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Abstract. The paper is devoted to the analysis of questions related to the stability of fractional-

like stochastic differential equations. Stochastic stability and asymptotically stochastic stability
is considered with the use of Lyapunov function. Almost sure exponential stability is established
on the Ito formula of the fractional-like derivatives.

1. Introduction

Over the past decades, various variants of fractional derivatives have been widely used in the
study of memory properties for complex systems in different areas (see, for example, [1,2]). In [3,4] a
new concept, a fractional-like derivative, was introduced and in [5,6] systems of differential equations
with these derivatives were considered. In [7] new results are presented for neural networks with
fractional discrete time. On the other hand, in recent years, the theory of stability of fractional
stochastic differential equations and its applications has been developed. And this is not surprising,
since stochasticity is the most important property of the real world, and stability is the highest
priority for applied complex systems.

Analysis of the stability of stochastic systems becomes necessary both in theoretical and applied
aspects. The mathematical theory of stability of solutions of stochastic differential equations con-
sists of two main directions. These are the direct (second) Lyapunov method [8-10] and Burton’s
fixed point method [11-13]. The questions of existence, uniqueness and stability of solutions of
stochastic partial differential equations were the subject of analysis in [14-16]. New results were
also obtained for stochastic integro-differential equations [17-21].

This paper is devoted to the development of Lyapunov-type functions for stochastic differential
equations with fractional-like derivatives of the form

Dα
t0X(t) = b(t,X(t)) + σ(t,X(t))

dW (t)

dt
, t > 0, 0 < α ≤ 1 (1.1)

X(0) = X0 (1.2)

where Dα
t0 is a fractional-like derivative b, σ : [0,+∞) × R → R are measurable functions, and

{W (t), t ∈ [0,+∞)} are scalar Brownian motion defined in the complete probability space (Ω,F, F =
{Ft}t≥0,P) such that W (0) = 0, E{W (t)} = 0, E((W (t)− EW (t))(W (s)− EW (s))) = t− s.

For each t ∈ [0,+∞)} we denote Lt = L2(Ω,F, P ) as the space of all Ft measurable, square-
integrable functions u : Ω → R such that ∥u∥2 = E{|u|2}.
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The limit X : [0,+∞) → Lt is said to be F- adapted, if X(t) ∈ Lt, t ∈ [0,+∞).
In [22], in the case of the Caputo fractional derivative, the existence and uniqueness theorem for

equation (1.1) was established by the method of contraction mappings. In this case, the functions
b and σ are required to satisfy the Lipschitz conditions.

The article is structured as follows. Section 2 presents the definition of a fractional-like derivative
and studies the properties of this derivative. Section 3 is devoted to the concept of a fractional-like
derivative of Lyapunov-type functions. It is shown that for some simple Lyapunov functions the
fractional-like derivative is majorant for the Caputo fractional derivative of these functions. Section
4 contains a fractional-like version of Ito’s formula. In Section 5, sufficient conditions for stochastic
stability (or stability in probability), asymptotic stochastic stability, and exponential stability are
indicated. Finally, section 6 provides concluding remarks.

2. Fractional-like derivatives

Let α ∈ (0, 1], R+ = [0,∞), t0 ∈ R+ and f(t) : [t0,∞) → R is a given continuous function.

Definition 2.1. ([3]) For any α ∈ (0, 1] fractional-like derivative Dα
t0(f(t)) of order 0 < α ≤ 1 of

the function f(t) is defined by the equality

Dα
t0f(t) = lim{f(t+ θ(t− t0)

1−α)− f(t)

θ
, θ → 0}.

If t0 = 0, then Dα
t0(f(t)) will take the form

Dα
t0(f(t)) = lim{f(t+ θt1−α)− f(t)

θ
, θ → 0}.

For the case t0 = 0 we use the notation

Dα
0 (f(t)) = Dα(f(t)).

If Dα exists in (0, b) then

Dα(f(0)) = lim
t→0

Dα(f(t)).

If a fractional-like derivative of a function f(t) of order α exists and is finite on (t0,∞), then we
say that f(t) is differentiable on (t0,∞).

Remark 2.2. Definition 2.1 does not satisfy all the conditions that are true for the Riemann-
Liouville, Caputo, and other derivatives (see for ex. [5] and the bibliography there).

The following statement holds.

Lemma 2.3. (see.[5]) Let α ∈ (0, 1], f(t), g(t) are α - differentiable functions at the point t > 0
Then the equalities hold:
1) Dα

t0(af(t) + bg(t)) = a ·Dα
t0(f(t)) + b ·Dα

t0(g(t)) with all a, b ∈ R;
2) Dα

t0(t
p) = p(t− t0)

1−αtp−1 with all p ∈ R;
3) Dα

t0(f(t)g(t)) = f(t)Dα
t0(g(t)) + g(t)Dα

t0(f(t));

4) Dα
t0(

f(t)
g(t) ) =

g(t)Dα
t0

(f(t))−f(t)Dα
t0

(g(t))

g2(t) ;

5) Dα
t0(f(t)) = 0 for any function f(t) = c, where c is an arbitrary constant.
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Remark 2.4. Equalities 1) -5) from Lemma 2.3 are similar to the classical results of mathematical
analysis for integer orders of derivatives. These statements do not hold for the Riemann-Liouville
and other fractional derivatives (See [5]). Part 5) holds for the fractional Caputo derivative.

Lemma 2.5. (See. [5]). Let 0 < α ≤ 1 and function h(t) = m(g(t)) is differentiable with respect
to g(t) for all t ∈ R+ and function g(t)− α is differentiable for t ̸= t0 and g(t) ̸= 0, then

Dα
t0g(t) = m′(g(t))Dα

t0(g(t)).

A fractional-like integral of order 0 < α ≤ 1 is introduced using the formula

Iαt0f(t) =

t∫
t0

(s− t0)
α−1f(s)ds, t > t0.

Lemma 2.6. (See. [5]). Let f(t) : (t0,∞) → R − α be differentiable for 0 < q ≤ 1.Then for all
t > t0 the following ratio is true:

Iαt0(D
α
t0f(t)) = f(t)− f(t0).

3. Lyapunov function and its fractional-like derivative

An important method for studying the stability of various classes of deterministic and stochastic
systems is the second Lyapunov method (see [8]). As a research tool, the second (direct) method
uses some special functions called Lapunov functions. The real continuously differentiable function
V : T + Br → R, which satisfies the condition V (t, 0) = 0, is said to be a Lyapunov function.Here
Br denotes the ball of radius r centered at the origin in the Euclidean space Rn with the norm

|x| = (
n∑

i=1

x2
i )

1/2, and T denotes the interval of real number line T = {a < t < ∞}, where a is −∞

or some finite number. We call the derivative V̇ of the function V (t, x) by virtue of the equations

ẋ(t) = b(t, x(t)), b, x ∈ Rn (3.1)

x(t0) = x0, b(t, 0) ≡ 0 (3.2)

the value

V̇ =
∂V

∂t
+

n∑
i=1

∂V

∂xi
bi(t, x) =

∂V

∂t
+ (∇V, b(t, x)). (3.3)

If x = x(t) is the solution of (3.1), then V̇ represents the total derivative of complex function

V (t, x(t)) with respect to time. It should be noted that for calculating V̇ there is no need to find
the actual solution x(t).

Further, by K we denote the class of functions ωi(u), u ≥ 0, i = 0, 1, 2, ... - scalar continuous
non-decreasing functions such that ωi(0) = 0 and ωi(u) > 0 for u > 0.

The essence of the classical Lyapunov method lies in the validity of the following three theorems.

Theorem 3.1. ([8]) Let there exist a function V (t, x) such that

ω1(|x|) ≤ V (t, x), V̇ (t, x) ≤ 0.

Then the trivial solution is Lyapunov stable.
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Theorem 3.2. ([8]). If ω1(|x|) ≤ V (t, x) ≤ ω2(|x|), V̇ (t, x) ≤ −ω3(|x|), then the trivial solution is
asymptotically stable in the sense of Lyapunov.

Theorem 3.3. (Chetaev’s theorem, [8]). If in the domain V (t, x) > 0 the inequality V̇ (t, x) ≥
ω4(|x|) holds, then the trivial solution is unstable.

The purpose of this paper is to extend the above statements to the case of problem (1.1) - (1.2).
In this regard, note that instead of the usual derivative in Theorems 3.1-3.3, we have to use the

following Dini derivative for the Lyapunov function

D+V (t, x) = lim
h→0+

1

h
[V (t+ h, x)b(t, x)− V (t, x)]. (3.4)

In [6], the concept of a fractional-like derivative introduced the same way for an equation of the
form

Dα
t0(x(t)) = b(t, x(t)), (3.5)

x(t0) = x0, (3.6)

where x ∈ Rn, b ∈ C(R+ × Rn,Rn), t0 ≥ 0.

Definition 3.4. Let V be continuous and α differentiable function, V : R+×Br → Rm x(t, t0, x0)
is the solution of problem (3.5)-(3.6).

Then for (t, x) ∈ R+ ×Br the expression

+Dα
t0V (t, x) = limsup{V (t+ θ(t− t0)

1−α, x(t+ θ(t− t0)
1−α, t, x))− V (t, x)

θ
, θ → 0+} (3.7)

is the upper right fractional-like derivative of the Lyapunov function.

The lower-right, upper-left, and lower-left fractional-like derivatives of the Lyapunov function
are determined accordingly.

Lemma 3.5. Let V (t, x) be continuous, α - differentiable and locally lipschizable function with
respect to the second variable x on R+ × Br. Then the fractional-like derivative of the function
V (t, x) with respect to the solution x(t, t0, x0) is defined as

+Dα
t0V (t, x) =

limsup{V (t+ θ(t− t0)
1−α, x+ θ(t− t0)

1−α, b(t, x))− V (t, x)

θ
, θ → 0+} (3.8)

where (t, x) ∈ R+ ×Br.

If V (t, x(t)) = V (x(t)), 0 < α ≤ 1, function V differentiable with respect to x, and function x(t)
α - diferentiable with respect to t for t > t0, then

+Dα
t0V (t, x) = V ′(x(t))V (t, x)|(t0).

In [6], examples of Lyapunov functions V1(x) = x2(t), x ∈ R, V2(x) = xTx, x ∈ Rn V3(x) =
xTPx, x ∈ Rn are given and their fractional-like derivatives are calculated, where P is (n × n)
matrix.

The following statement was established.
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Lemma 3.6. Let x ∈ R, y ∈ Rn and P is a constant matrix of order n × n. Then for functions
V1 = x2(t), V2 = yT (t)y(t) V3 = yT (t)Py(t) the following estimates hold:

1) c
t0D

α
t (x

2(t)) ≤+ Dα
t0(x

2(t)) for x ∈ R;
2) c

t0D
α
t (y

T (t)y(t)) ≤+ Dα
t0(y

T (t)y(t)) for y ∈ Rn;

3) c
t0D

α
t (y

T (t)Py(t)) ≤+ Dα
t0(y

T (t)Py(t)) for y ∈ Rn;

It follows from Lemma 3.6 that the fractional-like derivative of the Lyapunov function is an
upper bound (majorant) for the fractional Caputo derivative of the same Lyapunov functions.

4. Ito’s formula for functions with fractional-like derivative

First, we give the definition of the solution to the problem (1,1), (1,2).

Definition 4.1. For every Xt0 ∈ L0 F - adapted random process X is said to be the solution of
problem (1.1), (1.2), if the following equality holds for t0 ∈ [0,∞):

X(t) = X(t, t0, Xt0) =

= Xt0 +

t∫
t0

(s− t0)
α−1b(s,X(s))ds+

t∫
t0

(s− t0)
α−1σ(s,X(s))dW (s). (4.1)

We make the following assumptions:
(A1) There is a constant L > 0 such that for all

X, X̃ ∈ R, t ∈ [0,+∞)

|b(t,X)− b(t, X̃)|+ |σ(t,X)− σ(t, X̃)| ≤ L|X − X̃|;
(A2) The σ(·, 0) function is essentially bounded, i.e.

∥σ(t, 0)∥∞ = ess sup
t∈[0,+∞)

|σ(t, 0)| < +∞,

and σ(·, 0) L2 integrable, i.e.

+∞∫
0

|σ(t, 0)|2dt < +∞.

Lemma 4.2. Suppose that (A1) and (A2) are satisfied. Then for α ∈ (0, 1) problem (1), (2) has
the unique solution X ∈ Lt := L2(Ω,Ft, P ) given in the form (4.1).

Next, we present a new version of Ito’s formula for functions with fractional-like derivatives.
This formula defines the rule for differentiating functions of stochastic processes with fractional-
like derivatives. Let W (t), t ≥ 0 be a standard scalar Brownian motion (see introduction) and let
Y ∈ C1,2(Rt×R,R) denote the family of all real-valued functions Y (·, Z(·)) defined and continuously
differentiable with respect to Z Rt ×R.

Let Z(t), t ≥ t0 be Ito process for

dz(t) = b̃(t) + σ̃(t)dW (t),

where b̃ ∈ L1(R+, R) σ̃ ∈ L2(R+, R).
Let us recall the standard one-dimensional Ito formula.
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Lemma 4.3. Let Y (·) = Y (·, Z(·)) ∈ C1,2(R+ ×R,R). Then Y (t), t ≥ 0 is an Ito process given by
the equality

dY (t) = [Yt(t, Z(t)) + YZ(t, Z(t))b̃(t) +
1

2
YZZ(t, Z(t))]dt+

+YZ(t, Z(t))σ̄(t)dW (t) almost surely (a.s.)

Let now T > 0. Suppose that X̃(t) is an Ito process for the equation

Dα
t0X̃ = b(t) + σ(t)

dW (t)

dt
, t0 ∈ [0, T ], 0 < α < 1 (4.2)

with initial conditions

X̃(t0) = Xt0 . (4.3)

Lemma 4.2 and (4.2), (4.3) imply that there exists a unique solution for t0 ∈ [0, T ] of the form

X̃(t) = Xt0 +

t∫
t0

(s− t0)
α−1b(s)ds+

t∫
t0

(s− t0)
α−1σ(s)dW (s).

Note that when t0 ∈ [0, T ], (4.2) is equivalent to the equation

dX̃(t) = X̃ ′(t)dt =

= (α− 1)[

t∫
t0

(s− t0)
α−1b(s)ds+

t∫
t0

(s− t0)
α−2σ(s)dW (s)], (4.4)

where (· − t0)
α−2b(·) ∈ L1[0, T ] and (· − t0)

α−2σ(·) ∈ L2[0, T ].
We are now ready to present a fractional-like version of Ito’s formula.

Theorem 4.4. Let Y (·) = Y (·, X̃(·)) ∈ C1,2(R+ ×R,R). Then Y (·) is an Ito process given in the
form of the following formula

dY (t, X̃(t)) = Yt(t, X̃(t))dt+

+(α− 1)YX̃(t, X̃(t))

t∫
t0

(s− t0)
α−2b(s)dsdt+

+(α− 1)YX̃(t, X̃(t))

t∫
t0

(s− t0)
α−2σ(s)dW (s)dt.

Proof.
From Lemma 4.3, by virtue of (4.4), we obtain the relation

dY (t, X̃(t)) =
∂Y (t, X̃(t))

∂t
+

∂Y (t, X̃(t))

∂X̃
dX̃(t)+
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+
1

2

∂Y 2(t, X̃(t))

∂X̃2
(dX̃(t))2 =

= Yt(t, X̃(t))dt+ (α− 1)YX̃(t, X̃(t))

t∫
0

(s− t0)
α−2b(s)dsdt+

+(α− 1)YX̃(t, X̃(t))

t∫
t0

(s− t0)
α−2σ(s)dW (s)dt.

The theorem is proved.

5. Stochastic stability

It is well known that the question of the stability of some solution of equation (1.1) by means of
a change of variables can be reduced to an investigation of the question of the stability of a trivial
solution. Therefore, we will assume that

b(t, 0) ≡ 0, σ(t, 0) ≡ 0, t ≥ 0. (5.1)

Under condition (5.1), equation (1.1) has a trivial solution x(t) ≡ 0. The stability of a trivial
solution of equation (1.1) is understood as its property changes little with a small change in the
initial conditions. Depending on the specific understanding of the expression ”small change in
solution”, different definitions of stability are possible.

Here are some of them.

Definition 5.1. A trivial solution to equation (1.1) is called stochastically stable or stable in
probability if for each pair ε ∈ (0, 1) l > 0 exist δ(ε, l, 0) > 0 such that P{|X(t)| < l} ≥ 1− ε, t ≥ 0
whenever |X0| < δ.

Otherwise, such a solution is called stochastically unstable.

Definition 5.2. A trivial solution (1.1) is called asymptotically stochastically stable if it is stochas-
tically stable, and moreover, for each ε ∈ (0, 1) exist δ0 = δ0(ε) > 0 such that P{ lim

t→+∞
X(t) = 0} ≥

1− ε, whenever |X0| ≤ δ0.

Definition 5.3. A trivial solution (1.1) is called exponentially stable almost surely (a.s.) if

lim
t→+∞

sup
1

t
ln|X(t)| < 0 a.s.

for all x0 ∈ R.

5.1. Lyapunov stability and asymptotic stability. Let k > 0 be an arbitrary number. We
denote by Sk the sets of functions Sk = {X(·) ∈ R, |X(·)| < k}, by a

∧
b minimum of a and b, by

a
∨
b maximum of a and b and by I{·} - indicator function.
Let the following condition (V1) be satisfied.
(V1): There is a positive-definite function V ∈ C1,2(R+; [0,+∞))×Sk such that for all (t,X(t) ∈

[0,+∞))× Sk, α ∈ (0, 1)
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LαV (t,X(t)) := Vt(t,X(t)) + (α− 1)VX(t,X(t))

t∫
t0

(s− t0)
α−2b(s,X(s))ds (5.2)

It follows from the definition of the Lyapunov function that V (t, 0) ≡ 0.
Moreover, there is a continuous non-decreasing function µ ∈ K, such that

V (t,X(t)) ≥ µ(|X(t)|)
for all (t,X(t)) ∈ [0,+∞)× Sk.

The following statement is true.

Theorem 5.4. Suppose that conditions (A1), (A2) and (V1) are satisfied and 0 < α < 1. Then
the trivial solution of equation (1.1) is stochastically stable.

Proof. Let ε ∈ (0, 1) l > 0 an arbitrary number such that l < k. By the continuity of V and the
condition V (t0, 0) = 0 there exist δ = δ(ε, l) such that

1

ε
sup
x∈Sδ

V (t,X(t)) ≤ µ(l) (5.3)

Obviously, δ < l. We fix Xt0 ∈ Sδ and let η the time of the first exit of X(t) Sl, i.e.

η = inf{t > t0 : X(t) ∈ Sl}.
By Theorem 4.4, for any t > t0 we have

V (η
∧

t,X(η
∧

t)) = V (t0, Xt0)+

+

η
∧

t∫
t0

Vτ (τ,X(τ))dτ + (α− 1)

η
∧

t∫
t0

VX(τ,X(τ))

S∫
t0

VX(s− t0)
α−2b(s,X(s))dsdτ+

(α− 1)

η
∧

t∫
t0

VX(τ,X(τ))

S∫
t0

VX(s− t0)
α−2σ(s,X(s))dW (s)dτ =

= V (t0, Xt0) +

η
∧

t∫
t0

LαV (τ,X(τ))dτdt+

+(α− 1)

η
∧

t∫
t0

VX(τ,X(τ))

S∫
t0

(s− t0)
α−2σ(s,X(s))dW (s)dτ. (5.4)

Taking the expected value of (5.4) and taking into account that LαV ≤ 0 we obtain for any
t ≥ t0 and 0 < α < 1

(α− 1)|E
η
∧

t∫
t0

VX(τ,X(τ))

S∫
t0

(s− t0)
α−2σ(s,X(s))dW (s)dτ | ≤
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≤ (α− 1)|E
η
∧

t∫
t0

VX(τ,X(τ))

S∫
t0

(s− t0)
α−2σ(s,X(s))dW (s)dτ | ≤ 0

Taking into account (5.3), we have

P{η ≤ t} ≤ ε.

Let t → +∞, i.e. P{η ≤ +∞} ≤ ε.
Then we have P{|X(t)| ≤ r} ≥ 1− ε for all t ≥ 0. By Definition 5.1, the trivial solution (1.1) is

stochastically stable.
The theorem is proved.
Now let the following condition (V2) be satisfied.
(V2): There is a positive-definite decreasing function V ∈ C1,2([0,+∞) × Sk;R+) such that

LαV < 0, α ∈ (0, 1), where LαV defined in (5.2).
From (V2) it follows that V (t, 0) ≡ 0. In addition, there are continuous non-decreasing functions

µ1, µ2, µ3 such that

µ1(|X(t)|) ≤ V (t,X(t)) ≤ µ2(|X(t)|),

LαV (t,X(t)) ≤ −µ3(|X(t)|)

for all (t,X(t)) ∈ [0,+∞)× Sk.

Theorem 5.5. Let conditions (A1), (A2) and (V2) be satisfied. Then the trivial solution (1.1) is
asymptotically stochastically stable.

Proof. By Theorem 5.5, the trivial solution of equation (1.1) is stochastically stable. Further, it
can be shown that there exists δ0 = δ0(ε) > 0 such that

P ( lim
t→+∞

X(t) = 0) ≥ 1− ε

for |X0| < δ0, ε ∈ (0, 1).
Based on Definition 5.2, we see that the trivial solution (1.1) is asymptotically stochastically

stable.
The theorem is proved.

5.2. Exponential stability almost surely. Now let the following condition (V3) be satisfied.
(V3):
V ∈ C1,2([0,+∞)× R;R+) and there are constants c1 > 1, c2 ∈ R, c3 ≥ 0 such that
(1) c1|X(t)| ≤ V (t,X(t)),
(2) LαV (t,X(t)) ≤ c2V (t,X(t)),

(3) |VX(t,X(t))|2
t∫
0

|σ(t,X(t))(s − τ)α−2|2dτ ≥ c3V
2(t,X(t)) for all X(t) ̸= 0, α ∈ (0, 1) and

t ≥ 0.
The following statement is true
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Theorem 5.6. Let conditions (A1), (A2) and (V2) be satisfied. Then

lim
t→+∞

sup
1

t
ln|X(t)| ≤ − 1

lnc1
(1− α)(c2 + c3) a.s. (5.5)

In particular, if c2 + c3 > 0, then the trivial solution (1.1) is exponentially stable almost surely

Proof. We fix any X0 ̸= 0. From Theorem 5.5 and (V3)(2), (3) for α ∈ (0, 1) we have

lnV (t,X(t)) = lnV (t0, Xt0) +

t∫
0

(Vs(s,X(s)))

V (s,X(s))
ds+

+(α− 1)

t∫
0

VX(s,X(s))
s∫
0

b(s,X(s))(s− τ)α−2dτ

V (s,X(s))
ds+

+(α− 1)

t∫
0

VX(s,X(s))
s∫
0

σ(s,X(s))(s− τ)α−2dW (τ)

V (s,X(s))
ds ≤

≤ lnV (0, X(0)) +

t∫
0

LαVs(s,X(s))

L(s,X(s))
ds+

+(α− 1)

t∫
0

VX(s,X(s))
s∫
0

σ(τ,X(τ))(s− τ)α−2dW (τ)

V (s,X(s))
ds.

We introduce the notation

M(t) =

t∫
0

VX(s,X(s))(

s∫
0

σ(τ,X(τ))(s− τ)α−2dW (τ)/V (s,X(s)))ds.

Then let n = 1, 2, .... For an arbitrary ε ∈ (0, 1) using (V3) (3) we can get

P{ sup
0≤t≤n

|M(t) + ε

t∫
0

V 2
x (s,X(s))

t∫
0

|σ(τ,X(τ))(s− τ)α−2|2dτ

V 2(s,X(s))
ds| ≥ c3t} ≤ ε

Using the Borel-Cantelli theorem (see eg [8]), we obtain almost surely

M(t) ≤ c3t− ε

t∫
0

V 2
x (s,X(s))

s∫
0

g(τ,X(τ))(s− τ)α−2|2dτ

V 2(s,X(s))
ds = (1− ε)c3t. (5.6)

Thus, using (V3) (3) and (5.6), we have

lnV (t,X(t)) ≤ lnV (0, X(0))− (1− α)[c2 + (1− ε)c3]t.

Then we get
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1

t
lnV (t,X(t)) ≤ −(1− α)[c2 + (1− ε)c3] +

lnV (0, X(0))

t
.

Thus

lim
t→+∞

sup
1

t
lnV (t,X(t)) ≤ −(1− α)[c2 + (1− ε)c3].

Using now (V3) (1) we obtain

lim
t→+∞

sup
1

t
lnc1|X(t)| ≤ lim

t→+∞
sup

1

t
lnV (t,X(t)) ≤ −(1− α)[c2 + (1− ε)c3] ≤

≤ lnV (t0Xt0) +

t∫
t0

LαV (τ,X(τ)

L(τ,X(τ))
dτ+

+(1− α)

t∫
t0

VX(τ,X(τ))

S∫
t0

(s− t0)
α−2σ(s,X(s))dW (s)/V (s,X(s))dτ.

Let us introduce the notation

M1(t) =

t∫
0

VX(τ,X(τ))

S∫
t0

(s− t0)
α−2σ(s,X(s))dW (s)/V (s,X(s))dτ.

Let n = 1, 2, ... For arbitrary ε ∈ (0, 1) using (V3) (3) we obtain

P{ sup
0≤t≤n

|M1(t) + ε

t∫
t0

V 2
X(τ,X(τ))

S∫
t0

|(s− t0)
α−2σ(s,X(s))|2ds

V 2(τ,X(τ))
dτ | ≥ c3t} ≤ ε

Using the properties of the σ -algebra F, we obtain the inequality

M1(t) ≤ c3t− ε

t∫
t0

V 2
X(τ,X(τ))

S∫
t0

|(s− t0)
α−2σ(s,X(s))|2ds

V 2(τ,X(τ))
dτ = (1− ε)c3t a.s. (5.7)

Thus, using (V3) (3) and (5.7), we have

lnV (t,X(t)) ≤ lnV (t0, Xt0)− (1− α)[c2 + (1− ε)c3t].

Then we get

1

t
lnV (t,X(t)) ≤ −(1− α)[c2 + (1− ε)c3t] +

lnV (t0, Xt0)

t
.

Thus

lim
t→+∞

1

t
lnV (t,X(t)) ≤ −(1− α)[c2 + (1− ε)c3]

Using now (V3) (1) we obtain
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lim
t→+∞

sup
1

t
lnc1|X(t)| ≤ lim

t→+∞

1

t
lnV (t,X(t)) ≤

(1− α)[c2 + (1− ε)c3].

Finally, we get

lim
t→+∞

sup
1

t
ln|X(t)| ≤ − 1

lnc1
(1− α)[c2 + (1− ε)c3].

Since ε is arbitrary, we obtain the estimate 5.5
Note that c1 > 1. Then if c2 + c3 > 0, we will obtain

− 1

lnc1
(1− α)(c2 + c3) < 0.

By Definition 5.3, the trivial solution (1.1) is exponentially stable almost surely.

6. Conclusion

For deterministic and stochastic systems of differential equations with fractional derivatives of
Riemann-Liouville, Caputo, Grunwald-Letnikov, definitions of Lyapunov functions with fractional
orders of derivatives are given in [5,6].

However, the practical calculation of these derivatives is associated with great difficulties due to
the absence of a chain rule for them. In this paper, the direct Lyapunov method is carried over to
scalar stochastic differential equations with fractional-like derivatives for which the chain rule for
differentiating complex functions is satisfied. For this purpose, a new fractional-like version of the
Ito formula is introduced. It is important that the fractional-like derivatives are majorants for the
Caputo derivatives.
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