of a positive integer k and its
generating function.

“A partition of a positive integer k, where parts of the same size can be of different
colours.

Example: There are 5 two-colour partitions of 2, and its denoted by d2(2) = 5.
ie., 2y, 24, 1,+1g4, 1,+1, and 15+ 14, where colour yellow (represented by suffix
y)and green ( represented by suffix g) the generating function of d;(n) is given by

(@)%,

> ok(n)g" = ! (4.1)
n=0

For positive integer a, b and k, the division
1
(g*;0")k,
is the generating function of the number of partitions of n with parts congruent
to a modulo b and each part contains &k colours is given by

(@"F:1¢°) = (d".¢“ "1 ¢%) (4.3)

where k and c are positive integers and k < ¢.”

(4.2)

Theorem 4.1. For any positive integer n > 23, let y1(n) be the quantity of
methods to divide n into components that are congruent to +2,+23, 427 or +50
(mod 100) such that the parts congruent to +2 and £50 (mod 100) have two col-
ors, v2(n) be the quantity of methods to divide n into components that are con-
gruent to +23,£27,+48 or £50 (mod 100) such that the parts congruent to +48
and £50 (mod 100) have two colors and vys3(n) be the quantity of methods to divide
n into components that are congruent to £2,+48, and + 25 (mod 100) with two
colors. Then

71(n) —72(n — 23) —y3(n) = 0.
Proof. Using (1.9), (1.4), (1.5) and replacing q by ¢? in Theorem 2.2, we get

(q48i; quO)Oo _q23 (q2i; QIOO)OO B (q23i,27i; qloo)m(QSOi; qIOO)gO 0 (4 4)
(qu; q100)Oo (q48:i:; qloo)oo (q2:|:,48:|:; qloo)oo(qQS:t; qloo)go

Dividing (4.4) by (q2:|:,23:t,27:t,48:t; q100)oo(q50:|:; q100)2 we get

0o
1 q23
(q2:t,50:t; qloO)go(q23i727:|:; ql(JO)oQ (q48:|:,50:|:; q100)go(q23:|:,27:t; qloo)oo
1

=0. (4.5)

B (q2i,48i,25i; qloo>gO

The above quotients of (4.5) represent the generating functions for 81(n), Ba(n)
and B3(n), respectively. Hence, (4.5) is equivalent to

> )" =Y ra(n)g" =Y vs(n)g" = 0. (4.6)
n=0 n=0

n=0
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Where we set v1(0) = 72(0) = 73(0) = 1. By matching the coefficients of ¢ on
each side, we achieve the intended result.
Theorem 4.3 is visualized in the Table 3 below:

Table 3. The case n = 23 of Theorem 4.3
1.+ 1, + ...+ 21times

Theorem 4.2. For any positive integer n > 31, let £&1(n) be the quantity of meth-
ods to divide n into components that are congruent to £2,+31,4+35 or £66 (mod
132) such that the parts congruent to +2 4+ 66 (mod 132) have 2 colours. Let
& (n) be the quantity of methods to divide n into components that are congruent
to £31,435,4£64 or 66 (mod 132) such that the parts congruent to +£64 and
+66 (mod 132) have 2 colours and &3(n) be the quantity of methods to divide n
into components that are congruent to £2,+33 and £64 (mod 132) with 2 colours.
Then,

51(n> - fg(n — 31) — 63(71) = 0.
Proof. Using (1.10), (1.4), (1.5) and replacing ¢ by ¢ in Theorem 2.1, we get

(¢%4F; ¢132) o g (FFq%) 0 (PTE0E g132)  (¢00%; ¢132)2
(2% ¢132) —4a (¢54F; ¢132) - (2E61E ¢132) (¢33 ¢132)2, =0. (47)
Dividing (4.4) by (q2F31£35504%, 182y _(466%, 4132)2 (o oat
1 A
(2566%; q132)2_(B1E,35%, g182) | (64%,66%; g132)2_(¢31£,35%, (132)
L =0. (4.8)

o (q2:|:,33:|:,64:|:; q32)2,

The above quotients of (4.8) represent the generating functions for &;(n), &(n)
and £3(n), respectively. Hence, (4.8) is equivalent to

dam)g" = ¢ > &n)g" = &(n)g" =0. (4.9)
n=0

n=0 n=0

Where we set £1(0) = €2(0) = £3(0) = 1. By matching the coefficients of ¢" on each
side, we achieve the intended result. Theorem 4.2 is illustrated in the Table 4 below:li

Table 4. The case n = 31 of Theorem 4.2
§(31) =1 §2(0)=11]&(31)=0
1p + 1p + ... + 29times

O

The colour partition identities for the remaining continued fractions of both the
orders can be obtianed in similar manner. So, we omit the proof. O
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