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Abstract. Currently, the development of the theory of Haar interpolations

of financial markets with the use of martingale measures continues. The exis-
tence of martingale measures of discounted stock prices means that this kind
of interpolation can only be used in complete markets. However, real finan-

cial markets often contain elements of arbitrage opportunities. Therefore, it is
important to develop techniques for interpolating processes that do not admit
martingale measures. This work is devoted to just this problem. Here, signed
deflators serve as the main interpolation tool. With their help, the Haar in-

terpolation procedure is defined. In the case of the existence of martingale
measures, this procedure leads to the process interpolation, which coincides
with the martingale interpolation. The paper introduces the concept of an
admissible deflator, defines (as when martingale measures exist) the univer-

sal Haar uniqueness property and its weakened variants. The main results of
the work are related to the so-called special Haar uniqueness property, which
leads to the uniqueness of the admissible deflator.

1. Introduction

Consider a stochastic basis
(
Ω, F = (Fk)

K
k=0, P

)
, where Ω be a set, F = (Fk)

K
k=0

be a strictly increasing filtration, F0 = {Ω, ∅}, K ≤ ∞, any Fk (0 ≤ k < K + 1)
be finite, and P be a probability on FK (if K = ∞, then FK = F∞ is the least
σ-algebra containing all Fk, 0 ≤ k < ∞). We assume that the probability measure
P loads all non-empty subsets from Fk, 0 ≤ k < K + 1.

Definition 1.1. Let Z = (Zk,Fk)
K
k=0 be an adabted process that can take any

real values. A martingale D = (Dk,Fk, P )
K
k=0 is said a signed deflator of the

process Z if D0=1 and the process DZ = (DkZk,Fk, P )
K
k=0 is a martingale.

We will also consider on (Ω,FK) Haar filtrations (HF)

H = (Hn)
L
n=0, Hn ⊂ FK , (1.1)

where H0 = {Ω, ∅} and each σ-algebra Hn is generated by a partition of the
set Ω into exactly n + 1 atoms Hn

0 ,H
n
1 , ..., H

n
n . A Haar filtration is said special
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Haar filtration if at every moment n > 1 only those two atoms of Hn
0 ,H

n
1 , ..., H

n
n

can be divided that were obtained by division at the previous moment n − 1.
Haar filtration (Hn)

L
n=0 from (1.1) is said interpolating Haar filtration (IHF) of

(Fk)
K
k=0 if there exists an increasing sequence of integers nk, 0 ≤ k < K + 1, such

that Hnk
= Fk (and hence HL = FK). Special interpolating Haar filtration

(SIHF) is defined analogically.

Let us fix an IHF (Hn)
L
n=0 of (Fk)

K
k=0 and let D = (Dk,Fk, P )

K
k=0 be a signed

deflator of the process Z = (Zk,Fk)
K
k=0. Denoting Xnk

:= DkZk and Ynk
:= Dk,

we obtain martingales (Xnk
,Hnk

, P )Kk=0 and (Ynk
,Hnk

, P )Kk=0. Then we can define
two martingales X = (Xn,Hn, P )Ln=0 and Y = (Yn,Hn, P )Ln=0 in the following
obvious way: for any n < L+ 1 find nk ≥ n and put

Xn := EP [Xnk
|Hn], Yn := EP [Ynk

|Hn]. (1.2)

It is clear that such definitions are correct.

Remark 1.2. From the properties of the mathematical expectation it follows the
implication:

{Dk = 0} ⊂ {DkZk = 0} (P − a.s.) ⇒ {Yn = 0} ⊂ {Xn = 0} (P − a.s.). (1.3)

Definition 1.3. The process Zint = (Zint
n ,Hn)

L
n=0 defined by the formula

Zint
n =


Zk, if n = nk (0 ≤ k < K + 1),
Xn

Yn
, if n ̸= nk, Yn ̸= 0,

1, if n ̸= nk, Yn = 0,

(1.4)

will be called H-interpolation of the process Z with the help of the deflator D.

Remark 1.4. Let the process Z = (Zk, (Fk)
K
k=0) admit a martingale measure Q,

equivalent to the physical measure P , i.e. the process (Zk,Fk, Q)Kk=0 be a mar-

tingale. Denote h :=
dQ

dP
and Dk := EP [h|Fk]. It is clear that the process

D = (Dk,Fk)
K
k=0 is a strictly positive deflator of the process Z. Hence for all

n ≤ nk Yn = EP [Ynk
|Hn] = EP [Dk|Hn] > 0 and Zint

n =
Xn

Yn
. Applying the

generalized Bayes formula, it is easy to see that the process (Zint
n ,Hn, Q)Ln=0 is a

martingale. From this fact it follows that H-interpolation of the process Z with
the help of deflator D coincides with the Haar interpolation of Z with respect to
the martingale measure Q (c.f. [1], [2]).

Proposition 1.5. The process Y = (Yn,Hn, P )Ln=0 is a signed deflator of the
process Zint = (Zint

n ,Hn)
L
n=0.

Proof. The proof follows from the equality (1.4) and from Remark 1.2. �

2. Haar uniqueness properties for deflators

Definition 2.1. We say that a signed deflator D = (Dk,Fk, P )
K
k=0 satisfies the

Haar uniqueness property (HUP) if there exists a Haar interpolation H = (Hn)
L
n=0

of the initial filtration F such that the process (1.4) admits only one deflator,
namely the deflator Y = (Yn,Hn, P )Ln=0, defined by (1.2).
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SIGNED INTERPOLATING DEFLATORS 3

Definition 2.2. We say that a signed deflator D = (Dk,Fk, P )
K
k=0 satisfies the

universal Haar uniqueness property — UHUP (resp., the special Haar uniqueness
property — SHUP) if for every interpolating (resp., special interpolating) Haar
filtration H = (Hn)

L
n=0 of the initial filtration F the process (1.4) admits only one

deflator, namely the deflator Y = (Yn,Hn, P )Ln=0, defined by (1.2).

We use in the sequel the following system of notations. Let A be an atom in
Fk, Bi (i = 1, 2, . . . ,m) be atoms in Fk+1,

A = B1 +B2 + · · ·+Bm, a := Zk|A, bi := Zk+1|Bi , pi := P (Bi), di := Dk+1|Bi .

Generally splitting index m of atom A and numbers a, bi, pi, di depend on A.

Definition 2.3. A signed deflator D of the process Z is said admissible if ∀0 ≤
k < K + 1, for all atom A ∈ Fk and for all non-empty subset I ⊂ {1, 2, . . . ,m}∑

i∈I

pidi ̸= 0.

The aim of this paper is to prove the following theorems.

Theorem 2.4. Let ∀k : 0 ≤ k < K + 1 and for all atom A ∈ Fk we have m ≥ 3.
If there exists an admissible signed deflator D satisfying SHUP, then the numbers
a, b1, . . . , bm are different.

Theorem 2.5. Let ∀k : 0 ≤ k < K + 1 and for all atom A ∈ Fk we have m ≥ 4
and the numbers a, b1, . . . , bm be different. Then there exists an admissible signed
deflater D satisfying SHUP.

The problem of the existence of admissible deflators satisfying UHUP will be
considered in subsequent works.

3. Admissible deflators of one-step process Z

For one-step processes we have A = Ω. Let D = (Dk,Fk, P )
1
k=0 be an admissi-

ble deflator of the process Z = (Zk,Fk)
1
k=0, D1 =

∑m
i=1 diIBi , Z1 =

∑m
i=1 biIBi ,

m ≥ 3.

Proposition 3.1. Let m = 3 and numbers b1, b2, b3 are different. All admissible
deflators D = (Dk,Fk)

1
k=0 of the process Z are given by the equalities:

d1 =
b2 − a+ p3(b3 − b2)d3

p1(b2 − b1)

d2 =
a− b1 + p3(b3 − b1)d3

p1(b2 − b1)
,

(3.1)

where d3 can take any real values, except

0,
1

p3
, − b1 − a

p3(b3 − b2)
, − b2 − a

p3(b3 − b2)
, − b1 − a

p3(b3 − b1)
, − b2 − a

p3(b3 − b1)
.

Proof. It is obvious that the formula (3.1) gives all the signed deflators of Z.
On the other hand, it is clear that the deflator D is admissible if and only if
di ̸= 0, di ̸= 1

pi
(i = 1, 2, 3). Passing with the help of the formulas (3.1) from

inequalities di ̸= 0, di ̸= 1
pi

(i = 1, 2) to equivalent inequalities for d3, we obtain

what is required. �
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Proposition 3.2. Let m ≥ 4 and numbers b1, . . . , bm are different. Then there
exist admissible deflators of the process Z.

Proof. A process D is a deflator of the process Z iff{
p1d1 + p2d2 + p3d3 + · · ·+ pmdm = 1

b1p1d1 + b2p2d2 + b3p3d3 + · · ·+ bmpmdm = a.
(3.2)

This deflator is admissible iff for all non-empty subset I ⊂ {1, 2, . . . ,m} we have∑
i∈I pidi ̸= 0. Let the last sum lack at least two terms. Fix two of them. Without

loss of generality, we can assume that these will be p1d1 and p2d2.
Let us solve system (3.2) with respect to d1 and d2 (if the indicated sum did

not contain the terms pi1di1 and pi2di2 , we would resolve (3.2) with respect to di1
and di2). We have:{

d1 = (b3−b2)p3

(b2−b1)p1
d3 +

(b4−b2)p4

(b2−b1)p1
d4 + · · ·+ (bm−b2)pm

(b2−b1)p1
dm + b2 − a

d2 = − (b3−b1)p3

(b2−b1)p2
d3 − (b4−b1)p4

(b2−b1)p2
d4 − · · · − (bm−b1)pm

(b2−b1)p2
dm − (b1 − a).

(3.3)

The set of solutions (3.3) of the system (3.2) is a hyperplane in the space Rm. We
represent this hyperplane in the parametric form:

d1 = (b3−b2)p3

(b2−b1)p1
t1 +

(b4−b2)p4

(b2−b1)p1
t2 + · · ·+ (bm−b2)pm

(b2−b1)p1
tm−2 + b2 − a

d2 = − (b3−b1)p3

(b2−b1)p2
t1 − (b4−b1)p4

(b2−b1)p2
t2 − · · · − (bm−b1)pm

(b2−b1)p2
tm−2 − (b1 − a)

d3 = t1

......................................................................................................

dm = tm−2.

(3.4)

Denote the hyperplane (3.4) by T . It is clear that the m − 2 of n-dimensional
vectors generating T are linearly independent. Hence T has the dimension m− 2.

Without loss of generality, we will assume that under the sign of the sum in
the inequality

∑
i∈I pidi ̸= 0, there is a term p3d3. Using the notation of the

parameters in the formula (3.4) and turning the inequality under consideration
into an equality, we express t1 in terms of the remaining parameters, included in
this equality. Thus, (3.4) turns into a parametric equation of a hyperplane T ′,
contained in T and having a dimension strictly less than m− 2.

Now concider the case when the sum in the inequality
∑

i∈I pidi ̸= 0 does not
contain only one term. Without loss of generality, we can suppose that it is p3d3.
Then this inequality is equivalent to the inequality d3 ̸= 1

p3
. Substituting t1 = 1

p3

in (3.4), we again get a hyperplane T ′′ ⊂ T with a dimention strictly less than
m− 2.

It follows from what has been said that all the inequalities characterizing the
admissible deflators are satisfied at the points of the hyperplane T after removing
from it a finite number of hyperplanes of the type T ′ and T ′′ of dimensions, strictly
less than the dimension of T . It is obvious that the set of all such points is not
empty.

�
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SIGNED INTERPOLATING DEFLATORS 5

4. Proof of the theorems

Remark that the proofs of Theorems 2.4 and 2.5 for dinamic models can be
reduced to static models by the standart way (c.f. [1], [2]). Therefore, we will
carry out proofs only for one-step processes.

Lemma 4.1. Let D = (Dk,Fk, P )
1
k=0 be an admissible deflator of the process

Z = (Zk,Fk)
1
k=0, D1 =

∑m
i=1 diIBi , Z1 =

∑m
i=1 biIBi , m ≥ 3. Consider SIHF

H = (Hn)
m−1
n=0 of the form:

H0 = F0 = {Ω, ∅},
H1 = σ{B1},
H2 = σ{B1, B2},
...........................
Hm−1 = σ{B1, B2, . . . , Bm−1} = F1.
If Zint = (Zint

n ,Hn)
m−1
n=0 is H-interpolation of the process Z with the help of the

deflator D (see Definition 1.3), then any deflator Ỹ = (Ỹn,Hn)
m−1
n=0 of the process

Zint can be obtained by the formula Ỹm−1 =
∑m

i=1 xiIBi from the system

m∑
i=1

pixi = 1

m∑
i=1

bipixi = a

m∑
i=2

pi(bi − c1)xi = 0

m∑
i=3

pi(bi − c2)xi = 0

.....................................
m∑

i=m−1

pi(bi − cm−2)xi = 0,

(4.1)

where

cs =

m∑
j=s+1

bjpjdj

m∑
j=s+1

pjdj

, s = 1, 2, . . . ,m− 2.

Proof. The scheme of the proof of the lemma is as follows. First, using the
formulas (1.2) and (1.4), we calculate Zint. Then we calculate the martingale

Ỹ = (Ỹn,Hn)
m−1
n=0 by solving the probabilistic Dirichlet problem with the bound-

ary value Ỹm−1 =
∑m

i=1 xiIBi and multiply this martingale by the process Zint.
And, finally, complementing the first two equations of the system (4.1) with mar-

tingale equalities for the process Ỹ Zint, we obtain the system (4.1). �

Lemma 4.2. The main determinant of the system (4.1) is calculated by the for-
mula

∆{1,2,...,m} =
m∏
i=1

pi ·
m−2∏
i=1

(ci − bi) · (bm − bm−1). (4.2)
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Proof. It is enough to apply a number of elementary transformations to the main
determinant of the system (4.1). �

Now we can prove Theorem 2.4.

Proof. Let there exist an admissible signed deflater D satisfying SHUP. Concider
first SIHF as in lemma 4.1. By Proposition 1.5 the process Y from (1.2) satisfies
the system (4.1). It follows from Definition 2.2 that this solution is unique, i.e. its
main determinant ∆{1,2,...,m} is not zero. We get from Lemma 4.2 that bm−1 ̸= bm.
Now calculate the factor c1 − b1 in (4.2). Putting xi = di, i = 1, 2, . . . ,m, in two
first equations of (4.1) we obtain:

c1 − b1 =

m∑
j=2

bipidi

m∑
j=2

pidi

− b1 =
a− b1p1d1
1− p1d1

− b1 =
a− b1

1− p1d1
. (4.3)

Applying again Lemma 4.2, we get a ̸= b1.
Denote J = {1, 2, . . . ,m}. Let J ′ = {j1, j2, . . . , jm} be a permutation of

J . Put H0 = F0 = {Ω, ∅}, H1 = σ{Bj1}, H2 = σ{Bj1 , Bj2}, . . . , Hm−1 =
σ{Bj1 , Bj2 , . . . , Bjm−1} = F1. Lemmas 4.1 and 4.2 and the transformation (4.3)
give us in this general situation bjm−1 ̸= bjm and a ̸= bj1 . It means that the
numbers a, b1, . . . , bm are different. �

Before formulating the next proposition, we note that in the case m = 3 UHUP
coincides with SHUP.

Proposition 4.3. Let m = 3 and the numbers a, b1, . . . , bm are different. All
admissible deflators D of the process Z (see Proposition 3.1) satisfy UHUP.

Proof. This fact follows from Lemmas 4.1 and 4.2 and from the proof of Theorem

2.4. Remark only that in this case in the expression 4.2
m−2∏
i=1

(ci − bi) =
a−b1

1−p1d1
̸=

0. �

Now let us prove Theorem 2.5.

Proof. Without loss of generality, we can assume that bi ̸= 0, i = 1, 2, . . . ,m.
Let J = {1, 2, . . . ,m} and let J ′ = {j1, j2, . . . , jm} be an arbitrary permutation

of J . We proceed as in the second part of the proof of Theorem 2.4. Then
determinant (4.2) takes the form:

∆J ′ =

m∏
i=1

pji ·
m−2∏
i=1

(cji − bji) · (bjm − bjm−1), (4.4)

where

cjs =

m∑
i=s+1

bjipjidji

m∑
j=s+1

pjidji

, s = 1, 2, . . . ,m− 2.
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It is clear that a deflator satisfies SHUP iff for any permutation J ′ of J the

inequalities
m∑

i=s+1

bjipjidji ̸= 0, s = 2, . . . ,m − 2, are fulfilled. Solving them with

respect to djs+1 , we get the equivalent inequalities:

djs+1 ̸=

m∑
i=s+2

bjipjidji

bjs+1pjs+1

, s = 2, . . . ,m− 2. (4.5)

Then we proceed as in Proposition 3.2. Represent the hyperplane T , given by
system (3.2), in the form:

dj1 =
(bj3−bj2 )pj3

(bj2−bj1 )pj1
t1 +

(bj4−bj2 )pj4

(bj2−bj1 )pj1
t2 + · · ·+ (bjm−bj2 )pjm

(bj2−bj1 )pj1
tm−2 + bj2 − a

dj2 = − (bj3−bj1 )pj3

(bj2−bj1 )pj2
t1 −

(bj4−bj1 )pj4

(bj2−bj1 )pj2
t2 − · · · − (bjm−bj1 )pjm

(bj2−bj1 )pj2
tm−2 − (bj1 − a)

dj3 = t1

......................................................................................................

djm = tm−2.

(4.6)
Putting in the inequalities (4.5) djs+1 = ts−1, djs+2 = ts,. . . , djm = tm−2 and
turning these inequalities into equalities, we obtain:

ts−1 =

m∑
i=s+2

bjipjiti−2

bjs+1pjs+1

, s = 2, . . . ,m− 2. (4.7)

Now fix s and put (4.7) in (4.6). As a result, we obtain the paramrtric equation of
some hyperplane T ′′′ with dimension strictly less than m− 2. It follows from this
that all the admissible deflators satisfying SHUP are the points of the hyperplane
T after removing from it a finite number of hyperplanes of the type T ′, T ′′ and
T ′′′ of dimensions, strictly less than the dimension of T (c.f. the denotations from
the proof of Proposition 3.2). It is obvious that the set of all such points is not
empty. �

Remark 4.4. In fact, it follows from the proof of Theorem 2.5 that if m ≥ 4 and
numbers a, b1, . . . , bm are different, then the set of admissible deflators satisfying
SHUP is dense in the set of all signed deflators in the Euclidean metric of the
hyperplane T . But unlike the case of m = 3, there are admissible deflators that
do not satisfy SHUP. Let us consider the case m = 4 and b1 < b2 < b3 < b4. It is
clear that if there exists an admissible deflator for which c2 = b2 (see Lemma 4.2),
then this deflator does not satisfy SHUP. It is easy to show that such deflators are
odtained from the system

d1 = (b2−a)
(b2−b1)p1

d2 = (a−b1)(b3−b2)+(b3−b1)(b4−b2)p4d4

(b2−b1)(b3−b2)p2

d3 = − (b4−b2)p4d4

(b3−b2)p3

(4.8)

for all real values of d4, except for
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(b1−a)(b3−b2)
(b3−b1)(b4−b2)p4

, 1
p4
, − (b3−b2)

(b4−b2)p4
, (b2−a)(b3−b2)

(b3−b1)(b4−b2)p4
, (b1−a)(b3−b2)

[(b3−b1)(b4−b2)+(b2−b1)(b3−b2)]p4
,

− (b2−a)
(b2−b1)p4

, (b1−a)
(b4−b2)p4

, (b2−a)(b3−b2)
(b2−b1)(b4−b2)p4

, − (b2−b1)(b3−b2)
(b3−b1)(b4−b2)p4

, 0.

5. Conclusion

The most important problem in the Haar interpolations topic consists in the
following: find the sufficient conditions on parameters of the market, under which
various interpolating deflators exist (for interpolating martingale measures see [1]-
[3] (the case of finite probability space) and [4]-[11] (the case of countable prob-
ability space)). These deflators can be used in investigation not only of financial
markets, but of other complex systems (for example, considered in [12]-[15]).
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