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Abstract. In this paper, the problem of optimal control of solutions to the
Showalter – Sidorov problem for a high-order Sobolev type equation with

additive ”noise” is investigated. The existence and uniqueness of a strong
solution to the Showalter – Sidorov problem for this equation are proved.
Sufficient conditions for the existence and uniqueness of an optimal control
of such solutions are obtained. For this, we built the space of ”noises”. For

the differentiation of additive ”noise”, we use the derivative of a stochastic
process in the sense of Nelson – Gliklikh. The article also discusses the
stochastic Boussinesq – Love model.

Introduction

Recently, research on Sobolev type equations has expanded considerably. The
complete Sobolev type equation

Av(n) = Bn−1v
n−1 + . . .+B0v + f (0.1)

with the assumption kerA ̸= {0} has been studied in different aspects for n ≥ 1 [1
– 6]. Here the operators A,Bn−1, . . . , B0 are linear and continuous, acting from
Banach space V to Banach space G, absolute term f = f(t) models the external
force.

The lack of equation (0.1) with the deterministic absolute term is that, in
natural experiments, the system is subject to random perturbation, for example
in the form of white noise. Currently, stochastic ordinary differential equations
with various additive random processes are being actively studied [7].

The first results concerning stochastic Sobolev type equations of the first order
can be found in [8]. They are based on the extension of the Ito – Stratonovich –
Skorokhod method to partial differential equations [9]. In [10] there was studied
a stochastic Sobolev type equation of higher order

A
o
η
(n)

= Bn−1

o
η
(n−1)

+ . . .+B0η + w, (0.2)
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2 ALYONA A. ZAMYSHLYAEVA AND OLGA N. TSYPLENKOVA

where w is the stochastic process. It is required to find the random process η(t),
satisfying (in some sense) equation (0.2) and the initial conditions

o
η
(m)

(0) = ξm, m = 0, 1, . . . , n− 1, (0.3)

where ξm are given random variables.
At first, w was understood as white noise, which is a generalized derivative of

the Wiener process. Later, a new approach to the investigation of equation (0.2)
appeared [11] and is being actively developed [12, 13], where ”white noise” means
the Nelson – Gliklikh derivative of the Wiener process.

Of particular interest is the optimal control problem. Consider the stochastic
Sobolev type equation

A
o
η
(n)

= Bn−1

o
η
(n−1)

+ . . .+B0η + w + Cu, (0.4)

where η = η(t) is a stochastic process,
o
η is the Nelson – Gliklikh derivative [14] of

process η, w = w(t) is a stochastic process that responds for external influence; u
is unknown control function from the Hilbert space U of controls.

Supply (0.4) with initial Showalter – Sidorov condition

P

(
o
η
(m)

(0)− ξm

)
= 0, m = 0, ..., n− 1. (0.5)

We investigate the optimal control problem consisting searching a pair (η̂, û), where
η̂ is a solution to problem (0.4), (0.5), and the control û belongs to Uad ⊂ U, and
satisfies the relation

J(η̂, û) = min(η,u)J(η, u). (0.6)

Here J(η, u) is some specially constructed penalty functional and Uad is a closed
convex set in the Hilbert space U of controls.

Let D ⊂ Rn be a bounded domain with C∞ boundary ∂D. In the cylinder
D × R consider the Boussinesq – Love equation

(λ−∆)xtt = α(∆− λ′)xt + β(∆− λ′′)x+ u+ ω (0.7)

with the boundary condition

x(s, t) = 0, (s, t) ∈ ∂D × I. (0.8)

Equation (0.7) describes longitudinal vibrations of an elastic rod subjected to an
external load with inertia taken into account; the negative values of the parameter
λ do not contradict the physical meaning of the problem.

1. The spaces of ”noises”. Stochastic K-processes. Phase Space

Let Ω ≡ (Ω,A,P) be a complete probability space, R be the set of real
numbers endowed with the Borel σ-algebra. A measurable mapping ξ : Ω → R
is called a random variable. The set of random variables having zero expectation
(Eξ = 0) and finite variance forms a Hilbert space L2 with inner product (ξ1, ξ2) =
Eξ1ξ2. Let A0 be a σ-subalgebra of σ-algebra A. Construct subspace L0

2 ⊂ L2 of
random variables measurable with respect to A0. Denote the orthoprojector by
Π : L2 → L0

2. Let ξ ∈ L2, then Πξ is called a conditional expectation of the
random variable ξ, and is denoted by E(ξ|A0).
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OPTIMAL CONTROL OF SOLUTIONS TO SHOWALTER – SIDOROV PROBLEM... 3

Consider a set I ⊂ R and the following two mappings. The first one, f :
I → L2, associates to each t ∈ I the random variable ξ ∈ L2. The second one,
g : L2 × Ω → R, associates to each pair (ξ, ω) the point ξ(ω) ∈ R. The mapping
η : R × Ω → R given by η = η(t, ω) = g(f(t), ω), where f and g are defined
earlier, is called a stochastic process. Therefore, the stochastic process η = η(t, ·)
is a random variable for each fixed t ∈ I, i.e. η(t, ·) ∈ L2, and η = η(·, ω) is
called a (sample) path for each fixed ω ∈ Ω. The stochastic process η is called
continuous, if all its paths are almost sure continuous (i.e. for almost all ω ∈ Ω
the paths η(·, ω) are continuous). The set of continuous stochastic processes forms
a Banach space, which is denoted by C(I,L2). Fix η ∈ C(I,L2) and t ∈ I, and
denote by N η

t the σ-algebra generated by the random variable η(t). For brevity,
Eη

t = E(·|N η
t ).

Definition 1.1. Let η ∈ C(I,L2). A random variable

o
η=

1

2

(
lim

∆t→0+
Eη

t

(
η(t+∆t, ·)− η(t, ·)

∆t

)
+ lim

∆t→0+
Eη

t

(
η(t, ·)− η(t−∆t, ·)

∆t

))
is called a Nelson–Gliklikh derivative

o
η of the stochastic process η at point t ∈ I,

if the limits exist in the sense of the uniform metric on R.

LetCl(I, L2), l ∈ N, be a space of stochastic processes almost sure differentiable
in the sense of the Nelson–Gliklikh derivative on I up to order l inclusively. The
spaces Cl(I, L2) are called the spaces of differentiable “noises”. Let I = {0}∪R+,
then a well–known example [15, 16] of a vector in the space Cl(I, L2) is given by a
stochastic process that describes the Brownian motion in Einstein–Smoluchowski
model

β(t) =
∞∑
k=1

ξk sin
π

2
(2k + 1)t+ ξ0t,

where the independent random variables ξk ∈ L2 are such that the variances

Dξk = [π2 (2k + 1)]−2, k ∈ {0} ∪ N. As shown in [14],
o

β (t) = β(t)
2t , t ∈ R+.

Now let V be a real separable Hilbert space with orthonormal basis {φk}.
Denote by VKL2 the Hilbert space, which is a completion of the linear span of
random variables

η =

∞∑
k=1

√
λkξkφk

by the norm

∥η∥2V =
∞∑
k=1

λkDξk.

Here the sequence K = {λk} ⊂ R+ is such that
∞∑
k=1

λk < +∞, {ξk} ⊂ L2 is a

sequence of random variables. The elements of VKL2 will be called random K-
variables. Note that for existence of a random K-variable η ∈ VKL2 it is enough
to consider a sequence of random variables {ξk} ⊂ L2 having uniformly bounded
variances, i.e. Dξk ≤ const, k ∈ N.
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4 ALYONA A. ZAMYSHLYAEVA AND OLGA N. TSYPLENKOVA

Next, consider interval I = (ε, τ) ⊂ R. Mapping η : (ε, τ) → VKL2 given by

η(t) =
∞∑
k=1

√
λkξk(t)φk,

where the sequence {ξk} ⊂ C(I, L2), is called a V-valued continuous stochastic K-
process, if the series on the right-hand side converges uniformly on any compact
in I in the norm ∥ · ∥V, and paths of process η = η(t) are almost sure continuous.
Continuous stochastic K-process η = η(t) is called continuously Nelson–Gliklikh
differentiable on I, if the series

o
η (t) =

∞∑
k=1

√
λk

o

ξk (t)φk

converges uniformly on any compact in I in the norm ∥ · ∥V, and paths of process
o
η=

o
η (t) are almost sure continuous. Let C(I,VKL2) be a space of continuous

stochastic K-processes, and Cl(I,VKL2) be a space of continuously differentiable
up to order l ∈ N stochastic K-processes. An example of a stochastic K-process,
which is continuously differentiable up to any order l ∈ N inclusively, is a Wiener
K-process [15, 16]

WK(t) =
∞∑
k=1

√
λkβk(t)φk,

where {βk} ⊂ Cl(I, L2) is a sequence of Brownian motions on R+. Similarly,
if G is a real separable Hilbert space with orthonormal basis {φk}, the spaces
C(I,GKL2) and Cl(I,GKL2), l ∈ N, are constructed. Note also that spaces
Cl(I, L2), C

l(I,VKL2) and Cl(I,GKL2), l ∈ N, are called the spaces of differen-
tiable K-“noises” [15].

2. Stochastic Sobolev type equations of high order with relatively
p-bounded operators

By B⃗ denote the pencil formed by operators Bn−1, . . . B0. The sets

ρA(B⃗) =
{
µ ∈ C : (µnA− µn−1Bn−1 − . . .− µB1 −B0)

−1 ∈ L(GKL2,VKL2)
}

and σA(B⃗) = C\ρA(B) are called an A-resolvent set and an A-spectrum of pencil of

operators B⃗. The operator-functionRA
µ (B⃗) = (µnA−µn−1Bn−1−. . .−µB1−B0)

−1

with the domain ρA(B⃗) is called an A-resolvent of pencil B⃗.

Definition 2.1. The pencil B⃗ is called polynomially bounded with respect to oper-
ator A (or polynomially A-bounded) if there exists a constant a ∈ R+ such that for

each µ ∈ C the inequality |µ| > a implies the inclusion RA
µ (B⃗) ∈ L(GKL2,VKL2).

Introduce an additional condition∫
γ

µkRA
µ (B⃗)dµ ≡ 0, k = 0, n− 2. (2.1)

Construct the set σA
n (B⃗) = {µ ∈ C : µn ∈ σA(B⃗)}; it is compact in C due to the

compactness of the A-spectrum σA(B⃗) of pencil B⃗. If the pencil B⃗ is polynomially
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OPTIMAL CONTROL OF SOLUTIONS TO SHOWALTER – SIDOROV PROBLEM... 5

A-bounded, and condition (A) is satisfied, then the following operators

P =
1

2πi

∫
γ

µn−1RA
µ (B⃗)Adµ ∈ L(VKL2), Q =

1

2πi

∫
γ

µn−1ARA
µ (B⃗)dµ ∈ L(GKL2)

are projectors. Here, γ = {µ ∈ C : |µ| = r, rn > a}. Put V0
KL2(V

1
KL2) =

kerP (im P ), G0
KL2(G

1
KL2) = kerQ(imQ). Thus, the spacesVKL2 andGKL2 can

be decomposed into direct sumsVKL2=V0
KL2

⊕
V1

KL2 andGKL2=G0
KL2

⊕
G1

KL2,
whereas V0

KL2 ⊃ kerA. By Ak(Bk
m) define the restriction of operator A(Bm) onto

Vk
KL2, m = 0, n− 1, k = 0, 1.

Lemma 2.2. The operators Ak(Bk
m) ∈ L(Vk

KL2;G
k
KL2), k = 0, 1,m = 0, n− 1;

moreover, there exist the operators (B0
0)

−1 ∈ L(G0
KL2;V

0
KL2) and (A1)−1 ∈

L(G1
KL2;V

1
KL2).

Construct the operatorsH0 = (B0
0)

−1A0,Hm = (B0
0)

−1Bn−m
0 ∈ L(V0

KL2),m =
1, n− 1, Sm = (A1)−1B1

m ∈ L(V1
KL2),m = 1, n− 1.

Definition 2.3. Introduce the family of operators {K1
q ,K

2
q , . . . ,K

n
q } as follows:

Ks
0 = O, s ̸= n,Kn

0 = I,
K1

1 = H0, K
2
1 = −Hn−1, . . . ,K

s
1 = −Hn+1−s, . . . ,K

n
1 = −H1,

K1
q = Kn

q−1H0, K
2
q = K1

q−1 −Kn
q−1Hn−1, . . . , K

s
q = Ks−1

q−1 −Kn
q−1Hn+1−s, . . . ,

Kn
q = Kn−1

q−1 −Kn
q−1H1, q = 2, 3, . . .

Definition 2.4. The point ∞ is called:

( i) a removable singular point of the A-resolvent of pencil B⃗, if K1
1 = K2

1 =
. . . = Kn

1 ≡ O;

( ii) a pole of order p ∈ N of the A-resolvent of pencil B⃗, if Ks
p ̸≡ O, for some

s, but Ks
p+1 ≡ O for any s = 1, n;

( iii) an essentially singular point of the A-resolvent of pencil B⃗, if Kn
p ̸≡ O for

any p ∈ N.

Consider the linear stochastic Sobolev type equation of higher order (0.2), where
the absolute term w will be indicated later. Supplement (0.2) with the initial
Showalter – Sidorov condition (0.5) which is the generalization of the condition
(0.3) [3] and has advantages over the Cauchy condition in the case of Sobolev type
equations. In addition to (0.5), we will consider the weakened (in the sense of S.G.
Krein) Showalter – Sidorov condition

lim
t→0+

P

(
o
η
(m)

(t)− ξm

)
= 0, m = 0, ..., n− 1. (2.2)

The K-random process η ∈ Cn(I,GKL2) is called a classical solution of equa-
tion (0.2), if a.s. all its trajectories satisfy equation (0.2) for some K-random
process w ∈ C(I,GKL2). The solution η = η(t) of (0.2) is called the classical
solution of problem (0.2), (2.2) if a.s. condition (2.2) is also fulfilled. The classical
solutions of problems (0.2), (0.5) and (0.2), (0.3) are defined analogously.

Consider firstly problem (0.3) for the homogeneous equation

A
o
η
(n)

= Bn−1

o
η
(n−1)

+ . . .+B0η. (2.3)
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6 ALYONA A. ZAMYSHLYAEVA AND OLGA N. TSYPLENKOVA

In this case (and only in this case) consider I = R.

Definition 2.5. The mapping V • ∈ C∞(R;L(VKL2)) is called a propagator of
equation (2.3), if for all v ∈ VKL2 the vector-function η(t) = V (t)v is a solution
of (2.3).

Theorem 2.6. Let the pencil B⃗ be polynomially (A, p)-bounded, and condition
(A) be satisfied. Then, the family of operators

Vm(t) =
1

2πi

∫
γ

RA
µ (B⃗)(µn−m−1A−µn−m−2Bn−1−...−Bm+1)e

µtdµ, m = 0, n− 1,

define the propagators of equation (2.3).

Lemma 2.7. Vm ∈ C∞(R;L(VKL2;V
1
KL2)), (Vm(t))

(l)
t

∣∣∣
t=0

= O for m ̸= l and

(Vm(t))
(m)
t

∣∣∣
t=0

= P, where P is the projector in VKL2 on V1
KL2 along V0

KL2.

Definition 2.8. The set P ⊂ VKL2 is called the phase space of equation (2.3) if
(i) a.s. every trajectory of the solution η = η(t) lies in P pointwise, i.e. η(t) ∈ P

a.s. for all t ∈ R;
(ii) for all random variables ξm ∈ L2(Ω;P), m = 0, 1, . . . , n− 1, there exists a

unique solution η ∈ Cn(I,VKL2) of (0.3), (2.3).

Theorem 2.9. If the pencil B⃗ is polynomially A-bounded, condition (A) is satis-
fied and ∞ is a pole of order p ∈ {0} ∪ N of A-resolvent, then the phase space of
equation (2.3) coincides with the image of projector P .

Corollary 2.10. Under the conditions of theorem 2.9 the solution of (0.3), (2.3)
is the Gaussian K-random process if the random variables ξm, m = 0, 1, . . . , n−1,
are Gaussian.

Lemma 2.11. Let the pencil B⃗ be polynomially (A, p)-bounded, and condition
(A) be satisfied. Then for all independent random variables ξm ∈ VKL2, m =
0, 1, . . . , n−1, there exists a.s. a unique solution η ∈ Cn(I,VKL2) of (0.5), (2.3),

represented in the form η(t) =
n−1∑
m=0

Vm(t)ξm, t ∈ R. If in addition ξm, m =

0, 1, . . . , n− 1 take values only in V1
KL2, then this solution is a unique solution of

(0.3), (2.3).

Go back to equation (0.2) and notice that now I = [0, τ). Let the K-random
process w = w(t), t ∈ [0, τ) be such that

(I−Q)w ∈ Cp+n(I,G0
KL2) and Qw ∈ C(I,G1

KL2), (2.4)

then the K-random process

η(t) = −
p∑

q=0

Kn
q (B

0
0)

−1 o
w

(q)
(t) +

t∫
0

Vn−1(t− s)(A1)−1Qw(s)ds (2.5)

is a unique classical solution of (0.5), (0.2) with ξm ∈ V0
KL2, m = 0, ..., n− 1.
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OPTIMAL CONTROL OF SOLUTIONS TO SHOWALTER – SIDOROV PROBLEM... 7

Theorem 2.12. Let the pencil B⃗ be polynomially (A, p)-bounded, and condition
(A) be satisfied. For any K-random process w = w(t) satisfying (2.4), and for all
independent random variables ξm ∈ VKL2, m = 0, 1, . . . , n− 1, independent with
w, there exists a.s. a unique solution η ∈ Cn(I,GKL2) of (0.2), (0.5), represented
in the form

η(t) =
n−1∑
m=0

Vm(t)ξm −
p∑

q=0

Kn
q (B

0
0)

−1 o
w

(q)
(t) +

t∫
0

Vn−1(t− s)(A1)−1Qw(s)ds.

(2.6)

However, ”white noise” w(t) =
o

WK (t) = (2t)−1WK(t) does not satisfy con-
dition (2.4), so it cannot stand on the right-hand side of (0.2). One approach
to solving this problem is proposed in [8, 17]. To use this approach, convert the
second term on the right-hand side of (2.5) as follows:

t∫
ε

Vn−1(t− s)(A1)−1Q
o

WK (s)ds = −Vn−1(t− ε)(A1)−1QWK(ε)+

+
t∫
ε

d
dtVn−1(t− s)(A1)−1WK(s)ds = −Vn−1(t− ε)(A1)−1QWK(ε)+

+
t∫
ε

Ṽn−2(t− s)(A1)−1WK(s)ds,

(2.7)

where Ṽn−2(t) =
1

2πi

∫
γ

µRA
µ (B⃗)Aeµtdµ. This integration by parts makes sense for

any ε ∈ (0, t), t ∈ R+ due to definition of the Nelson – Gliklikh derivative. Letting
ε → 0 in (2.7) we get

t∫
0

Vn−1(t− s)(A1)−1Q
o

WK (s)ds =

t∫
0

Ṽn−2(t− s)(A1)−1WK(s)ds. (2.8)

Corollary 2.13. Let the pencil B⃗ be polynomially (A, p)-bounded, and condition
(A) be satisfied, Wk ∈ C(I,G1

KL2). Let I ⊂ R+. For all independent random
variables ξm ∈ VKL2, m = 0, 1, . . . , n−1, independent from WK , there exists a.s.
a unique solution η ∈ Cn(I,GKL2) of the problem (0.5) for the equation

A
o
η
(n)

= Bn−1η
n−1 + . . .+B0η+

o

WK , (2.9)

given by

η(t) =
n−1∑
m=0

Vm(t)ξm +

t∫
0

Ṽn−2(t− s)(A1)−1QWK(s)ds.

Theorem 2.14. Let the pencil B⃗ be polynomially (A, p)-bounded, and condition
(A) be satisfied. For all random variables ξm ∈ VKL2, independent from WK ,
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8 ALYONA A. ZAMYSHLYAEVA AND OLGA N. TSYPLENKOVA

there exists a.s. unique solution η = η(t) of (2.2), (2.8) given by

η(t) =
n−1∑
m=0

Vm(t)ξm +

t∫
0

Ṽn−2(t− s)(A1)−1QWK(s)ds−

−
p∑

q=0

Kn
q (B

0
0)

−1(I−Q)
o

W
(q+1)

K (t).

3. Strong solutions

Let L2(I;VKL2) be a space of stochastic processes whose paths are square-
integrable on I.

Definition 3.1. A vector function

η ∈ Hn(VKL2) = {η ∈ L2(I;VKL2) :
o
η
(n)

∈ L2(I;VKL2)}
is called a strong solution of equation (0.2), if it a.s. turns the equation to identity
almost everywhere on interval (0, τ). A strong solution η = η(t) of equation (0.2)
is called a strong solution to problem (0.2), (0.5) if condition (0.5) a.s. holds.

This is well defined by virtue of the continuity of the embedding Hn(VKL2) ↪→
Cn−1(I;VKL2). The term “strong solution” has been introduced to distinguish
a solution of equation (0.2) in this sense from the solution (2.6), which is usually
said to be “classical”. Note that the classical solution (2.6) is also a strong solution
to problem (0.2), (0.5).

Let us construct the spaces

Hp+n(GKL2) = {v ∈ L2(I;GKL2) :
o
v
(p+n)

∈ L2(I;GKL2), p ∈ {0} ∪ N}.
The space Hp+n(GKL2) is a Hilbert space with inner product

[v, w] =

p+n∑
q=0

∫ τ

0

⟨
v(q), w(q)

⟩
GKL2

dt.

Let w ∈ Hp+n(GKL2). Introduce the operators

A1w(t) = −
p∑

q=0
Kn

q (B
0
0)

−1(I−Q)
o
w

(q)
(t),

A2w(t) =
t∫
0

Vn−1(t− s)(A1)−1Qw(s)ds, t ∈ (0, τ)

and the function

k(t) =
n−1∑
m=0

Vm(t)ξm.

Lemma 3.2. Let the operator B be (A, p)-bounded, p ∈ {0} ∪ N. Then
(i) A1 ∈ L(Hp+n(GKL2);H

n(VKL2));
(ii) for arbitrary ξm ∈ VKL2, m = 0, n− 1 the vector function k ∈ Cn([0, τ);VKL2);
(iii) A2 ∈ L(Hp+n(GKL2);H

n(VKL2)).
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OPTIMAL CONTROL OF SOLUTIONS TO SHOWALTER – SIDOROV PROBLEM... 9

Theorem 3.3. Let the operator B be (A, p)-bounded, p ∈ {0} ∪ N. For any K-
random process w = w(t) satisfying (2.4), and for all independent random variables
ξm ∈ VKL2, m = 0, 1, . . . , n − 1, independent from w, there exists a.s. a unique
strong solution to problem (0.2), (0.5).

4. Optimal control

Let U be a real separable Hilbert space with orthonormal basis {φk}.
Consider the Showalter – Sidorov problem (0.5) for linear inhomogeneous Sobolev
type equation with additive ”noise” (0.4).

Introduce the control space

o

H
p+n

(U) = {u ∈ L2(0, τ ;U) : u
(p+n) ∈ L2(0, τ ;U), u

(q)(0) = 0, q = 0, p},
p ∈ {0} ∪ N. It is a Hilbert space with inner product

[v, w] =

p+n∑
q=0

∫ τ

0

⟨
v(q), w(q)

⟩
U
dt.

In the space
o

H
p+n

(U) we single out a closed convex subset
o

H
p+n

∂ (U), which will
be called the set of admissible controls.

Definition 4.1. A vector function û ∈
o

H
p+n

∂ (U) is called an optimal control of
solutions to problem (0.4), (0.5), if relation (0.6) holds.

We need to prove the existence of a unique control û ∈
o

H
p+n

∂ (U), minimizing
the penalty functional

J(η, u) = µ

n∑
q=0

∫ τ

0

||
o
η
(q)

−
o
η̃
(q)

||2VKL2
dt+ ν

p+n∑
q=0

∫ τ

0

⟨
Nq

o
u
(q)

,
o
u
(q)

⟩
U

dt. (4.1)

Here µ, ν > 0, µ+ ν = 1, Nq ∈ L(U), q = 0, 1, . . ., p+n, are self-adjoint positively
defined operators, and η̃(t) is the target state of the system.

Theorem 4.2. Let the operator B be (A, p)-bounded, p ∈ {0} ∪ N. Then for
arbitrary w ∈ Hp+n(GKL2) there exists a unique optimal control of solutions to
problem (0.4), (0.5).

Proof. By Theorem 5, for arbitrary w ∈ Hp+n(GKL2), ξm ∈ VKL2, and
u ∈ Hp+n(U) there exists a unique strong solution η ∈ Hn(GKL2) to problem
(0.4), (0.5), given by

η(t) = (A1 +A2)(w + Cu)(t) + k(t), (4.2)

where the operators A1, A2 and the vector function k are defined in Lemma 3.2.
Fix w ∈ Hp+n(GKL2) and ξm ∈ VKL2, and consider function (4.2) as a map-

ping D : u 7→ η(u). The mapping D : Hp+n(U) → Hn(GKL2) is continuous.
Therefore, the penalty functional depends only on u : J(η, u) = J(u).

We write out the functional (4.1) in the form

J(u) = µ ∥η(t, u)− η̃∥2Hn(VKL2)
+ ν[v, u],
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where v(q)(t) = Nqu
(q)(t), q = 0, . . . , p+ n. Hence it follows that

J(u) = π(u, u)− 2λ(u) + µ ∥η̃ − η(t, 0)∥2Hn(VKL2)
,

where

π(u, u) = µ ∥η(t, u)− η(t, 0)∥2Hn(VKL2)
+ ν[v, u]

is a bilinear continuous coercive form on Hp+n(U) and

λ(u) = µ ⟨η̃ − η(t, 0), η(t, u)− η(t, 0)⟩Hn(VKL2)

is a linear continuous form on Hp+n(U). Therefore, the assumptions of theorem in
[18, p. 13, Theorem 1.1] are satisfied. The proof of the theorem is complete.

5. The Boussinesq – Love Equation

Consider the Boussinesq – Love equation (0.7) with the boundary condition
(0.8). To reduce problem (0.7), (0.8) to equation

A
o
η
(2)

= B1

o
η +B0η + ω + Cu (5.1)

put

V = {x ∈ W l+2
2 (D) : x(s) = 0, s ∈ ∂D}, G = W l

2(D),

where W l
2(D) is the Sobolev space. Define the operators A, B1 and B0 by the

formulas A = λ − ∆ , B1 = α(∆ − λ′), B0 = β(∆ − λ′′), and C = I. For each
l ∈ {0} ∪ N, A,B1, B0 ∈ L(VKL2,GKL2).

By {λk}(= σ(∆)) denote the eigenvalues of the Dirichlet problem for the
Laplace operator ∆ numbered in nonascending order with multiplicities, and
by {φk} denote the corresponding eigenfunctions orthonormal in L2(D). Since
{φk} ⊂ C∞(D), we have

µ2A− µB1 −B0 =

∞∑
k=1

[(λ− λk)µ
2 + α(λ′ − λk)µ+ β(λ′′ − λk)] < φk, · > φk,

where < ·, · > is the inner product on L2(D).
The following assertion was proved in [19].

Lemma 5.1. Let one of the following conditions be satisfied:
(i) λ ̸∈ σ(∆);
(ii) (λ ∈ σ(∆)) ∧ (λ ̸= λ′);
(iii) (λ ∈ σ(∆)) ∧ (λ = λ′) ∧ (λ ̸= λ′′).

Then the pencil B⃗ is polynomially A-bounded.

In cases (i), (iii) the pencil B⃗ is (A, 0)-bounded. In case (ii) ∞ is essentially
singular point. Therefore we exclude thus case from further considerations.

Consider the Showalter – Sidorov theorem∑
λ ̸=λk

< φk, ξ(s, 0)− ξ0(s) > φk = 0,
∑
λ̸=λk

< φk, ξt(s, 0)− ξ1(s) > φk = 0. (5.2)

By Theorem 3.3, we have the following assertion.
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Theorem 5.2. Let one of assumptions (i) and (iii) of Lemma 5.1 be satisfied.
Then for arbitrary ξ0, ξ1 ∈ VKL2 and ω ∈ H2(VKL2), there exists a unique
strong solution of problem (0.8), (5.2) for the equation

(λ−∆)
o

ξtt= α(∆− λ′)
o

ξt +β(∆− λ′′)ξ + ω,

which can be represented in the form

ξ(t) = −
∑
λ=λk

< φk, ω(t) >

β(λ′′ − λk)
φk+

+
∑

′
[
µ1
k(λ− λk) + α(λ′ − λk)

(λ− λk)(µ1
k − µ2

k)
eµ

1
kt +

µ2
k(λ− λk) + α(λ′ − λk)

(λ− λk)(µ2
k − µ1

k)
eµ

2
kt

]
< φk, ξ0 > φk+

+
∑

′ e
µ1
kt − eµ

2
kt

(µ1
k − µ2

k)
< φk, ξ1 > φk+

∑
′

t∫
0

eµ
1
k(t−τ) − eµ

2
k(t−τ)

(λ− λk)(µ1
k − µ2

k)
< φk, ω(τ) > φkdτ,

t ∈ (−T, T ),

where the prime on the sums indicates the absence of terms with indices k such
that λ = λk.

Let us proceed to the optimal control problem. We fix 0 < τ < T and introduce
the control space

H2(U) = {u ∈ L2(0, τ ;U) : ü ∈ L2(0, τ ;U)}.
In the space H2(U), we single out a closed convex subset H2

∂(U), which will be
the set of admissible controls.

Theorem 5.3. Let the assumptions of Theorem 5.2 be satisfied. Then for arbitrary
ξ0, ξ1 ∈ VKL2 there exists a unique optimal control û ∈ H2

∂(U) of solutions of
problem (0.8), (5.2) for Eq. (0.7) minimizing the functional (4.1).
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