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Abstract. In this paper we find the geometrical criterion of quasi-stability
for one class of problems in the membrane theory of convex shells.

1. Introduction

The static boundary problem for a thin elastic spherical shell with a piecewise
smooth boundary (a spherical dome) was first posed by Vlasov [1] and Golden-
weiser [2] in the framework of the momentless technical theory of shells. The math-
ematical formulation of this problem and its complete solution are given in [3, 4] us-
ing the method of generalized analytic functions [5]. As established in [6], the pat-
terns of solvability of the boundary problems for spherical domes and convex domes
of general form have essential differences. In the general case, the standard algo-
rithm for calculating the index of the corresponding Riemann–Hilbert boundary
condition for the momentless equilibrium equation does not allow one to obtain
effective formulas for its calculation. For some special classes of convex domes this
problem is solved in [7, 8]. In particular, for canonical domes the quasi-correctness
of the main boundary value problem is established. In the present paper we in-
troduce new concepts which allow us to give a complete picture of the solvability
of the quasi-correct problem for canonical domes and to refine the results [8].

2. The boundary problem R

Let S — be a simply connected surface with piecewise smooth edge L =
n∪

j=1

Lj

and corner points pi (i = 1,. . . , n). We assume that S is the inner part of the
surface S0 of strictly positive Gaussian curvature of regularity class W 3,r, r > 2,
and each of the curves Lj belongs to the class C1,ε, 0 < ε < 1. We define
a piecewise continuous vector field r = {α(s), β(s)} on S along L, allowing break
points of the first kind at pj , with tangent and normal components α(s), β(s)
(α2 + β2 = 1, β > 0), where s is a natural parameter, functions α(s), β(s) are
Hölder ones on every curve Lj .
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2 EVGENIY TYURIKOV

We introduce the following notations: Let J be the map of the surface S0

onto a complex plane z = x + iy, determined by the selection of the conformal
isometric parametrization (x, y) on S0, D = J(S) be a simply connected field

limited by the complex surface z with boundary Γ =
n∪

j=1

J(Lj) and the corner

points qi = J(pi).
Let us consider the following problem (problem R): find the complex-valued

solution w(z) of the equation (the bending function of surface S) in the field D

wz̄(z)−B(z)w̄(z) = F (z), z ∈ D, (2.1)

by the given Riemann–Hilbert boundary condition

Re
{
λ(ζ)w(ζ)

}
= γ(ζ), (2.2)

where

λ(ζ) = s(ζ)
[
β(ζ)t(ζ)− α(ζ)s(ζ)

]
, (2.3)

s(ζ) = s1(ζ) + is2(ζ), t(ζ) = t1(ζ) + it2(ζ), i
2 = −1, si (i = 1, 2) — are

the coordinates of the unit vector tangent to Γ at the point ζ, ti (i = 1, 2)
which is J-image of the tangent direction on the surface in the point J−1(ζ),
the values of the functions α(ζ), β(ζ) coincide with the values of functions α, β
in the corresponding point c = J−1(ζ), function γ(ζ) is Hölder one on every curve

Γj = J(Lj), wz̄ =
1

2
(wx + iwy), B(z), F (z) are functions of the class Lr(D),

r > 2 in the field D. In this case, the W 1,r-regular solutions w(z) are found that
are in the field D and that are continuously extendable to L, with the exception
of break points qi, in the neighbourhood of which the following assessment holds

true
∣∣w(z)∣∣ < const ·

∣∣z − qi
∣∣−αj

, 0 < αj < 1 denote the class of such solutions
by H∗.

3. The problem R for canonical domes

Let p be one of the corner points pi of the boundary L, k1, k2 are the main
directions in this point, k1, k2 are the main curvatures corresponding to them
(k1 > k2). The surface S is the canonical dome K if the direction of one of the
curves converging at each corner point coincides with the principal direction k2,

and the values νi of the interior angles at points pi meet the conditions 0 < νi 6
π

2
(i = 1, 2,. . . , n). The problem R for the canonical dome K is called canonical if
the field direction r at each point p is the direction of the generalized tangent [8]
at that point, i. e. r1 = r2, where ri (i = 1, 2) are the unilateral limits of the
vector-function r at the point p. Let us also introduce the notations: δ2i is the
ratio of the corresponding main curvatures at point pi (0 < δi < 1), p(νi) is the
corner point pi with an internal angle νi, T (νi) is the set (sector) of directions
of the generalized tangent at this point, T is the set of continuous vector fields r
on L, setting the direction of the generalized tangent at each corner point p(νj).
According to [8], the canonical problem R is quasi-correct for any field r ∈ T if
n > 2. The following formula for the index κ of the boundary condition (2.2) gives
a complete picture of the solvability of the problem R for any field r ∈ T .
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4. Properties of the boundary condition (2.2)

The problem R is a family of Rr problems (2.1)–(2.3), each of which is given by
the choice of vector field r. According to I. N. Vekua [5] we call problem Rr s-quasi
correct in class H∗ if it is unconditionally solvable in this class and its solution
depends on s real arbitrary constants (s is the order of quasi-correctness).

Definition 4.1. The canonical problem R is called quasi-resistant with respect to
the field of directions of the generalized tangent if Rr problem is s-quasi-correct
for any field r ∈ T .

Remark 4.2. By the theorem on solvability of the Riemann-Hilbert problem for
generalized analytic functions [5], the problem R is quasi-resistant iff index κ is
an invariant of the field r ∈ T .

Remark 4.3. The technique [6, 7] to calculate the index of a boundary condition
(2.2) uses the notion [9] of a singular node pi of problem (2.1), (2.2) or a singular
point qi = J(pi) of a discontinuity of boundary condition (2.2), in which ωi = 2πk,
where ωi is a jump of the function argument

Λ(ζ) = λ(ζ)[λ(ζ)]−1 (4.1)

at the discontinuity point qi, taken with an inverse sign, k is an integer. Taking

expression (2.3) for λ(ζ) and condition 0 < ν 6 π

2
, for the singular node q of the

canonical problem R we have
ω = 2π. (4.2)

Let p(ν) be the corner point of the boundary L, r ∈ T (ν). We call the direction
of the field r a singular direction of the generalized tangent at the point p(ν) if the
point q = J(p) of the discontinuity of the boundary condition (2.2) is a singular
node [9] of problem (2.2), (2.3).

Definition 4.4. Let the corner point p(ν) be called the unstable point of the
problem R if the sector T (ν) contains a singular direction.

Let us introduce the notation: ν, σ are unilateral limits at the corner point
p(ν) of the tangent singular vector to L, with the vector σ defining the principal
direction k2 on the surface at p, and the interior angle ν is defined by (−ν,σ).
The following is true

Lemma 4.5. If the direction of vector r at the point p(ν) coincides with the
direction of vector ν, then the point q = J(p) is a singular node of the boundary
condition (2.2) iff

ν = arccos
1

1 + δ
. (4.3)

Proof. For the proof, consider the vector-function ρ = {ρ1(ζ), ρ2(ζ)}, where
ρ1(ζ) + iρ2(ζ) = β(ζ)t(ζ)− α(ζ)s(ζ), denoting its unilateral limit by ρ(k) (k = 1,
2) at the point q. Let s1 = J(ν), s2 = J(σ), φ and ψ be the values of the angles
between the vectors of the pairs s1, s2 and ρ(1), ρ(2) respectively. Thus 0 < φ < π,
0 < ψ < 2π, and the value of ψ depends on the choice of the direction of the vector
r at the point p. Let us represent the jump ω at point q of the function arg Λ(ζ)
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given by equality (4.1) as ω = φ + ψ. Denote the value of the interior angle by
θ at the corner point q = J(p) of the boundary Γ. From the conditions of the
lemma it follows that ρ(1) = −s1, φ = ν, and by (4.2) the point q as a singular
node is defined by the equality ν + ψ = 2π. Using the known properties [5] of the
mapping J and evident geometric considerations we write this equality as follows:

2θ + ν = π (4.4)

or sin 2θ = sin ν.

From the well-known relation ([5, Ch. 2]) sin θ =

√
K

k1 · ks
· sin ν, where K is the

Gaussian curvature of the surface at the point p, ks is the normal curvature of the
surface in the direction of vector s1, as well as the Euler formula for the normal
curvature, we obtain

(1− δ) cos2 ν + 2
√
δ cos ν − 1 = 0, (4.5)

where (4.2) follows from.

Let r ∈ T (ν), τ be the value between vector r and vector ν (0 < τ 6 ν),
ω ≡ ω(ν, τ) be the jump of the function argument Λ at node q = J(p) given by
the direction r. The following is true

Lemma 4.6. If 0 < ν < arccos
1

1 + δ
then 2π < ω(ν, 0) < 3π.

Proof. The proof repeats the proof of Lemma 4.5 after replacing the equality (4.2)
by the inequality ω > 2π.

The consequence of lemma 4.6 is

Lemma 4.7. If 0 < ν < arccos
1

1 + δ
then 2π < ω(ν, τ) < 3π for any τ ∈ (0; ν).

Proof. For the proof, consider the corner point p(ν) and its corresponding value
ω = φ + ψ for the given r ∈ T (ν). Obviously, φ = π − θ is a function of the
argument ν, and ψ ≡ χ(ν, τ), where τ is the angle between vector ν and vector r,
0 6 τ 6 ν. So ω = ω(ν, τ), where ω(ν, 0) = π−θ+χ(ν, 0) > 2π. Due to the known
properties [5] of the mapping J for δ < 1 and obvious geometric considerations,
the function χ(ν, τ) increases monotonically with respect to the argument τ , which
proves the lemma.

Consider the corner point p(ν) and a vector σ ∈ T (ν) that defines the principal
direction k2 at point p of the surface S. The following is true

Lemma 4.8. If the direction of vector r at point p(ν) coincides with the direction
of vector σ, then point q = J(p) is a singular node of the boundary condition (2.2)
iff

ν = arcctg
√
t, (4.6)

where t is the only positive root of the equation

2

√
1 + δ2t

δ2 + t
+

1 + δ2t

δ2 + t
− 4

√
E

K(1 + t)2 + 4Et
=

1

t
. (4.7)
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Here E, K are the Eulerian difference and the Gaussian curvature of the surface
S at the point p.

Proof. On the surface S at point p(ν) let us consider the vectors ν, σ given above
and orthogonal unilateral vectors µ, τ (µ ⊥ ν, τ ⊥ σ) directed outside S. Let us
introduce the notations: s1 = J(ν), s2 = J(σ), n1 = J(µ), n2 = J(τ ) are the
vectors on the plane z at the point q = J(p), where n2 ⊥ s2; θ = π − (ŝ1 s2),

γ = (ŝ1 n2) where (â b) is the angle between a and b. Without violating generality
we assume that (n1,n2) > 0, and the vector ρ(1) divides the pair of vectors n1,

−n2. Let us denote µ = ( ̂−n2 ρ(1)). Then for the above introduced values of φ, ψ

at the point q = J(p) we have: φ =
π

2
+ γ, ψ =

3

2
π−µ, whence ω = 2π+ (γ−µ).

Thus, the direction of the vector σ at the point p(ν) is singular if

µ = γ. (4.8)

Note that γ =
π

2
− θ where θ is the value of the internal angle at the corner point

q of the boundary Γ. Consequently, the equality (4.8) is equivalent to

cosµ = sin θ. (4.9)

Since ρ(1) = −s1 cos ν + n1 sin ν the equality (4.9) takes the form

−(s1,n2) cos ν + (n1,n2) sin ν =
√
1− (s1,n1) sin 2ν · sin θ. (4.10)

To find (s1,n2), (s1,n1), (n1,n2) we use the reflection property [5] of J :

sin(ν̂ µ) =

√
K

kνkµ
sin(ŝ1 n1), (4.11)

where kν , kµ are the normal curvatures of the surface S at the point q in the
directions ν, µ respectively, s1 = J(ν), n1 = J(µ); K = k1 · k2 is the Gaussian
curvature of the surface at that point. By Euler’s formula [10] for orthogonal
directions ν and µ we have

kν = k1 sin
2 ν + k2 cos

2 ν, kµ = k1 cos
2 ν + k2 sin

2 ν,

where we get kν ·kµ = K+E2 sin2 2ν where E =
k1 − k2

2
is the Eulerian difference,

K = k1·k2 is the Gaussian curvature. As ν ⊥ µ, then equality (4.11) takes the form

sin(ŝ1 n1) =

√
K

kνkµ
, whence (s1,n1) = −

√
E sin 2ν√

K + E sin2 2ν
. If the equality (4.11)

is written for each of the pairs ν, k2 and µ, k1 of directions at the point p(ν),

then using the Euler formula we obtain (s1,n2) = − 1√
1 + α ctg2ν

, (n1,n2) =

ctgν√
α+ ctg2ν

, sin θ =
1√

1 + α ctg2ν
, α =

k2
k1

. After substituting these expressions

into equality (4.10) and cumbersome transformations we obtain equality (4.7), in
which t = ctg2ν, δ2 = α.

Let r ∈ T (ν), τ = (r̂ k2), ω ≡ ω(ν, τ) be the jump of the function argument
Λ(ζ) at node q = J(p). The following is true
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Lemma 4.9. If arcctg
√
t < ν 6 π

2
where t is the root of equation (4.7), then

π < ω(ν, 0) < 2π.

Proof. The proof repeats the proof of Lemma 4.8 after replacing the equality (4.8)
by the inequality γ < µ.

Lemma 4.10. If arcctg
√
t < ν 6 π

2
then π < ω(ν, τ) < 2π for any τ ∈ (0; ν).

Proof. The proof repeats the proof of Lemma 4.8 with the difference that the
function χ(ν, τ) in the representation for ψ is monotonically decreasing.

Remark 4.11. If the values γ1 and γ2 are given by lemma 4.5 and lemma 4.9
respectively at the corner point p of the canonical dome K, then γ1 < γ2. This can
easily be seen using obvious geometric considerations by comparing the equalities

(4.2) and (4.4) under the condition
k2
k1

< 1.

The following is true

Lemma 4.12. If p(ν) is an angular point of the boundary L, γ1 < ν < γ2, then
there is a single singular direction γ ∈ T (ν) of the generalized tangent. For the
jump ω at the point q = J(p) given by the vector r ∈ T (ν), one of the following
conditions holds:

1) π < ω < 2π, (r̂ ν) < (γ̂ ν);

2) 2π < ω < 3π, (r̂ σ) < (γ̂ σ),

where the direction σ gives the main direction to k2 at the point p.

Proof. The existence of the specified direction γ ∈ T (ν) follows from Lemmas 4.5–
4.10 and the representation of the jump ω at the point q = J(p). The singularity
is a consequence of the monotonicity of the function χ(ν, τ) with respect to the
argument τ (Lemma 4.7).

5. Formulation of results

Let pi (i = 1,. . . , n) be the corner points of the boundary L of the canonical
dome K, δi (0 < δi < 1) be the ratio of the principal curvatures of the surface at
these points. The following is true

Theorem 5.1. The corner point p(νi) is an unstable point of the problem R iff

arccos
1

1 + δi
6 νi 6 arcctg

√
ti,

where ti is the only positive root of the equation (4.7), where δ = δi, K = Ki,
E = Ei are Gaussian curvature and Eulerian difference of surface S at point pi
(i = 1,. . . , n).

Proof. The statement of the theorem is the consequence of Lemmas 4.5, 4.8, and
4.12. To simplify the formulation, we will assume that the number n of corner
points of the boundary satisfies the condition n > 2.

Theorem 5.2. The canonical problem R is quasi-resistant in the class H∗ with
respect to the vector field r ∈ T iff the boundary L contains no instability points.
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Proof. If the point p(ν) is not an instability point, then one of the following
conditions is satisfied:

1) 0 < ν <
1

1 +

√
k2
k1

;

2) arcctg
√
t < ν 6 π

2
, where t is the root of equation (4.7).

Let us consider the formula [4] for the index κ of the boundary condition (2.2) in
the class H∗:

κ = −4 +
n∑

i=1

(
1 +

[ωi

π

])
, (5.1)

where the jump ωi at the point qi = J(pi) is defined above. Let m and r be the
number of points (r+m = n), where conditions 1) and 2) are satisfied, respectively.
Then from (5.1) by virtue of Lemmas 4.7–4.10 we obtain:

κ = 3m+ 2r − 4.

In such a case the number s = 3m+2r− 3 is the order of quasi-correctness of the
problem R.

Let p(νi) be the unstable point of the problem R, γi be the singular direction
of the generalized tangent at the point qi, γi ∈ T (νi)). Following Lemma 4.12,
we partition the set of non-special directions of the sector T (νi) into two non-
intersecting classes T (1)(νi) T (2)(νi) as follows: r ∈ T (1)(νi) in case (r̂ νi) <
(γ̂i νi); r ∈ T (2)(νi) in case (r̂ σ) < (γ̂i σ). Let qi1 ,. . . , qim be the unstable
points of the problem R. Let us denote such a subset of the set T of directions of

the generalized tangent by T
(1)
i1,...,is

◦ T (2)
j1,...,jk

that r ∈ T (1)(νim) at each point qim
(m = 1,. . . , s) and r ∈ T (2)(νjm) at each point qjm (m = 1,. . . , k, qim ̸= qjm).

Theorem 5.3. The canonical problem R is quasi-resistant in the class H∗ with

respect to a vector field r ∈ T
(1)
i1,...,is

◦ T (2)
j1,...,jk

(im ̸= jr, m = 1,. . . , s, r = 1,. . . ,

k), s+ k = n.

The statement of the theorem follows from the formula (5.1) for the index κ
and conditions 1), 2) of lemma 4.12.
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