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Abstract. Regime switching diffusion processes with one or two thresholds

and regime switching occurring by a change in the diffusion drift and/or volatil-

ity functions parameters of a stochastic differential equation, whose solution
defines a continuous time diffusion process, were defined in previous works;

the change in regime occurring whenever the trajectory of the process crosses

a threshold, possibly with some delay. In this paper we generalise the previous
results by allowing the underlying diffusion process to change from one family

of diffusions in one regime to an entirely different one in the other regime;

these families of diffusions are characterised by specific functional forms for
drift and volatility coefficients depending on parameters. We propose an es-

timation procedure for all the parameters, namely the thresholds, the delay
and, for both regimes, diffusion’s parameters and we apply the introduced

estimation procedure to both simulated and real data.

1. Introduction

The theory of general stochastic differential equations with regime switching has
had many very interesting developments both in the case of externally induced
regime switching — by means of an independent Markov process inducing the
regime switching — and in the case of auto-induced regime switching where the
regime switches when the trajectories hit some threshold and possibly after some
delay (see [EKM20] for a recent partial synthesis essay).

In this paper, on auto-induced regime switching diffusions, we consider two
families of stochastic processes, each one modelled by a double stochastic differ-
ential equation defining, in each case, a continuous time stochastic process with
two regimes. For the first double diffusion process definition, we hypothesise that
the regimes are induced by two thresholds m and M (with m < M) belonging to the
state space of both processes. If, for instance, the initial process is a submartingale
(with continuous trajectories) starting at x0 below the upper threshold (x0 < M),
then in almost sure (a.s.) finite time it will hit the (upper) threshold M . Let’s
suppose that at that time the overall process dynamics changes, for instance to a
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supermartingale (again with continuous trajectories and starting at M) and again
in a.s. finite time this process will hit the lower threshold m. If the process dynam-
ics change again to the initial submartingale process (now with initial value m) and
everything starts all over again, we get our first double diffusion process. For the
second double diffusion process, we only need to hypothesise one given threshold m
together with a positive delay d. We will also consider that both regimes have some
kind of opposite trend and that , at each time t, the process is in the first regime if,
at time t− d the process is below the threshold or that the process is in the second
regime if at time t − d the process is above the threshold. Both double diffusion
process were already presented and discussed in some way in [EM14] and [ME14],
but in the much more restrictive situation where, apart from parameter changes,
the functional form of the coefficients of the diffusion process were the same in both
regimes. In the present work, we allow the underlying diffusion processes to be from
different families, for instance, in one regime we can consider a Brownian motion
with drift (BMD) and in the other regime a geometric Brownian motion (GBM),
meaning that in each regime the process follows the dynamics of a simple contin-
uous time process defined by a stochastic differential equation (SDE). The change
in regime happens when the process hits a threshold — crosses a threshold with
delay in the second case — and when that happens the process dynamics changes
from one to the other SDE with different drift and volatility functions.

2. The double diffusion processes

Consider a parameter set Θ = Θ1 ×Θ2, some delay parameter d > 0 and two
thresholds m and M (with m < M), defined in the state space of two real valued
stochastic processes (X1,t)t≥0 and (X2,t)t≥0, with the diffusions processes driven in
[0, T ] by the stochastic differential equations:{

dX1,t = µ1(t,X1,t; θ1)dt+ σ1(t,X1,t; θ1)dWt, t ∈ [0, T ], θ1 ∈ Θ1

X1,0 = x1,0

(2.1)

and {
dX2,t = µ2(t,X2,t; θ2)dt+ σ2(t,X2,t; θ2)dWt, t ∈ [0, T ], θ2 ∈ Θ2

X2,0 = x2,0

(2.2)

where (Wt)t≥0 is a standard Brownian motion process defined on the complete
probability space (Ω,F ,P). We can ensure the existence and uniqueness of (X1,t)t≥0

and (X2,t)t≥0 as solutions of the SDE’s in (2.1) and (2.2), if the usual regularity
conditions are verified, see for instance [KS98, p. 289], [Øks03, p. 68] or [LS01, p.
134]. Other more general conditions for existence and unicity of solutions may be
considered (see, for instance [EKM20]) but are not needed in this work.

2.1. Double diffusion process with two thresholds. It is possible to define a
new process (Xt)t≥0 on the interval [0, T ], by joining the trajectories of the diffusions
X1,t and X2,t, defined by the sequence of the stopping times corresponding to the
hitting of the thresholds m and M by the process trajectories. In a more detailed
way and without loss of generality, let us assume that the process is initiated in
the first regime (corresponding to the diffusion solution of equation (2.1)), that is,
(Xt)t≥0 ≡ (X1,t)t≥0 and we suppose that x1,0 < M . Consider that there exists a
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SOME DOUBLE DIFFUSION MODELS FOR STOCK PRICES 3

hitting time for the upper threshold M (the first hitting time) defined by:

τ1 = inf {t > 0 : X1,t = M} ∧ T . (2.3)

Suppose that τ1 < T with non-zero probability (if not, the process is just an a.s.
single regime process), then the process (Xt)t≥0 is given for t ∈ [0, τ1] by Xt = X1,t.
Next, for t ≥ τ1, assume that the process dynamics is the one of the SDE (2.2) with
initial condition X2,τ1 = M , that is, Xt = X2,t for t ≥ τ1 and with X2,t given by:{

dX2,t = µ2(t,X2,t; θ2)dt+ σ2(t,X2,t; θ2)dWt, t ∈ [τ1, T ]

X2,τ1 = M .
(2.4)

Consider next, the second regime switching moment defined by the first hitting
time (after τ1) of the lower threshold m,

τ2 = inf {t > τ1 : X2,t = m} ∧ T . (2.5)

Let us suppose again that τ2 < T with non-zero probability, then it is obvious that
by time τ2 the process is at level m, and a new regime will start with the dynamics
of the SDE (2.1). It is now possible to redefine the process (Xt)t≥0 for t ≥ τ2 by
Xt = X1,t given by the solution of:{

dX1,t = µ1(t,X1,t; θ1)dt+ σ1(t,X1,t; θ1)dWt, t ∈ [τ2, T ]

X1,τ2 = m .
(2.6)

The existence and uniqueness of solutions for the SDE’s (2.4) and (2.6) are given
in the following proposition.

Proposition 2.1. For i = 1, 2 and with ν1 = m, ν2 = M , τ(i) = τ2 if i = 1 and
τ(i) = τ1 if i = 2, the processes defined by,{

dXi,t = µi(t,Xi,t; θi)dt+ σi(t,Xi,t; θi)dWt, t ∈ [τ(i), T ], θi ∈ Θi

Xi,τ(i) = νi ,
(2.7)

exist and are uniquely determined if the usual conditions for the existence and
uniqueness of solution are verified by the diffusion functions (µi(.) and σi(.), i =
1, 2) of the next SDE’s{

dXi,t = µi(t,Xi,t; θi)dt+ σi(t,Xi,t; θi)dWt, t ∈ [t0, T ], θi ∈ Θi

Xi,t0 = Zi ,
(2.8)

with some initial conditions Zi ∈ L2, ensuring that an uniquely determined solution
exists, for i = 1, 2 and any t0 ∈ [0, T ].

Proof. We observe that, for i = 1, 2, equation (2.7) should be interpreted, for all
t ∈ [0, T ], as

Xi,t = νi +

∫ t

0

µi(t,Xi,t; θi)I[τ(i),T ](u)du+

∫ t

0

σi(t,Xi,t; θi)I[τ(i),T ](u)dWu . (2.9)

Considering some standard theorem of existence and uniqueness (again, see [KS98,
p. 289], [Øks03, p. 68] or [LS01, p. 134]), and since ν1 = m and ν2 = M , it is clear
that the initial random variable in (2.8) is in L2. Moreover, as

|µi(t, x; θi)I[τ(i),T ](t)| ≤ |µi(t, x; θi)|
and

|σi(t, x; θi)I[τ(i),T ](t)| ≤ |µi(t, x; θi)| ,
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it is also clear that the conditions of integrability, of Lipschitz control and of sub-
linear growth verified by the diffusion functions on (2.8) are still verified by the
diffusion functions of the stochastic differential equation (2.7) and so the result is
proved. �

It is possible to define (τn)n≥1 by induction, thus obtaining an increasing (in the
strict sense) sequence of stopping times corresponding to the consecutive regime
switching times. In [EM14] it was already proved that this stopping times are
almost sure isolated when the same diffusion is considered in both regimes. When
the diffusion differs from regime to regime a similar proof still holds.

Finally, we have the following theorem.

Theorem 2.2. Consider the set Θ = Θ1 × Θ2 for the two regime parameters
and for i = 1, 2 let µi(t, x; θi) and σi(t, x; θi) be real valued functions defined on
[0, T ] × R ×Θi in such a way that for any random variable Zi ∈ L2, θi ∈ Θi and
t0 ∈ [0, T ], the usual conditions of integrability, Lipschitz control and sub-linear
growth are verified by the coefficients of the stochastic differential equation{

dXi,t = µi(t,Xi,t; θi)dt+ σi(t,Xi,t; θi)dWt, t ∈ [t0, T ], θi ∈ Θi

Xi,t0 = Zi ,

ensuring the existence and the uniqueness of the solution. For i ≥ 0, define

î :=
1− (−1)i

2
+ 1 .

Then, there exists an increasing sequence of stopping times (τi)i≥0, (almost surely
isolated), with τ0 ≡ 0, τ0 < τi < τi+1 ≤ T for i ≥ 1, and such that the stochastic
integral equation

Xt =

(
+∞∑
i=0

Xî,τi
I[τi,τi+1[(t)

)
+

∫ t

0

(
+∞∑
i=0

µî

(
t,Xî,u; θ̂i

)
I[τi,τi+1[(u)

)
du+

+

∫ t

0

(
+∞∑
i=0

σî

(
t,Xî,u; θ̂i

)
I[τi,τi+1[(u)

)
dWu ,

(2.10)

defined with X0 = x1,0 < M for t ∈ [0, T ], has an unique almost surely contin-
uous solution. This solution is a double diffusion process (Xt)t∈[0,T ], with regime
switching and represented by:

Xt =

+∞∑
i=0

Xî,tI[τi,τi+1[(t) , (2.11)

with the excursion process (Xî,t)t∈[τi,τi+1[ given by the unique solution of the sto-

chastic differential equation{
dXî,t = µî(t,Xî,t; θ̂i)dt+ σî(t,Xî,t; θ̂i)dWt, τi ≤ t < τi+1

Xî,τi
= x1,0I{i=0} +mI{̂i=1,i6=0} +MI{̂i=2} .

(2.12)

Remark 2.3. If x0 > m and we suppose that the starting regime is regime 2, similar
results can be proved.

Remark 2.4. Given T = (τn)n≥0, for i ≥ 0 by construction (Xî,t)t∈[τi,τi+1[ the

excursion processes, are independent.
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2.2. Double diffusion process with one threshold and delay. For the second
double diffusion process, we start with one threshold m and a delay d, but in order
to overcome the Brownian level sets problem described in [EM14], P. (2014), we
consider a small but fixed ε > 0 to define auxiliary thresholds m−ε, m+ε allowing
us to define a threshold band from m− ε to m+ ε. In this context and in a similar
way to what was done in the previous subsection, it is possible to define a new
process (Xt)t≥0 on the interval [0, T ], by joining the excursions of the diffusions
X1,t and X2,t defined by the succession of the hitting moments of the (upper and
lower) thresholds m+ ε, m− ε and after some delay d. Again and without loss of
generality, let us assume that the process is initiated in the first regime, that is,
(Xt)t≥0 ≡ (X1,t)t≥0 as in equation (2.1), and we suppose that x1,0 < m. Let us
consider that we have a first hitting time of the upper (auxiliary) threshold m+ ε
given by:

τ1 = inf {t > 0 : X1,t = m+ ε} ∧ T . (2.13)

Suppose that we have τ1 + d < T (at least, with non-zero probability) and that the
process (Xt)t≥0 is given for t ∈ [0, τ1 + d] by Xt = X1,t and for t ≥ τ1 + d, by the
solution of the SDE (2.2) (with a random initial condition depending on a stopping
time), that is, Xt = X2,t for t ≥ τ1 + d and with X2,t given by:{

dX2,t = µ2(t,X2,t; θ2)dt+ σ2(t,X2,t; θ2)dWt, t ∈ [τ1 + d, T ]

X2,τ1+d = X1,τ1+d .
(2.14)

Next, consider the second regime switching time, defined by the first hitting time
(after τ1) of the lower (auxiliary) threshold m− ε,

τ2 = inf {t > τ1 : X2,t = m− ε} ∧ T . (2.15)

Let us suppose that τ2 + d < T (again with non-zero probability), then by time
τ2 we can find the process at level m − ε and a regime change happens at time
τ2 +d. In a similar way to what have been done previously, the process (Xt)t≥0 for
t ≥ τ2 + d may be redefine by Xt = X1,t given by the solution of:{

dX1,t = µ1(t,X1,t; θ1)dt+ σ1(t,X1,t; θ1)dWt, t ∈ [τ2 + d, T ]

X1,τ2+d = X2,τ2+d .
(2.16)

The existence and uniqueness of solutions for the SDE’s (2.14) and (2.16) is proved
in the same way as in Proposition 2.1 with the only difference regarding the initial
condition, that is, the integrability of the initial random variable. That integrability
condition is easy to prove since, for instance:

E
[
|X1,τ1+d|2

]
≤ E

[
sup

0≤t≤T
|X1,t|2

]
< +∞ . (2.17)

The double diffusion process with one threshold and delay may be defined induc-
tively in this way by gluing together solutions to standard stochastic differential
equations defined between the stopping times, (τn + d)n≥0, as in equation (2.11) of
theorem 2.2.

Remark 2.5. Notice that, formally the second process can be considered as the first
one with delay but in practice and for ε small enough the threshold band will work
as a unique threshold and is like if the change in regime is driven by the crossing
of the threshold.
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3. On the thresholds estimation

For a fixed ω ∈ Ω and the corresponding trajectory of the double diffusion
process, consider Cn(ω) = {Xt1(ω), . . . , Xtpn

(ω)} a finite set of pn ∈ N discrete
observations at times t1, ..., tpn in [0, T ] and let us assume that for all n ≥ 1 we
have that Cn(ω) ⊆ Cn+1(ω). We also assume that, for any ω ∈ Ω, we know the
regime for each observation Xtj (ω), that knowledge allowing us to define a random
variable Rtj such that Rtj (ω) = 1 if Xtj (ω) is in regime 1 and Rtj (ω) = 2 if Xtj (ω)
is in regime 2.

3.1. Two thresholds. If we are in the context of the double diffusion process with
two thresholds, then we can define a natural partition of the observations set, given
by:

CMn (ω) = {Xtj (ω) : Rtj (ω) = 1, j = 1, . . . , pn} (3.1)

and

Cmn (ω) = {Xtj (ω) : Rtj (ω) = 2, j = 1, . . . , pn} . (3.2)

Remark 3.1. An important remark is that:

• If Rtj (ω) = 1, meaning that Xtj (ω) is in regime 1, then Xtj (ω) ≤M ;
• If Rtj (ω) = 2, meaning that Xtj (ω) is in regime 2, then Xtj (ω) ≥ m.

The next result shows that, if we have an hypothesis of increasing number of
observations, we can define strongly consistent estimators for the thresholds m and
M .

Theorem 3.2. Let M̂n(ω) = maxCMn (ω) and m̂n(ω) = minCmn (ω). Suppose that
the observations are distributed in a regular mesh in [0, T ], in the sense that,

lim
n→+∞

max
1≤i≤pn−1

|ti+1 − ti| = 0 . (3.3)

Then, if there is at least one regime change from the first regime to the second

regime, the sequence (M̂n)n≥1 of estimators of the upper threshold M , is strongly
consistent and, if there is at least one regime change from the second regime to the
first regime, the sequence (m̂n)n≥1 of estimators of the lower threshold m, is also
consistent (strongly), that is:

lim
n→+∞

M̂n = M a.s. and lim
n→+∞

m̂n = m a.s. (3.4)

Proof. We only write the proof of the consistency of M̂n(ω), being similar to m̂n(ω).

For simplicity, write M̂(ω) := limn→+∞ M̂n(ω), as Cn(ω) ⊆ Cn+1(ω) we have that

M̂n ≤ M̂n+1 and from Remark 3.1, we have that M̂(ω) = limn→+∞ M̂n(ω) ≤ M .

If we suppose, that for some ε > 0 we have M̂(ω) < M − ε and we consider the
first regime switching time (from regime 1 to regime 2), that is:

τ(ω) = inf {t > 0 : Xt(ω) = M} ,

from the uniform, almost surely, continuity of the trajectory (Xt(ω))t∈[0,T ], there
exists η > 0 such that for |r−s| < η, with r, s ∈ [0, T ], we have |Xr(ω)−Xs(ω)| < ε.
Next, it is enough to select some n0 ∈ N for which is valid max1≤i≤pn0

−1 |ti+1−ti| <
η and to select i0 ∈ {1, . . . , pn0

} such that τ(ω) ∈ [ti0 , ti0+1]. As a consequence, we
have that

|τ(ω)− ti0 | ≤ |ti0+1 − ti0 | < η
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and so
|Xτ(ω)(ω)−Xti0

(ω)| = |M −Xti0
(ω)| < ε ,

thus implying that |M̂n0
(ω) −M | < ε and furthermore |M̂(ω) −M | < ε, contra-

dicting the initial hypothesis of M̂(ω) < M − ε, completing the proof. �

Remark 3.3. When the regimes are not known, we propose a practical procedure
to estimate the thresholds and all the other remaining parameters for this kind of
process with regime changes. The method is easily described in a few simple steps.

• Chose some values m̃ and M̃ for the two thresholds and for this choice
split the observations in a set of observation in first regime 1 and other of
observations in the second regime.
• Use traditional estimators for the diffusion parameters, in order to get an

estimator θ̂1 for the parameter value θ1 (using the observations assigned to
the first regime, by the previous step procedure) and use the same approach

to get θ̂2 (using the observations in the second regime) as an estimator of
θ2.
• Minimize some kind of contrast function, for instance, of the conditional

least squares type,

CLS
m̃,M̃

:=
∑
i

(
Xi − E

θ̂1,θ̂2,m̃,M̃
[Xi | X1, . . . Xi−1]

)2

, (3.5)

over m̃ and M̃ .

3.2. One threshold and delay. If we are in the context of the double diffusion
process with one threshold and delay and supposing that the delay d parameter
is known, we are able to build an estimator for the threshold m. Again, if we
know the sequence Rt1 , Rt2 , ..., Rtpn and we know the delay d, we can divide the
observations Xt1 , Xt2 , ..., Xtpn

in two sets using that: Rtj = 1 ⇒ Xtj−d ≤ m + ε
and Rtj = 2⇒ Xtj−d ≥ m− ε. In practice, we only consider the random variables
Rtj such that tj ≥ d, in order keep the time tj − d in the interval [0, T ]. From the
uniform continuity of the process trajectory (Xt(ω))t∈[0,T ] and the fact that the
hitting times are (almost sure) isolated, there exists n0 ∈ N such that for n > n0,
we have:

Rtj = 1⇒ ∃tj1 ∈ {t1, ..., tpn},∃k1 ∈ N0 : tj − d ∈ [tj1 , tj1+1[ ∧ tj1 ∈]τ2k1 , τ2k1+1]
(3.6)

and we can define:
X̃−j (ω) := Xtj1

(ω) (3.7)

and the set
C−n (ω) = {X̃−j (ω) : Rtj (ω) = 1, tj ≥ d} (3.8)

as the set of the observations that are equal or smaller than m + ε. In a similar
way,

Rtj = 2⇒ ∃tj2 ∈ {t1, ..., tpn},∃k2 ∈ N0 : tj − d ∈ [tj2 , tj2+1[ ∧ tj2 ∈]τ2k2+1, τ2k2+2]
(3.9)

and we can define:
X̃+
j (ω) := Xtj2

(ω) (3.10)

and the set
C+
n (ω) = {X̃+

j (ω) : Rtj (ω) = 2, tj ≥ d} (3.11)
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where the observations are equal or larger than m− ε. We have the next result on
consistency.

Theorem 3.4. Consider m̂−n (ω) = maxC−n (ω) and m̂+
n (ω) = minC+

n (ω) and sup-
pose that:

lim
n→+∞

max
1≤i≤pn−1

|ti+1 − ti| = 0 . (3.12)

Then, if there is at least one change from the first to the second regime,

lim
n→+∞

m̂−n = m+ ε a.s. (3.13)

and if there is at least one change from the second to the first regime,

lim
n→+∞

m̂+
n = m− ε a.s. (3.14)

and then

m̂n =
m̂−n + m̂+

n

2
(3.15)

is an (almost sure) consistent estimator for the threshold m.

The proof of the results in equations (3.13) and (3.14), follows the same ideas
as the ones presented in the proof of Theorem 3.2 and then the conclusion in
equation (3.15) is straightforward.

Remark 3.5. For the double diffusion process with one threshold and delay and when
the regimes are not known, we can adapt in a straightforward way the procedure
presented in Remark 3.3 in order to get a practical procedure to estimate the
threshold, the delay and all the other parameters of the model.

4. Practical application

For the practical application and to illustrate the estimation procedure we con-
sider that the underlying processes are Brownian motion with drift (BMD) and
geometric Brownian motion (GBM). When the underlying process in regime 1 is
the Brownian motion with drift, the stochastic differential equation (2.1) reduces
to:

dX1,t = µ1dt+ σ1dWt , (4.1)

with (strong) solution in [t, t+ ∆],

X1,t+∆ = X1,t + µ∆ + σ1(Wt+∆ −Wt), (4.2)

and when the underlying process (for regime 2) is the geometric Brownian motion,
equation (2.2) is:

dX2,t = µ2X2,tdt+ σ2X2,tdWt (4.3)

with solution in [t, t+ ∆],

X2,t+∆ = X2,te
(µ2− 1

2σ
2
2)∆+σ2(Wt+∆−Wt). (4.4)

In this situation, instead of using the conditional least squares function (3.5) we can
also build a conditional log-likelihood function, noting that from equation (4.2) the
conditional distribution of X1,t+∆ given X1,t is normal and from equation (4.4) the
conditional distribution of X1,t+∆ given X1,t is log-normal. For simplicity, let us
suppose that the observations X0, X1, ..., Xn are collected at equally spaced times
t0, t1, ..., tn, with ∆ = ti+1 − ti, i = 0, 1, ..., n− 1.
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4.1. Double diffusion process with two thresholds. The construction of the
regimes and the estimation of the parameters for the double diffusion process with
two thresholds, is implemented in the following way:

(1) For fixed values for the lower and upper thresholds, respectively m̃ and

M̃ (selected from a double grid of values with a small size interval), the
observations set is divided into two new sets, corresponding to the first and
second regimes, in the following way: starts with the first observation X0,

that is supposed to belong to regime 1, that is, R̃0 = 1. Next, the second

observation X1 is considered and if X1 ≤ M̃ then X1 is also classified
in the first regime (R̃1 = 1) and the procedure continues by classifying

observations in regime 1 until we find the first observation larger than M̃ ,
say Xk, then this observation is the first one that should be considered in

the regime 2, that is, R̃k = 2 and the procedure continues by classifying
observations in regime 2 until we get the first next observation that is
smaller than m̃, that observation is now considered belonging to regime 1
and the procedure restarts on regime 1 and is repeated until the end of the
observations is reached.

(2) After that, the conditional estimators for the diffusion parameters, namely
µi and σi for i = 1, 2 are computed, using the observations in the corre-
sponding regime. The conditional maximum likelihood estimators are, for
regime 1:

µ̂1 =
1

n1∆

n−1∑
i=0

(Xi+1 −Xi)I{R̃i=1} (4.5)

and

σ̂2
1 =

1

n1∆

n−1∑
i=0

(Xi+1 −Xi − µ̂1∆)2I{R̃i=1} (4.6)

and for regime 2,

µ̂2 =
1

n2∆

n−1∑
i=0

ln

(
Xi+1

Xi

)
I{R̃i=j} +

σ̂2
2

2
(4.7)

with

σ̂2
2 =

1

n2∆

n−1∑
i=0

(
ln

(
Xi+1

Xi

)
− 1

n2∆

n−1∑
k=0

ln

(
Xk+1

Xk

)
I{R̃k=2}

)2

I{R̃i=2}, (4.8)

where nj =
∑n−1
i=0 I{R̂i=j}, j = 1, 2 is the number of observations in regime

j.
(3) In the end, both threshold estimators (lower and upper) are chosen as the

ones that maximize the conditional log-likelihood function, Cln(m̃, M̃):

Cln(m̃, M̃) =

n−1∑
i=0

{[
−1

2
ln(2πσ̂2

1∆)− (xi+1 − xi − µ̂1∆)2

2σ̂2
1∆

]
I{R̃i=1}

+

[
− ln(2πσ̂2

2∆)

2
− ln(xi+1)− 1

2σ̂2
2∆

(
ln

(
xi+1

xi

)
−
(
µ̂2 −

σ̂2
2

2

)
∆

)2
]
I{R̃i=2}

}
(4.9)
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that is, (
m̂, M̂

)
= argmax

(m̃,M̃)
Cln(m̃, M̃) . (4.10)

4.2. Double diffusion process with one threshold and delay. The estima-
tion procedure for the double diffusion process with one threshold and delay being
similar to the previous one is implemented in a very similar way:

(1) Consider d̃ and m̃ as fixed values for the delay and the threshold, we split

again the observations in two sets, R̃1(d̃, m̃) and R̃2(d̃, m̃) corresponding
to the first regime and the second regime, respectively. Naturally, we
limit our search procedure for d taking values in the set with the time
distances between any two observations, that is, taking only the values
p∆, p = 1, ..., n − 1 with ∆ = ti+1 − ti, i = 1, ..., n − 1 and having some
upper bond dmax. The regime classification is done by starting with the
initial observation X0 and if X0 ≤ m we consider X0+d in the first regime

(R̃0+d = 1) or else we consider X0+d in the second regime (R̃0+d = 2).
Next, we move to X1 and repeat the classification procedure for the obser-
vation X1+d, continuing until the end of the observations.

(2) Next and as before, we compute the conditional estimators for all the dif-
fusion parameters by using the observations in each regime.

(3) Finally, the delay and threshold estimates are chosen as the values that

maximize the Cln(d̃, m̃), that is,

Cln(d̃, m̃) =

n−1∑
i≥dmax

{[
−1

2
ln(2πσ̂2

1∆)− (xi+1 − xi − µ̂1∆)2

2σ̂2
1∆

]
I{R̃i=1}

+

[
− ln(2πσ̂2

2∆)

2
− ln(xi+1)− 1

2σ̂2
2∆

(
ln

(
xi+1

xi

)
−
(
µ̂2 −

σ̂2
2

2

)
∆

)2
]
I{R̃i=2}

}
(4.11)

Remark 4.1. Notice that, the first dmax observations are discarded since we do not
categorize those observation in any regime, we do this to have the same number of

terms in the sum in order to compare the Cln(d̃, m̃) function for different values of

d̃.

4.3. Simulated data. Next, we implement the estimation procedure for both
double diffusion models, different combinations on the parameters and for different
dimension of samples in order to observe the asymptotic behavior of the estima-
tors. To give some insight on the kind of trajectories we are studying, we present
in Figure 1 two simulated trajectories, one for the double diffusion process with
two thresholds and another for the double diffusion process with one threshold and
delay. In both trajectories, plotted in Figure 1, the first regime is Brownian motion
with drift and the second is geometric Brownian motion. The results are based
in the simulation of trajectories of the process, using the transition densities of
the Brownian motion with drift and the geometric Brownian motion, applying a
discretization step of ∆ = 0.01 and the regime classification is done using a double
grid for m and M with mesh 0.1.

In Tables 1 and 2 is presented the estimation procedure results for the double
diffusion process with two thresholds, for samples with dimension n = 500 and
n = 1000, respectively, and for different combinations of volatility, that is, for
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(a) Process with two thresholds, where
µ1 = 5, σ1 = 2, µ2 = −1, σ2 = 0.5,
m = 5 and M = 15.

(b) Process with one threshold and de-
lay, where µ1 = 5, σ1 = 2, µ2 = −1,
σ2 = 0.5, m = 10 and d = 30.

Figure 1. Simulated trajectories for the double diffusion process

different values of σ1 and σ2. We think that by keeping all the other parameters
fixed and by changing the volatility, that is, by increasing or decreasing the random
noise in the simulated trajectories, is the best way to get some conclusions regarding
the procedure effectiveness.

Table 1. Estimates for 100 replicates of 500 observations from
the double diffusion process with two thresholds (BMD vs GBM)
with m = 5, M = 15, µ1 = 5, µ2 = −1 and different values for σ

m̂ M̂ µ̂1 µ̂2 σ̂1 σ̂2

σ1 = 0.5 5.010 15.001 4.950 −1.165 0.497 0.495 mean
σ2 = 0.5 0.030 0.010 0.278 0.463 0.021 0.027 sd

σ1 = 1.0 5.052 14.994 4.879 −1.445 0.993 0.989 mean
σ2 = 1.0 0.081 0.024 0.532 0.935 0.040 0.070 sd

σ1 = 1.0 5.037 14.998 4.921 −1.148 0.993 0.496 mean
σ2 = 0.5 0.068 0.014 0.558 0.423 0.042 0.028 sd

σ1 = 0.5 5.012 15.000 4.942 −1.587 0.496 0.981 mean
σ2 = 1.0 0.033 0.000 0.275 1.055 0.020 0.062 sd

Table 2. Estimates for 100 replicates of 1000 observations from
the double diffusion process with two thresholds (BMD vs GBM)
with m = 5, M = 15, µ1 = 5, µ2 = −1 and different values for σ

m̂ M̂ µ̂1 µ̂2 σ̂1 σ̂2

σ1 = 0.5 5.019 15.000 4.989 −1.071 0.497 0.499 mean
σ2 = 0.5 0.039 0.000 0.202 0.269 0.014 0.019 sd

σ1 = 1.0 5.043 15.000 4.957 −1.166 0.994 0.995 mean
σ2 = 1.0 0.070 0.000 0.408 0.621 0.026 0.043 sd

σ1 = 1.0 5.046 14.999 4.958 −1.064 0.993 0.499 mean
σ2 = 0.5 0.054 0.001 0.402 0.265 0.028 0.018 sd

σ1 = 0.5 5.021 15.000 4.988 −1.288 0.498 0.990 mean
σ2 = 1.0 0.041 0.000 0.186 0.710 0.012 0.048 sd

Next, in Tables 3 and 4 is presented the estimation procedure results for the
double diffusion process with one threshold and delay, in the same conditions as
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before but with only one threshold at m = 10 and delay d = 30. For the simula-
tion of trajectories of the process we continue using the transition densities of the
underlying diffusions with a discretization step of ∆ = 0.01, and the regime classi-
fication is done using a grid for m with mesh 0.1 and with d ∈ {1, ..., 100}. As

Table 3. Estimates for 100 replicates of 500 observations from
the double diffusion process with one threshold and delay (BMD
vs GBM) with m = 10, d = 30, µ1 = 5, µ2 = −1 and different
values for σ

m̂ d̂ µ̂1 µ̂2 σ̂1 σ̂2

σ1 = 0.5 10.000 30.000 4.921 −1.226 0.498 0.497 mean
σ2 = 0.5 0.000 0.000 0.277 0.439 0.021 0.029 sd

σ1 = 1.0 10.001 29.990 4.928 −1.865 0.994 0.996 mean
σ2 = 1.0 0.010 0.100 0.584 0.796 0.035 0.066 sd

σ1 = 1.0 10.003 30.000 4.957 −1.307 0.993 0.499 mean
σ2 = 0.5 0.017 0.000 0.542 0.416 0.041 0.028 sd

σ1 = 0.5 10.000 30.000 4.908 −1.637 0.500 0.988 mean
σ2 = 1.0 0.000 0.000 0.276 0.772 0.018 0.063 sd

Table 4. Estimates for 100 replicates of 1000 observations from
the double diffusion process with one threshold and delay (BMD
vs GBM) with m = 10, d = 30, µ1 = 5, µ2 = −1 and different
values for σ

m̂ d̂ µ̂1 µ̂2 σ̂1 σ̂2

σ1 = 0.5 10.000 30.000 4.979 −1.153 0.499 0.499 mean
σ2 = 0.5 0.000 0.000 0.209 0.277 0.014 0.018 sd

σ1 = 1.0 10.000 30.000 4.951 −1.644 0.999 0.997 mean
σ2 = 1.0 0.000 0.000 0.410 0.600 0.025 0.045 sd

σ1 = 1.0 10.000 30.000 4.970 −1.190 0.998 0.500 mean
σ2 = 0.5 0.000 0.000 0.430 0.295 0.027 0.019 sd

σ1 = 0.5 10.000 30.000 4.980 −1.586 0.499 0.999 mean
σ2 = 1.0 0.000 0.000 0.201 0.572 0.014 0.044 sd

we can observe, the results obtained suggest that the estimation procedure gives
good results, getting good approximations for the true values of the parameters.
As expected, for higher values of volatility (higher σ) the standard deviation for
the estimates are larger but the standard deviation of the estimates decreases with
the increasing of k, that is, when the number of observations increases, suggesting
the consistency of the estimators.

4.4. Real data. We also discuss our estimation procedure results using real data.
In [ME16] we used the Akaike information criterion (AIC, see [Aka73]) and Bayesian
information criterion (BIC, see [Sch78]) to show that for a significant number of
companies chosen from the Nasdaq index, the double diffusion model with one
threshold, delay and the GBM in both regimes as the underlying process is prefer-
able to the single regime GBM for data adjustment. For some particular companies
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we also compared the predictive values of the two models. In this section, we con-
sider daily stock prices from the Broadcom Company (BRCM) and from the year of
2013, we then project the expected prices for the year of 2014, just like in [ME16],
but this time considering the possibility of different underlying processes in each
regime.
To compare the performance of the different models we compute the cumulative
absolute errors (AE) and the cumulative quadratic errors (QE) between the ex-
pected and the observed prices in 2014. In Figure 2 we plot the BRCM company’s
2014 daily prices with the expected prices of the processes with regimes and with-
out regimes. The expected prices are obtained recursively as the expected value of
Xi+1 given Xi, that is, E[Xi+1|Xi = xi] = xie

µ̂∆, i = 1, ..., 252, where µ̂ is µ̂1,n1

and µ̂2,n2
in the double diffusion models or µ̂n in the single diffusion models.

Figure 2. 2014 BRCM data with the expected evolution for the
prices with and without regimes

Notice that, as can be observed in Tables 5 and 6 for all criteria the double
diffusion model is always preferable to the single diffusion model, and from the
double diffusion model the one with better adjustment do the BRCM data is the
double diffusion model with GBM in the first regime and BMD in the second regime.

Table 5. Estimates for the for BRCM company data considering
the single diffusion process (model with a single regime)

µ σ AIC BIC AE QE

GBM −0.042 0.283 365.88 372.72 1894.20 21406.10

BMD −2.487 8.421 366.70 373.54 2057.32 24964.70

5. Conclusions

In this paper we studied auto-induced regime switching double diffusion models
with thresholds — and in the case of one threshold, with a delay — to the case of
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Table 6. Estimates for the for BRCM company data considering
the double diffusion process with one threshold and delay

m d µ1 σ1 µ2 σ2 AIC BIC AE QE

GBM vs GBM 33.8 8 0.353 0.228 −1.838 0.499 325.98 346.29 1060.90 7285.96
BMD vs BMD 32.8 19 10.830 5.637 −22.134 11.509 320.97 341.27 1144.26 8397.87
BMD vs GBM 32.8 19 10.830 5.637 −0.674 0.377 332.31 352.61 1143.69 8399.13
GBM vs BMD 33.8 8 0.353 0.228 −59.586 14.445 315.28 335.58 1057.37 7218.15

different functional forms for the drifts and volatilities and we gave conditions to
ensure the existence and uniqueness of this kind of processes as solutions of stochas-
tic differential equations. We also proposed estimators for the model thresholds and
proved their consistency when the regimes are known. Whenever the regimes are
unknown an alternative estimation procedure is proposed and a simulation study is
presented to ascertain the quality of the procedure. Finally, real data is used with
the implemented procedure to show that the double diffusion model can be useful
for price data fitting prediction and pricing.
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