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Abstract. The article is devoted to the study of a nonlinear model of fluid
filtration based on the Oskolkov stochastic equation. This equation illus-

trates the dependence of the pressure of a viscoelastic incompressible fluid
(for example, oil), filtering in a porous formation, on an external load (for
example, the pressure of water injected through the wells into the formation).

Sufficient conditions for the existence of solutions of the investigated model
with the initial Cauchy condition are constructed.

Introduction

Let Ω ⊂ Rn be a bounded area with a boundary ∂Ω from the class C∞.
The mathematical model of nonlinear filtration can be described by the Cauchy–
Dirichlet problem for a nonclassical partial differential equation:

• phase variable x ∈ Ck(0, T ;M) is a solution to the nonlinear Oskolkov
equation

(λ−∆)xt − α∆x+ |x|p−2x = y, p ≥ 2, (0.1)

where the function x = x(s, t) corresponds to the pressure of the filtering
liquid; the parameters α ∈ R+, λ ∈ R, characterize viscous and elastic
fluid properties, respectively; the function x = x(s, t) responds to external
influences;

• the equation satisfies the initial Cauchy condition

x(s, 0) = x0(s), s ∈ Ω, (0.2)

• and the Dirichlet boundary condition

x(s, t) = 0, (s, t) ∈ ∂Ω× R+. (0.3)

This model describes the viscoelastic filtration process in case of incompressible
fluid (for example, oil) and is explored in the article. For the first time, equation
(0.1) was described by A.P. Oskolkov [1]. In general, equation (0.1) illustrates the
dependence of the pressure of a viscoelastic incompressible fluid (for example, oil),
filtering in a porous formation, on an external load (for example, the pressure of
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water injected through the wells into the formation). Equation (0.1) is not resolved
with respect to the highest time derivative, and have the form

Lẋ = Mx+N(x) + y, kerL ̸= {0}. (0.4)

Such equations are called Sobolev type equations [2, 3, 4]. The paper [5] was the
first to propose the phase space method, which is one of the effective methods to
study the Cauchy problem for the semilinear Sobolev type equations. A phase
space is a closure of the set of all admissible initial values x0 that are the vectors
for which there exists a unique (local) solution to the Cauchy problem.

Often in experiments, “noises” can occur. Then, to study physical models, it is
necessary to consider stochastic models. In the stochastic case, the mathematical
model of nonlinear filtering has the form

η(s, t) = 0, (s, t) ∈ ∂Ω× R+, (0.5)

(λ−∆)
o
η= α∆η − |η|p−2η, p ≥ 2. (0.6)

One of the well-known initial problems for the model under consideration is the
weakened (in the sense of S.G. Kerin) Cauchy problem

lim
t→0+

(η(t)− η0) = 0. (0.7)

Problem (0.5), (0.6) can be reduced to the stochastic equation

L
o
η= Mη +N(η) (0.8)

endowed with weakened Cauchy condition (0.7). Solution (0.8) η = η(t) is a
stochastic K-process. Stochastic K-processes η = η(t) and ζ = ζ(t) are considered
to be equal, if almost surely each trajectory of one of the processes coincides with
a trajectory of other process. Moreover, this derivative coincides with the classical

derivative if η is a function. The notion of the Nelson–Gliklikh derivative
o
η (t) was

introduced in the monograph [6]. Also, note that the Nelson–Gliklikh derivative is
based on the concept of the derivative in the mean introduced by E. Nelson [7]. In
order to study the Cauchy problem, we construct the spaces of K-“noises”, i.e. the
spaces of stochasticK-processes that are almost surely differentiable in the sense of
Nelson–Gliklikh. This approach is based on the paper [8]. Note that this approach
allows to transfer on the stochastic case the methods of functional analysis that
are applied in the deterministic case [9, 10, 11]. The work [12] considers various
mathematical models based on semilinear equations in evolutionary and dynamic
form in the deterministic case. The work [13] is the first attempt to study the
evolutionary model in the stochastic case. The dynamic model in the stochastic
case considers in this article. It should be noted that the main research methods
of this model are transformed from the deterministic case [12].

1. Stochastic K-processes. Phase space

Consider a complete probability space Ω ≡ (Ω,A,P) and the set of real
numbers R endowed with a Borel σ-algebra. According to [8], a measurable map-
ping ξ : Ω → R is called a random variable. The set of Gaussian random variables
having zero expectations (i.e. Eξ = 0) and finite variance forms Hilbert space L2
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(i.e. Dξ < +∞) with the inner product (ξ1, ξ2) = Eξ1ξ2, where E, D are the
expectation and variance of the random variable, respectively.

Consider a set I ⊂ R and the following two mappings. The first one, f : I →
L2 associates each t ∈ I with the random variable ξ ∈ L2. The second one,
g : L2×Ω → R, associates each pair (ξ, ω) with the point ξ(ω) ∈ R. The mapping
η : R × Ω → R of the form η = η(t, ω) = g(f(t), ω), where f and g are defined
above, is called a stochastic process. According to [8], a random process η is called
continuous, if almost surely all its trajectories are continuous. The set of continu-
ous stochastic processes forms a Banach space, which is denoted by C(I,L2). Fix
η ∈ C(I,L2) and t ∈ I and denote by N η

t the σ-algebra generated by the random
variable η(t). Denote Eη

t = E(·|N η
t ).

Definition 1.1. Suppose that η ∈ C(I,L2). The derivative

o
η= DSη =

1

2
(D +D∗) η = Dη (t, ·) +D∗η (t, ·) =

= lim
△t→0+

Eη
t

(
η (t+△t, ·)− η(t, ·)

△t

)
+ lim

△t→0+
Eη

t

(
η (t, ·)− η (t−△t, ·)

△t

)
is called the symmetric mean derivative, where the element of Nelson–Gliklikh
derivative Dη(t, ·) is a derivative on the right (on the left D∗η(t, ·)) of a random
process η at the point t ∈ (ε, τ), if the limit exists in the sense of a uniform
metric on R.

Denote the l-th Nelson–Gliklikh derivative of the random process η by
o
η
(l)

, l ∈
N. Note that the Nelson–Gliklikh derivative coincides with the classical derivative,
if η(t) is a deterministic function. Consider the space of “noises” Cl(I,L2), l ∈ N,
i.e. the space of random processes from C(I,L2), whose trajectories are almost
surely differentiable by Nelson–Gliklikh on I up to the order l inclusively.

Consider a real separable Hilbert space (H, < ·, · >) identified with its conjugate
space with the orthonormal basis {φk}. Each element x ∈ H can be represented

as x =
∞∑
k=1

< x,φk > φk. Next, choose a monotonely decreasing numerical

sequence K = {µk} such that
∞∑
k=1

µ2
k < +∞. Consider a sequence of random

variables {ξk} ⊂ L2 such that
∞∑
k=1

µ2
kDξk < +∞. Denote by HKL2 the Hilbert

space of random K-variables of the form ξ =
∞∑
k=1

µkξkφk. Moreover, there exists

a random K-variable ξ ∈ HKL2, if, for example, Dξk < const ∀k. Note that

the space HKL2 is a Hilbert space with the scalar product (ξ1, ξ2) =
∞∑
k=1

µ2
kEξ1kξ

2
k.

Consider a sequence of random processes {ηk} ⊂ C(I,L2) and define the H-valued
continuous stochastic K-process

η(t) =
∞∑
k=1

µkηk(t)φk, (1.1)
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if series (1.1) converges uniformly in the norm HKL2 on any compact set in I.
Consider the Nelson–Gliklikh derivatives of the random K-process

o
η (t) =

∞∑
k=1

µk

o
ηk (t)φk

inclusively in the right-hand side, and all series converge uniformly in the norm
HKL2 on any compact from I. Next, consider the space C1(I;HKL2) of continu-
ous stochastic K-processes and the space C1(I;HKL2) of stochastic K-processes
whose trajectories are almost surely continuously differentiable by Nelson–Gliklikh.

Consider dual pairs of reflexive Banach spaces (H,H∗) and (B,B∗) such that
the embeddings

H ↪→ B ↪→ H ↪→ B∗ ↪→ H∗ (1.2)

are dense and continuous. Let the operator L ∈ L(H;H∗) be linear, continu-
ous, self-adjoint, non-negative defined and Fredholm operator, the operator M ∈
L(H;H∗) be linear, continuous, symmetrical and 2-coercive and the operator N ∈
Ck(B;B∗), k ≥ 1, be dissipative. Suppose that span{φk, φk+1, ..., φk+l} = kerL,
and the following condition holds: {φk} ⊂ H.

Taking into account that the operator L is self-adjoint and Fredholm, we iden-
tify H ⊃ kerL ≡ cokerL ⊂ H∗. We use the subspace kerL in order to construct the
subspace [kerL]KL2 ⊂ HKL2 and, similarly, the subspace [coker L]KL2 ⊂ H∗

KL2.
Taking into account that embeddings (1.2) are continuous and dense, we con-
struct the spaces H∗

KL2 = [cokerL]KL2 ⊕ [im L]KL2 and B∗
KL2 = [cokerL]KL2 ⊕

[im L ∩ B∗]KL2.
We use the subspace coimL ⊂ H such that the subspace [coimL]KL2≡H1

KL2

and [kerL]KL2 ≡ H0
KL2, then HKL2 = H0

KL2 ⊕H1
KL2 and BKL2 = [kerL]KL2 ⊕

[coimL]KL2. The following lemma is correct, since the operator L is self-adjoint
and Fredholm.

Lemma 1.1. (i) Let L ∈ L(H;H∗) be a linear, continuous, self-adjoint, non-
negatively defined and Fredholm operator, then L ∈ L(HKL2;H

∗
KL2) is a linear,

continuous, self-adjoint, non-negatively defined and Fredholm operator, and

HKL2 ⊃ [kerL]KL2 ≡ [coker L]KL2 ⊂ H∗
KL2

if

H ⊃ kerL ≡ coker L ⊂ H∗.

(ii) There exists a projector Q of the space H∗
KL2 on [coim L]KL2 along

[coker L]KL2.
(iii) There exists a projector P of the space HKL2 on [kerL]KL2 along

[coimL]KL2.

Proof. By virtue of the construction of spaces and operators, the proof is based
on the idea of the proof for the deterministic case presented in [13]. �

Suppose that I ≡ (0,+∞). We use the space H in order to construct the
spaces of K-“noises”, spaces Ck(I;HKL2) and Ck(I;HKL2), k ∈ N. Consider
stochastic Sobolev type equation (0.8).
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Fix ω ∈ Ω. Let η = η(t), t ∈ I be a solution to equation (0.8), then η belongs
to the set

M =

 {η ∈ HKL2 : (I−Q)

(
Mη +N(η)

)
= 0}, if kerL ̸= {0};

HKL2, if kerL = {0}.
(1.3)

Definition 1.2. A stochastic K-process η ∈ Ck(I;HKL2) is called a solution
to equation (0.8), if almost surely all trajectories of η satisfy equation (0.8) for all
t ∈ I. A solution η = η(t) to equation (0.8) that satisfies initial value condition
(0.7) is called a solution to Cauchy problem (0.7), (0.8), if the solution satisfies
condition (0.7) for some random K-variable η0 ∈ HL2.

Theorem 1.1. Suppose that the set M is a simple Banach Ck-manifold at the
point η0 ∈ M. Then, there exists a solution η ∈ C1(I;HKL2) to Cauchy problem
(0.7), (0.8).

Proof. The proof is similar to the proof of the classical theorem on the existence
of a solution to the Cauchy problem [14]. Since equation (0.8) is an equation of
Sobolev type, the set M constructed earlier is a simple Banach C1-manifold ev-
erywhere, with the possible exception of the zero point. The idea of the proof is
based on the properties of the operators and the implicit function theorem. Let
us describe the main steps of the proof.

1. Let HL2 = H0L2⊕H1L2. Due to representation of the space H and properties
of the operator L, we have Lη = L(η1 + η0) = L1η

1, where L1 is restriction of the
operator to the subspace H1L2.

2. Since the set M is a simple Banach C1-manifold at the point η0, there exists
a diffeomorphism δ ∈ C1(O1

0;O
M
0 ), where OM

0 and O1
0 are neighborhoods of the

points η0 ∈ M and η10 ∈ Pη0, respectively.

3. In the neighborhood of O0
0, equation(0.8) is reduced to the regular equation

η̇ = F (η), where F = δ
′

η1L
−1
1 Q(M + N) : η → TηM, then F ∈ C1(OM

0 ;T0M),

where T0M is the restriction of the tangent bundle TM to OM
0 . By virtue of the

classical theorem on the existence of a unique solution to Cauchy problem [14], we
obtain the unique local solvability of problem (0.7), (0.8).

4. In coimL, introduce the norm |η|2 = ⟨Lη, η⟩ . Applying the dissipativity
property of operators, we obtain

1

2

d

dt
|η|2 =

1

2

d

dt
|η − v|2 ≤ ⟨Mη +N(η)− (Mv +N(v)), η − v⟩ ≤ 0,

where v = v(s) is a solution to the stationary equation Mv +N(v) = 0, which in
turn is by a stationary solution to equation (0.8), η = η(t) is a solution to equation
(0.8). Hence, by virtue of the uniqueness of the solution to Cauchy problem (0.7),
(0.8), we obtain extension of the solution to the interval (0,+∞). �
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2. Stochastic mathematical model of nonlinear filtration

Consider Dirichlet problem (0.5) for Oskolkov stochastic equation (0.6) with
weakened (in the sense of S.G. Kerin) Cauchy problem (0.7). Consider the func-

tional spaces N =
◦

W 1
2 (Ω), B = Lp(Ω), H =L2(Ω) defined in the domain Ω. The

operators L, M and N are defined as follows:

⟨Lη, z⟩ = E

∫
Ω

(ληz +∇η · ∇z) ds ∀ η, z ∈ HL2,

⟨Mη, z⟩ = −E

∫
Ω

α∇η · ∇z ds ∀ η, z ∈ HL2,

⟨N(η), z⟩ = −E

∫
Ω

|η|p−2ηz ds ∀ η, z ∈ BL2,

where ⟨·, ·⟩ is the dot product in HL2. We denote by {φk} the sequence of eigen-
functions of the homogeneous Dirichlet problem for the Laplace operator (−∆)
in the domain Ω, and denote by {λk} the corresponding sequence of eigenvalues
numbered in non-decreasing order taking into account the multiplicity.

Lemma 2.1. [13] (i) For all λ ≥ −λ1, the operator L ∈ L(HL2;H
∗L2) is self-

adjoint, Fredholm and non-negative definite.
(ii) For all α ∈ R+, the operator M ∈ L(HL2;H

∗L2) is symmetric and the
operator (−M) is 2-coercive.

(iii) The operator N ∈ C1(BL2;B
∗L2) is dissipative and the operator (−N) is

p-coercive.

Let λ ≥ −λ1

kerL =

{
{0}, if λ > −λ1;

span{φ1}, if λ = −λ1.

Then

im L =

{
H∗L2, λ > −λ1;

{η ∈ H∗L2 : ⟨η, φ1⟩ = 0}, if λ = −λ1,

coim L =

{
HL2, if λ > −λ1;

{η ∈ HL2 : ⟨η, φ1⟩ = 0}, if λ = −λ1.

Hence the projectors

P = Q =

{
I, if λ > −λ1;

I− ⟨·, φ1⟩ , if λ = −λ1.

Let us construct the set

M =

{
HL2, λ > −λ1;

{η ∈ HL2 : E
∫
Ω

(−α∆η + |η|p−2η)φ1 ds = 0, λ = −λ1,

Theorem 2.2. Let λ ≥ −λ1, α ∈ R+, n = 2, ∀p or n ≥ 3, 2 ≤ p ≤ 2 +
4

n− 2
,

then
(i) the set M is a simple Banach C1-manifold modelled by the space coim L;
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(ii) for any η0 ∈ M, T ∈ R+, there exists a unique solution η ∈ Ck(I;HKL2) to
problem (0.5) – (0.7).

Proof. Statement (i) was obtained in [13]. Statement (ii) is a consequence of The-
orem 1.1 and Lemma 2.1.
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