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Abstract. The article introduces four concepts: maximal simple planar
graphs (mspgs), disc graphs, irreducible graphs, and k-irreducible graphs,

along with illustrative examples for each. A complete list of graphs that are

both mspgs and regular is provided. The paper presents the following results:
A maximal simple planar graph with n vertices has 3(n−2) edges and 2(n−2)

faces; every simple planar graph contains a vertex with degree 5 or less; and

the disc graph Dm,k has 2m+3(k−1) edges and m+2k−1 faces. The paper
establishes the equivalence between the following statements through logical

proofs and rigorous analysis: All planar graphs are 4-colourable; all maximal

simple planar graphs are 4-colourable; all irreducible graphs are 4-colourable;
and all 5-irreducible graphs are 4-colourable. The core result of the paper is:

“Every planar graph is 4-colourable if and only if every 5-irreducible graph

is 4-colourable.”

1. Introduction

The Four Colour Problem, which asks whether every map on a plane can be
coloured with at most four colors so that no two adjacent regions share the same
colour, was first conjectured in the mid-19th century. In 1976, Kenneth Appel
and Wolfgang Haken proposed a pioneering proof using complex computer-assisted
techniques, sparking debate over the complexity of the proof. In 1997, Neil Robert-
son, Daniel P. Sanders, Paul Seymour, and Robin Thomas proposed an alternative
proof that reduces dependence on extensive computer verification. The debate sur-
rounding the use of computer-assisted methods in mathematical proofs continues,
despite the confirmation of the Four Colour Theorem by these proofs. However,
no one has succeeded in providing a complete rigorous proof of the Four Colour
Theorem.

In graph theory, the Four Colour Theorem states that every planar map can
be coloured with four colours or, equivalently, every planar graph can be coloured
with four colours, as face colouring of a graph corresponds to vertex colouring of its
dual graph. This article explores the concept of maximal simple planar graphs and
their relationship with the Four Colour Problem. Maximal simple planar graphs
are connected, and every simple planar graph is a subgraph of a maximal simple
planar graph. Thus, every planar graph is four-colourable if and only if every
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maximal simple planar graph is four-colourable. The article also introduces disc
graphs and irreducible graphs as special cases of maximal simple planar graphs.
Utilizing these concepts, we examine four equivalent conditions of the Four Colour
Theorem, simplifying the vertex colouring cases of graphs within the theorem.

2. Preliminary

Essential definitions, notations, and basic results are provided in this section.
Let V (G), E(G), n, e, and f denote the vertex set, edge set, number of vertices,
number of edges, and number of faces of the graph G, respectively. A graph is
planar if it can be embedded in a plane. A simple graph has no loops and no
parallel edges. A graph is simple and planar if it is both simple and planar. A
graph is k-colourable if its vertices can be colored with k colors. The chromatic
number χ(G) is the minimum value of k for which G is k-colourable.

Theorem 2.1 (Eulers theorem). Any regular convex polyhedron with n vertices, e
edges, and f faces satisfies the relation n− e+ f = 2. In other words, a connected
planar graph G with n vertices, e edges, and f faces satisfies the above formula.

3. Maximal Simple Planar Graph (mspg)

Definition 3.1. A simple planar graph G with n vertices is called a maximal
simple planar graph (mspg) if there does not exist another simple planar graph H
with V (G) = V (H) and E(G) is a proper subset of E(H). The set of all maximal
simple planar graphs with n vertices is denoted by In.

Example 3.2. Complete graphs K1, K2, K3, and K4 are mspgs.

Proposition 3.3. Let G be a connected simple planar graph with more than 2
vertices. Then G is an mspg if and only if every face is a 3-cycle (triangle).

Proof. Let G be a connected maximal simple planar graph (mspg) with n ≥ 3
vertices. Suppose G has a face ϕ with a k-cycle as its boundary, where k > 3.
By introducing new edges, we can partition the k-gon face ϕ into triangular faces
without introducing new vertices, contradicting the maximality of G.

Conversely, assume each face of the simple planar graph G is a 3-cycle. We aim
to prove G is maximal. If G is not maximal, introducing a new edge e without a
new vertex would be possible. Since every face of G is a 3-cycle, the graph G ∨ e
is either nonplanar or not simple, leading to a contradiction. �

Lemma 3.4. Let G be an mspg with n ≥ 3 vertices. Then G has 3(n − 2) edges
and 2(n− 2) faces.

Proof. Let e and f represent the number of edges and vertices of the graph G,
respectively. Since each face of G is a triangle, it is bounded by and contributes
three edges to G, while each edge separates and contributes to two faces of G.
Hence, we have 3f = 2e. Substituting f = 2

3e into Eulers formula, we obtain:
e = 3(n− 2) and f = 2(n− 2). �

Corollary 3.5. Every simple planar graph has a vertex with a degree less than or
equal to 5.
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Proof. Let δ be the smallest vertex degree of the graph G. The statement is
obviously true when n ≤ 6. If n ≥ 7, we have

e ≤ 3(n− 2)

and
nδ ≤

∑
d(v) = 2e ≤ 6(n− 2) = 6n− 12.

Since 0 < δ, and δ ≤ 6− 12
n , we conclude that δ ≤ 5. �

4. Disc Graphs

Definition 4.1. A subgraph of an mspg G, enclosed by an m-cycle, is called a
disc in G if it contains all the vertices and edges of G that are inside and on an
m-cycle. A disc with k interior vertices and m ≥ 3 boundary vertices is denoted
by Dm,k. A disc without its boundary edges is called an open disc and is denoted
by D0

m,k.

Example 4.2. D4,4 and D8,0 are discs with perimeters of 4 and 8, respectively.
A disc Dm,0 is called a hollow disc with a perimeter of m. All maximal simple
planar graphs (mspgs) except K1 and K2 are discs with a perimeter of 3. For
example, K3 = D3,0 and K4 = D3,1.

Remark 4.3. There exist non-isomorphic discs with the same number of interior
vertices and equal perimeter.

Definition 4.4. An mspg with a non-hollow disc D3,k as its proper subgraph is
called a reducible graph. An irreducible graph is an mspg without any non-hollow
disc D3,k as its proper subgraph.

Theorem 4.5. The disc graph Dm,k has 2m + 3(k − 1) edges and m + 2k − 1
faces, including outer face, where m ≥ 3 and k ≥ 0.

Proof. The disc Dm,k has m + k vertices, and the outer face is an m-gon. By
introducing m− 3 vertices to the outer face, we form an mspg with m + k vertices
and 3[(m + k)− 2] edges. Therefore, the number of edges of Dm,k is 3[(m + k)−
2]− (m− 3) = 2m + 3(k− 1). Suppose f is the number of faces of Dm,k+1. Eulers
theorem implies (m + k)− [2m + 3(k − 1)] + f = 2, and so f = m + 2k − 1. �

Corollary 4.6.
(1) The hollow disc Dm,0 has 2m− 3 edges and m− 1 faces.
(2) Every D3,k disc is an mspg.

Lemma 4.7. If an mspg graph G is regular, then G is either K1,K2,K3,K4, D3,3,
or D3,9.

Proof. Let G be an mspg with n vertices and e edges. Suppose G is a t-regular
graph. Clearly, d(vi) = t for i = 1, 2, . . . , n. Hence, nt = 2e. Therefore, nt =
2[3(n−2)] = 6n−12. Hence n = 12

6−t . Putting t = 2, 3, 4, and 5, we get n = 3, 4, 6,
and 12, respectively. There does not exist an mspg with δ ≥ 6, where δ is the
smallest vertex degree of the graph G. The complete graphs K1,K2,K3, and K4

are mspgs with δ = 0, 1, 2, and 3, respectively. We conclude that if a graph G is
regular as well as an mspg, then G is either K1,K2,K3,K4, D3,3, or D3,9. �
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5. Equivalent Conditions of Four Colour Theorem

Any simple planar graph with n vertices is a subgraph of an mspg with n
vertices. Multiple edges and loops do not affect the colouring of vertices. That
is, if any maximal simple planar graph with n vertices is k-colourable, then every
planar graph with n vertices is k-colourable. Every planar graph is 4-colourable if
and only if every maximal simple planar graph is 4-colourable.

Theorem 5.1. Let D3,k (a subgraph) be a non-hollow disc in an mspg G, and
let v1, v2, . . . , vk be the interior vertices of D3,k. Also, let G′ be the subgraph of G
obtained by removing the interior vertices v1, v2, . . . , vk from G. Then

(1) G′ is an mspg.
(2) If G′ and D3,k are four-colourable, then G is four-colourable.

Proof.

(1) Let u1, u2, and u3 be the boundary vertices of D3,k. Clearly, they are the
only common vertices of G′ and D3,k. In G′, the edges u1u2, u2u3, and
u3u1 form a triangular face. All other faces of G′ are triangles. Hence, G′

is an mspg.
(2) By our assumption, G′ and D3,k are four-colourable. In G′, we can colour

u1, u2, and u3 with the colours C1, C2, and C3 respectively. Without loss
of generality, we can colour u1, u2, and u3 in D3,k with the same colours
in the respective order. G′ and D3,k have no other common vertices, and
together they form G. Hence, G is four-colourable.

�

Theorem 5.2. Every maximal simple planar graph is four-colourable if and only
if every irreducible graph is four-colourable.

Proof. Suppose that every maximal simple planar graph is 4-colourable. Every
irreducible graph is a maximal simple planar graph, hence it is four-colourable.
Note that some maximal simple planar graphs are not irreducible.

Conversely, assume that every irreducible graph is 4-colourable. Then we want
to prove that every maximal simple planar graph is 4-colourable. We prove this
part by mathematical induction on n. We know that K1,K2,K3, and K4 are 4-
colourable. Hence, the converse statement is true for m = 1, 2, 3, and 4. Suppose
that the statement is true for n ≤ m, where m ≥ 4.

Let G be a maximal simple planar graph with m + 1 vertices.
Case I: Suppose G has a proper subgraph isomorphic to a non-hollow disc

D3,k. Let v1v2v3v1 be the boundary of D3,k with k interior vertices. Remove
all k interior vertices from G, obtaining a new graph H with a triangular face f
bounded by vertices v1, v2, and v3. All other faces of H are triangles. Hence, H
is an mspg with fewer than m + 1 vertices. By the induction hypothesis, H and
D3,k are four-colourable. Thus, G is four-colourable.

Case II: If G has no proper subgraph isomorphic to a non-hollow disc D3,k,
by definition, G is an irreducible graph, and according to our assumption, G is
four-colourable. �
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Theorem 5.3. If n ≥ 5, the minimum vertex degree δ of an irreducible graph is
4 or 5.

Proof. Let G be an irreducible graph with n vertices (where n ≥ 5). Since G is
an mspg, δ(G) = 3, 4, or 5. Suppose there exists a vertex v of degree 3, and let
v1, v2, and v3 be the adjacent vertices of v. Hence, there exists a non-hollow disc
D3,1 with v1v2v3v1 as its boundary. This implies that G has a proper non-hollow
disc D3,1, which leads to a contradiction. �

6. k-Irreducible Graphs

Definition 6.1. An irreducible graph with minimum vertex degree δ = k is called
a k-irreducible graph.

Example 6.2. K1, K2, K3, and K4 are the only 0-irreducible graph, 1-irreducible
graph, 2-irreducible graph, and 3-irreducible graph respectively. D3,3 is the small-
est 4-irreducible graph.

Theorem 6.3. Every irreducible graph is four-colourable if and only if every 5-
irreducible graph is four-colourable.

Proof. Assume that every irreducible graph is four-colourable. Every 5-irreducible
graph is an irreducible graph and therefore it is four-colourable.

Conversely, assume that every 5-irreducible graph is four-colourable. We want
to prove that every irreducible graph is four-colourable. We prove this part by
induction on n.

If n = 6, then D3,3 is the irreducible graph, clearly a 4-irreducible graph. Let
v1, v3, v5 be the boundary vertices and v2, v4, v6 be the interior vertices of D3,3.
Also, let (v1, v4), (v2, v5), (v3, v6) be the non-adjacent pairs of vertices. We can
colour v1 and v4 by C1, v2 and v5 by C2, v3 and v6 by C3. Hence, it is 3-colourable,
implying D3,3 is four-colourable.

We assume that the statement is true for n up to m. Let G be an irreducible
graph with m + 1 vertices and δ(G) = k, where k = 4 or 5.

Case I: If δ = 4, there exists a vertex v in G such that d(v) = 4. So v is
adjacent to exactly 4 vertices, say v1, v2, v3, and v4. Remove the vertex v from G,
and we get a simple planar graph (need not be maximal), denoted as H, with m
vertices. By the induction hypothesis, it is four-colourable. The maximal property
of G implies the existence of the 4-cycle v1v2v3v4v1 as its boundary. All other faces
of H are triangles.

In G, either of the pairs (v1, v3) or (v2, v4) are non-adjacent. Otherwise, G would
have a subgraph isomorphic to K5, contradicting the planarity of G. Without loss
of generality, we assume that v2 and v4 are non-adjacent vertices of G. By fusing
the vertices v2 and v4 together, we obtain a new vertex u and a new planar graph
(not simple), denoted as H1. The graph H1 has m− 1 vertices. Multiple edges do
not affect the colouring of H1.

By the induction hypothesis, H1 is four-colourable. In a colouring of H1, we
can colour the vertices v1, u, and v3 by at most 3 colours, say C1, C2, and C3,
respectively. So we can colour the vertices of H using four colours as follows: v2

and v4 in H by C2 since they are non-adjacent, all other vertices of H by the
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colours used in H1, respectively. Thus, we can colour v with the fourth colour.
Hence, G is four-colourable.

Case II: If δ = 5, then G is a 5-irreducible graph. By our initial assumption
(that is, every 5-irreducible graph is four-colourable), G is four-colourable. �

Theorem 6.4. Every planar graph is four colourable if and only if every 5-
irreducible graph is 4-colourable.

7. Conclusion

This paper introduces and explores fundamental concepts in maximal simple
planar graphs, including disc graphs, irreducible graphs, and k-irreducible graphs,
through definitions and illustrative examples. The paper establishes several re-
sults, such as the equations for the edge and face counts of maximal simple planar
graphs and disc graphs. Furthermore, it identifies all maximal simple planar graphs
that are regular graphs. The paper proposes three theorems equivalent to the Four
Colour Theorem: (1) Every maximal simple planar graph is 4-colourable. (2) Ev-
ery irreducible graph is 4-colourable. (3) Every 5-irreducible graph is 4-colourable.
The findings presented in this paper lay the foundation for further research in
graph theory and have implications for various applications in computer science,
mathematics, and related fields. Future work on maximal simple planar graphs
and disc graphs includes studying paths and cycles, investigating adjacency ma-
trices and their properties, exploring connectivity, spanning trees, different types
of labeling, Hamiltonian and Euler graphs, matchings, directed graphs, maximal
planar networks, and topology properties.
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