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Abstract. We construct a stochastic model underlying a system of nonlin-
ear parabolic equations with cross diffusion similar to the SKT system. This

model is presented as a system of stochastic differential equations with coef-
ficients depending on distributions of the SDE solution functionals. We state
conditions of existence and uniqueness of the derived SDE system and the

original PDE system and study their solutions. We discuss as well stability
and instability of stationary solutions of the Cauchy problem for the SKT
type system.

Introduction

Stochastic nature of nonlinear parabolic equations attracted the attention of
various authors [1], [2], [3] and others since the seminal paper by McKean [4]. See
the recent monograph [5] for a number of references.

On the other hand, in spite of the fact that systems of nonlinear parabolic
equations with cross-diffusion arise in various fields such as physics, chemistry,
population dynamics and so on, they attracted mainly the attention of people
working in PDE theory (see [6], [7] and references there). Though terminology of
these works includes such terms as diffusion and cross-diffusion there are not so
many results concerning stochastic diffusion processes underlying these systems.
Let us mention papers [8], [9], where the authors describe stochastic dynamics
of a population composed of M competitive types of individuals, assuming that
each type has its own spatial and ecological dynamics depending on the spatial
and genetic characteristics of the whole population. Assuming that the motion
of each individual (of a given type) is driven by a diffusion process on Rd whose
coefficients depend on different individuals around they show that when a size
of population goes to infinity, the dynamics of the population is described by a
system of non-local parabolic equations with cross diffusion. The limiting system
is called a mean-field type model. Thus, the stochastic dynamics of a population
is described by an individual-based system.

In contrast to this approach we are interested in stochastic model for the limit-
ing parabolic system itself or in stochastic model underlying a mean field model.
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Stochastic models underlying a number of systems with cross-diffusion and systems
of the reaction-diffusion type were constructed in our previous papers [10]-[12].

In this paper we derive a suitable stochastic model associated with the SKT sys-
tem [13] in one dimensional space, study a solution of this system and investigate
effect of the cross diffusion on instability of the stochastic model.

1. Stochastic counterparts of a PDE system with cross-diffusion

Consider a population consisting of individuals belonging to two distinct species
(or two classes in the same species) of individuals which interact through diffusion
and competition.

A system to describe a dynamics of this kind was proposed by Shigesada,
Kawasaki, and Teramoto [13], to study spatial segregation of interacting species.

We are looking for concentrations (number density) um(t, y) ≥ 0 of individuals
of two competing species, m = 1, 2, y ∈ R, t ∈ [0, T ].

The dynamics of the population is described by the the Cauchy problem for a
system of parabolic equations

∂um

∂t
=

1

2

∂2

∂y2
[M2(y, u)um] + cm(y, u)um, um(0, y) = u0m(y), (1.1)

where

M2
m(y, u) = αm + αm1u1 + αm2u2 > 0, cm(y, u) = cm − cm1u1 − cm2u2

and αm, αmq, cm, cmq,m, q = 1, 2, are positive constants.
Our aim is to construct a weak and a mild solutions of the Cauchy problem

(1.1) in terms of a stochastic model associated with this system.
To this end we interpret this system as a system of nonlinear forward Kol-

mogorov equations for densities of some Markov processes and derive SDEs for
these Markov processes.

Let us mention that a specific feature of systems of this type is the following.
Although we interpret a solution of this system as a family of densities of some
Borel probability measures on R the nonlinearity of the system prevents to write
immediately the system of PDEs for required measures themselves. Equations of
the type (1.1) are called singular equations. We consider here the Cauchy problem
for a system of regular equations of the form

∂µm

∂t
=

1

2

∂2

∂y2
[M2

m[y, µ]µm] + cm[y, µ]µm, µm(0, dy) = µ0m(dy), (1.2)

where M2
m[y, µ] = αm +

∑2
q=1

∫
R
αmqρ(y − x)µq(dx), cmq[y, µ] = cm−

−
∑2

q=1

∫
R
cmqρ(y − x)µq(dx) and ρ is a mollifier.

To state the problem strictly we need a number of functional spaces. Let Cb(R)
be the space of bounded continuous real functions on R and C0(R), C∞

0 (R) be the
spaces continuous and infinitely differentiable real functions on Rd with compact
supports respectively. Let W r,p(R) be the Sobolev space of order r , where r, p are
integers. For Euclidian space X we denote by S(X) Schwartz space consists of C∞

- functions whose derivatives (including the function itself) decay at infinity faster
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SDES AND PDES WITH CROSS-DIFFUSION 3

than any power and by S′(X) its dual called the space of tempered distributions.
Recall that D(X) = C∞

0 (X) ⊂ S(X).
We say that bounded Borel measures µm,m = 1, 2 are weak solutions of the

Cauchy problem (1.2), if for any h ∈ S([0, T )×R), t ∈ [0, T ] integral equalities∫ T

0

∫
R

µm(s, dy)

[
∂h(s, y)

∂s
+

1

2
M2

m[y, µ(s)]
1

2

∂2

∂y2
h(s, y)

]
ds+ (1.3)

+

∫ T

0

∫
R

µm(s, dy)h(s, y)cm[y, µ(s)]ds+

∫
R

um(0, dy)h(y)

hold.
Our aim is to construct stochastic models for solutions of the Cauchy problem

(1.2). To this end we fix a probability space (Ω,F , P ) and denote by wm(t) ∈
R,m = 1, 2 independent Wiener processes defined on this probability space. Next
we consider a system of stochastic equations

dξm(t) = Mm(ξm(t), u(t, ξm(t)))dwm(t), ξm(0) = ξ0m, m = 1, 2, (1.4)

where ξ0m are independent random variables with distribution P (ξ0m ∈ dy) =
µ0m(dy) which do not depend on wm(t).

Since um(t, y) are unknown functions we have to find additional relations to
derive a closed system. A natural way is to use the Feynman-Kac formula that is
add to (1.4) a relation∫

R

h(y)µm(t, dy) = E

[
h(ξm(t)) exp

{∫ t

0

cm(ξm(s), u(s, ξm(s)))ds

}]
, (1.5)

where µm(t, dy) = um(t, y)dy.
In contrast to the case of backward Kolmogorov equations we require that (1.5)

would be valid for any test function h ∈ Cb(R).
To justify this approach assume that (1.5) is valid for any h ∈ Cb(R), t ∈ [0, T ]

and let cm(x, u) be bounded. Then for each m = 1, 2 and t the right hand side
of (1.5) is a bounded linear functional on the space Cb(R) and hence by the Riesz
theorem it defines a unique measure µm(t, dy).

Assume that there exist Markov processes ξm(t),m = 1, 2, satisfying (1.4),
denote by Pu

m(0, x, t, dy) = P{ξm(t) ∈ dy|ξm(0) = x} their transition probabilities
and set µm(t, dy) = P{ξm(t) ∈ dy} = um(t, y)dy.

We say that functions um(t, ·) define a mild solution of (1.1), if for any h ∈
Cb(R), t ∈ [0, T ] and m = 1, 2. integral identities∫

R

h(y)um(t, y)dy =

∫
R

h(y)

∫
R

u0m(x)dxPu
m(0, x, t, dy)+

+

∫ t

0

∫
R

(∫
R

h(y)Pu
m(s, z, t, dy)

)
cm(z, u(s, z))um(s, z))dzds (1.6)

hold.
As a result we may consider a closed system (1.4), (1.6).
To make the problem more tractable we consider a mollification of the system

(1.1) that is the system (1.2). To this end we choose a mollifier ρ : R → R, that is
a compactly supported smooth function on R such that

∫
R
ρ(x)dx = 1 such that
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limϵ→0 ρϵ(x) = limϵ→0 ϵ
−dρ(xϵ ) = δ(x) and set [ρ∗µ](t, y) =

∫
R
ρ(y − x)µ(t, dx) =∫

R
ρ(y − x)u(t, x)dx provided that the measure µ(t, dy) has a density u(t, y).
Next we consider a system

dξm(t) = Mm(ξm(t), v(t, ξm(t)))dwm(t), ξm(0) = ξ0m, (1.7)

with P{ξm(0) ∈ dy} = µ0m(dy), and

vm(t, y) = E

[
ρ(y − ξm(t)) exp

{∫ t

0

cm(ξm(s), v(s, ξm(s)))ds

}]
. (1.8)

If we assume that there exists a solution to (1.7), (1.8), then we can verify that
functions vm are connected with a weak solution um of the Cauchy problem

∂um

∂t
=

1

2

∂2

∂y2
[M2

m[y, ρ ∗ u]um] + cm[y, ρ ∗ u]um, um(0, y) = u0m(y), (1.9)

by a relation vm(t, y) = ρ ∗ um(t, y) =
∫
R
ρ(y − x)um(t, x)dx, m = 1, 2.

Note that (1.9) can be treated a a system for densities of bounded Borel mea-
sures µm(t, dy) satisfying the Cauchy problem

∂µm

∂t
=

1

2

∂2

∂y2
[
M2[y, ρ ∗ µ]µm

]
+cm[y, ρ∗µ])µm, µm(0, dy) = µ0m(dy),m = 1, 2.

(1.10)
To investigate the system (1.7), (1.8) introduce some additional notations. De-

note by C = C([0, T ];R) the space of continuous real-valued functions on [0, T ]
and consider the process ξm(t, ω) satisfying (1.7) as a value ωm(t) of ωm ∈ C at
t ∈ [0, T ]. We denote by F and Ft 0 ≤ t ≤ T the smallest σ-algebras generated by
{ξm(τ), 0 ≤ τ ≤ T} and {ξm(τ), 0 ≤ τ ≤ t} respectively. In addition we denote by
κm(dω) a probability measure on C generated by the canonical process ξm(t, ω).

Let Pr(C) denote the space of Borel probability measures on C with finite mo-
ment of order r = 1, 2 and

Wr
T (µ, µ1) = inf

{(∫
R×R

∥x− y∥rγ(dx, dy)
) 1

r

|Π∗
xγ = ν1,Π

∗
yγ = ν2

}
,

where Πx(x, y) = x,Πy(x, y) = y for all x, y ∈ R and ∥µ∥r = [
∫
R
|y|rµ(dy)] 1r .

Consider the space Bp = B([0,∞);Pr) of all Pr -valued Borel measurable func-
tions µ(·) satisfying an estimate supt∈[0,T ] ∥µ(t)∥r < ∞ for all T < ∞.

Now we may consider (1.9) and relations

uκm
m (t, y) = E

[
ρ(y − ξm(t)) exp

{∫ t

0

cm[ξm(s), uκm ]ds

}]
(1.11)

as a closed system of equations, where κm is a distribution of the canonical process
ξm(t).

Applying the Ito formula we can verify that if ξm(t), uκm
m (t, y) satisfy (1.7),

(1.11) then the functions vm(t, y) = [ρ ∗ um](t, y) =
∫
R
ρ(y − x)um(t, x)dx satisfy

the Cauchy problem for a system

∂vm(t, y)

∂t
=

1

2

∂2

∂y2
(M2

m(t, y, [ρ ∗ v])vm) + cm(t, y, [ρ ∗ v])vm, vm(0, y) = v0m.
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SDES AND PDES WITH CROSS-DIFFUSION 5

Formally, if we choose ρ = δ in (1.11) and consider a solution (ξm, uκm
m (t, y)) of

(1.7), (1.11), we can verify that uκm
m satisfy (1.1). To this end we apply the Ito

formula to the function ϕ(x) and the process ξm(t) and verify that the functions
uκm
m , which are the densities of the measures µm, defined in (1.5) satisfy (1.1) in

the weak sense.
To investigate (1.7), (1.11). we rewrite (1.11) in the form

vκm
m (t, y) =

∫
Cm

ρ(y − ωm(t))exp

{∫ t

0

cm[ξ(s), v]ds

}
dκm(ωm), (1.12)

where κm is the law of the process ξm(·) on the canonical space Cm = C. Note that
(1.12) describe the links between the probability measures κm on the canonical
spaces Cm and the functions vκm

m defined on [0, T ]×R. Sometimes to make notations
more short we omit upper index κm.

When cm[y, µ] = cm(y) −
∑d

q=1 cmq[y, µq] ≡ 0 we deduce from (1.12) that

vm(t, y) =
∫
R
ρ(y − x)µm(t, dx) = [ρ ∗ µ](t, y), where µm(t) is the marginal law of

the process ξ(t) = (ξ1(t), ξ2(t)) ∈ R×R . In a general case we consider the system
of equations

ξm(t) = ξ0m +

∫ t

0

Mm(ξm(s), uκm(s, ξm(s)))dwm(s), (1.13)

uκm
m (t, y) =

∫
C
ρ(y − ξm(t, ω))G(t, ξm(ω)), uκ)κm(dω), L(ξm) = κm, (1.14)

where G(t, ξm(ω), µ) = exp
{∫ t

0
cm[ξm(s, ω), µκ]ds

}
and ξm are the canonical pro-

cesses ξm : C → C defined by ξm(t, ωm) = ωm(t), t ≥ 0, ωm ∈ C and κm(dω) =
L(ξm).

Along with (1.13),(1.14) we consider equations

ξm(t) = ξ0m +

∫ t

0

Mm[ξm(s), ρ ∗ µκ]dwm(s), (1.15)

where µκm is defined by∫
R

ϕ(y)µκ
m(t, dy) =

∫
C
ϕ(ξm(t, ω))G(t, ξm(ω), [ρ ∗ µκ]]κm(dω), (1.16)

for all ϕ ∈ Cb(R) and L(ξm) = κm.
Let us verify that equations (1.15), (1.16) and (1.13), (1.14) are equivalent.

Theorem 1.1. Assume that functions αmk, cmk are smooth functions of polyno-
mial growth. The existence of a solution to the system (1.15), (1.16) is equivalent
to the existence of a solution to (1.13),(1.14). In other words, given a solution
(ξm, µκ

m) of (1.15), (1.16) we define a couple (ξm, uκ
m) satisfying (1.13), (1.14),

where uκ
m = ρ ∗ µκ

m. On the other hand given (ξm, uκ
m) satisfying (1.13), (1.14)

there exist measures µκ
m such that (ξm, µκ

m) solve (1.15), (1.16).

Proof. Assume that there exists a couple (ξm(t), uκ
m(t, y)) satisfying (1.15), (1.16)

and uκ
m(t, y) is bounded for t ∈ [0, T ]. As far as ρ ∈ L1(R), the Fourier transform

F (uκ
m)(t, z) of the function uκ

m has the form

F (uκ
m)(t, z) = F (ρ)(z)gκm(t, z), (1.17)
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where

gκm(t, z) =

∫
C
e−izξm(t,ω)e

∫ t
0
cm[ξm(s,ω),[ρ∗µκ]]dsκm(dω).

By Lebesgue dominated convergence theorem we deduce that the functions gκm(t, z)
are continuous in z for t ∈ [0, T ]. In addition cm(u1, u2) are bounded for bounded
um,m = 1, 2. Remind that given a sequence of complex numbers βk and a sequence
x = (x1, . . . xk), xk ∈ R one has for all y ∈ R and any integer n

n∑
k=1

n∑
q=1

βkβ̄qe
−iz[xk−xq] =

(
n∑

k=1

βke
−izxk

)(
n∑

q=1

βk e−iz·xq

)
= |

d∑
k=1

e−iz·xk |2,

and thus gκm is nonnegative definite. Then by the Bochner theorem there exists a
unique measure µm(t) on R such that

gκm(t, z) =
1

2π

∫
R

e−izyµκ
m(t, dy). (1.18)

The finite non-negative Borel measure µκ
m(t, dy) can be treated as an element of

the tempered Schwartz distribution space S ′(R) such that F−1(gκm)(t) = µκ
m(t)

and for any ϕ ∈ S(R) the estimate |
∫
R
ϕ(y)µκ

m(t, dy)| ≤ ∥ϕ∥∞µ(t, R) < ∞ holds.
As a result we get from (1.17) and (1.18) that F (uκ

m)(t, ·) = F (ρ)F (µκ
m(t)) and

hence

uκ
m(t, ·) = ρ ∗ µκ

m(t). (1.19)

To verify that (1.18) yields (1.16) we consider ⟨ϕ, µm(t)⟩ =
∫
R
ϕ(y)µm(t, dy), ϕ ∈

S(R) and note that

⟨ϕ, µm(t)⟩ = ⟨ϕ, F−1(gκm)⟩ = ⟨F−1(ϕ), gκm⟩ =

=

∫
R

F−1(ϕ)(z)

(∫
C
e−izξm(t,ω)e

∫ t
0
cm(ξκm(s,ω),u)dsκm(dω)

)
dz.

Next applying the Fubini theorem we have

⟨ϕ, µm(t)⟩ =
∫
C

(∫
R

F−1(ϕ)(z)e−izξm(t,ω)dz

)
e
∫ t
0
cm([ξκm(s,ω)),ρ∗µ]dsκm(dω)

and finally taking into account (1.18) we obtain

⟨ϕ, µm(t)⟩ =
∫
C
ϕ(ξm(t, ω))e

∫ t
0
cm([ξκm(s,ω)),ρ∗µ]dsκm(dω)

which coincides with (1.16).
To prove that (1.16) yields (1.14) assume that (ξm(t), µm) satisfy (1.15), (1.16)

and set uκ
m(t, y) = [ρ ∗ µκ

m](t, y). Since µκ
m is finite, we deduce that (1.14) holds

setting in (1.16) ϕ = ρ(x− ·). �
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2. Existence and uniqueness theorem

Consider a system

∂µm

∂t
=

1

2
∆[M2

m[y, µ]µm] + cm[y, µ]µm, µ0m = µ0m. (2.1)

One may show that one can treat a system (2.1) as a scalar equation with
respect to a measure µ(t) defined on the Borel σ-algebra B(R × R) of the space
R×R [14].

Our aim is to construct µ(t) ∈ M such that µ(t) = (Law(ξ1(t)), Law(ξ2(t))),
where ξm(t),m = 1, 2, satisfy

dξm(t) = M [ξm(t), µ(t)]dwm(t), ξm(0) = ξ0m. (2.2)

We say that condition C 2.1 holds if

|Mm[y, µ]| ≤ Kα[1 + ∥y∥], |cm[y, µ]| ≤ C.

As above, to make the system closed we add to (2.2) relations

um(t, y) = E[ρ(y − ξm(t)) exp

{∫ t

0

cm([ξm(s), µ(s)]ds

}
.

Assume that we are given a probability measure κ ∈ P(C × C) with marginals
κm and consider equations

um(t, y) =

∫
C
ρ(y − ξm(t, ω))e

∫ t
0
cm[ξm(s,ω),ρ∗u]dsκm(dω). (2.3)

We may treat the relations (2.3) as a possibility to associate a probability mea-
sure κ on C×C with marginals κm,m = 1, 2 to the function u(x, y) = (u1(x), u2(y)).

Lemma 2.1. Given a probability measure κ ∈ P2(C×C) with marginals κm(t),m =
1, 2 assume that there exists a unique solution u = (u1, u2) of (2.4). Then functions
um(t) are bounded over a certain interval [0, T ].

Proof. Denote by Ku
m(t) a function for which an estimate supy∈R|um(t, y)| ≤

Ku
m(t),m = 1, 2, holds and set Ku(t) = max(Ku

1 (t),K
u
2 (t)). Consider a process

ηm(t)

ηm(t) = 1 +

∫ t

0

cm(u1(s, ξm(s)), u2(s, ξm(s)))ηm(s)ds

and note that

|ηm(t)| ≤ 1 +

∫ t

0

[cm + cm1|u1(s, ξm(s))|+ cm2|u2(s, ξm(s))|]|ηm(s)|ds

and by the Gronwall lemma we get

|ηm(t)| ≤ exp{
∫ t

0

[cm + cm1|u1(s, ξm(s))|+ cm2|u2(s, ξm(s))|]ds.

This allows to estimate supy |um(t, y)| = Ku
m(t)

Ku
m(t) ≤ Kρ

2∑
m=1

|ηm(t)| ≤ Kρ

2∑
m=1

exp{
∫ t

0

[cm + cm1K
u
1 (s) + cm2K

u
2 (s)]ds.
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Set C = max(c1, c2), β = maxm,q∈{1,2} cmq and γ(t) = Ku
1 (t) +Ku

2 (t). Then

γ(t) ≤ 2Kρ exp{
∫ t

0

[C + βγ(s)]ds.

Note that this integral equation is equivalent to the Cauchy problem

dγ(t)

dt
= [C + γ(t)]γ(t), γ(0) = 2Kρ

The solution of this Cauchy problem has the form

γ(t) =
2CKρe

Ct

C + 2Kρ − 2KρeCt

and we can see that if t ∈ [0, T1] where T1 < 1
C ln

(
1 + C

2Kρ

)
then γ(t) ≤ Ku <

∞. �

Theorem 2.2. Given a probability measure κ ∈ P(C)×P(C) there exists a unique
bounded Lipschitz continuous solution u = (u1, u2) of (2.3).

Proof. Let us start with a priori estimates of solutions to the system (2.3). Namely,
let us fix a measure κ on the space C2 = C([0, t];R) × C([0, t];R) with marginals
κm and assume that there exists functions um satisfying (2.1).

Denote by Nm = {ζ : ∥ζ∥∞,1 =
∫
C supt∈[0,T ] ∥ζ(t, ω)∥κm(dω) < ∞}. Denote by

N = {ζ : ∥ζ∥∞,1 =
∫
C×C supt∈[0,T ] ∥ζ(t, ω)∥κ(dω) < ∞}.

The spaces (Nm, ∥ · ∥∞,1) are Banach spaces. Consider an equivalent norm
∥ · ∥K∞,1 in the space Nm of the form ∥Y ∥K∞,1 = Eκm [sups≤T e

−Ks∥Y (s)∥].
We define a map Γκm

m : C → C([0, T ]×R;R) by

Γκm
m (ζ)(t, y) =

∫
C
ρ(y − ξm(t, ω))Gm(t, ζ)κm(dω),

with Gm(t, ζ) = exp
{∫ t

0
cm(u(s, ξm(s, ω)))ds

}
and a map

Ψm : C([0, T ]×R;R) → Cm by Ψm(f)(t, ω) = f(t, ωm(t)).

Hence Ψm ◦ Γκm : C → Cm.
Set Ψ = (Ψ1,Ψ2) and Ψ ◦ Γ : C2 → C2 with Ψm ◦ Γm : Cm → Cm and rewrite

(2.1) in the form

uκ = (Γκ ◦Ψ)(uκ) with uκ
m = (Γκm

m ◦Ψm)(uκ). (2.4)

Assume that there exists a fixed point Y κ ∈ C2 for Ψ ◦Γκ such that Y κm
m ∈ Cm.

Then we have Ψ ◦ Γκ(Y κ) = Y κ. Finally, choosing uκ = Γκ(Y κ) we obtain

uκm
m = (Γκm

m ◦Ψm)(uκm). (2.5)

Hence uκ = (uκ1
1 , uκ2

2 ) satisfies to Γκ(Y κ) = Γκ ◦Ψ ◦ Γκ(Y κ) and solves (2.1).
In order to prove the uniqueness of a solution to (2.1) we assume on the contrary

that there exist two solutions uκ = (Γκ)(Y κ) and gκ = (Γκ)(Zκ) of this system
and for Y κ = u(t, y), Zκ = g(t, y) for any (t, y) ∈ [0, T ] × Rd we estimate the
difference

λm(t) = [Γκm
m (Zκm

m )− Γκm
m (Y κm

m )](t, y) =

16
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=

∫
Cm

ρ(y − ξm(t, ω))[Gm(t, Zκm(ω))−Gm(t, Y κm(ω))κm(dω)].

Note that the process ηm(t) = Gm(t, Zκm(ω)) satisfies an equation

ηm(t) = 1 +

∫ t

0

[cm − cm1(u
κm
1 (s, ξm(s)))− cm2(u

κm
2 (s, ξm(s)))]ηm(s)ds

and estimate a difference E∥ηm(t)− η1m(t)∥, where η1m(t) = Gm(t, Y κm(ω)),

E∥ηm(t)− η1m(t)∥ ≤

≤ Lc

∫ t

0

eKsE[∥Zκm
1 (s)− Y κm

1 (s)∥+ ∥Zκm
2 (s)− Y κm

2 (s)∥]e−Ksds

Keeping in mind that supx∈R |ρ(x)| ≤ Kρ we deduce that

λm(t) ≤ KρLce
KuT

∫
C

∫ t

0

eKs[∥Zκm
1 (s, ω)− Y κm

1 (s, ω)∥+

+∥Zκm
2 (s, ω)− Y κm

2 (s, ω)∥]e−Ksdsdκm(ω) ≤ (2.6)

≤ KρLce
KuTE

∫ t

0

eKs sup
θ≤t

e−Kθ∥Y κm(θ)− Zκm(θ)∥ds ≤

≤ Kρe
KuTLc

eKt − 1

K

[
∥Zκm

1 − Y κm
1 ∥K∞,1+

+∥Zκm
2 − Y κm

2 ∥K∞,1

]
.

Finally, we obtain that

2∑
m=1

λm(t) ≤ Kρe
KuTLc

eKt − 1

K

2∑
m=1

[
∥Zκm

1 − Y κm
1 ∥K∞,1 + ∥Zκm

2 − Y κm
2 ∥K∞,1

]
.

Next since

(Ψ ◦ Γκ)(Zκ)(t) = Γκ(Zκ)(t, ξ(t)), (Ψ ◦ Γκ)(Y κ)(t) = Γκ(Y κ)(t, ξ(t))

we get

E

[
2∑

m=1

sup
0≤t≤T

e−Kt|Ψm ◦ Γκm
m (Zκ)(t)−Ψm ◦ Γκ

m(Y κm)(t)|

]
=

= E

[
2∑

m=1

sup
0≤t≤T

e−Kt|Γκm
m (Zκ)(t, ξm(t))− Γκm

m (Y κm)(t, ξm(t))|

]
=

=
2∑

k=1

∥Γκm
m (Zκm)− Γκm

m (Y κm)∥∞,1 ≤

≤ 2Kρe
KuTLc

1

K

[
∥Zκm

1 − Y κm
1 ∥K∞,1 + ∥Zκm

2 − Y κm
2 ∥K∞,1

]
.

As a result we get that

2∑
m=1

∥λm∥K∞,1 ≤ Kρe
KuTLc

1

K

2∑
m=1

∥λm∥K∞,1

and choosing K > KρLc we deduce that Ψ ◦ Γκ is a contraction in the product
space (C, ∥ · ∥K∞,1)× (C, ∥ · ∥K∞,1). Hence by Banach fixed point theorem we prove
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the existence a nd uniqueness of a solution to (2.1) under the condition that
measures κm,m = 1, 2, are fixed. Moreover the functions um(t, y) are Lipschitz
continuous. This yields that there exists a unique bounded solution ξκm(t) of the
SDE (2.1). In addition by Burkholder-Davies-Gundy inequality we may verify that
E[supt≤T1 |ξm(t)|2] ≤ C[1 + E|ξ0m|2]. Thus the law Nm(κm) = L(ξm) belongs to
P2(C). This yields that the process ξ(t) = (ξ1(t), ξ2(t)) has the law N(κ) = L(ξ)
which belongs to P2(C × C.) �

Next we consider N as a map acting in P2(C × C). To prove that N is a
contraction in the Wasserstein metrics consider solutions uκ and uκ1 of (1.16)
corresponding to measures κ and κ1.

Below we need an auxiliary estimate.

Lemma 2.3. Assume C 1 holds and the measures κm are given. Then the esti-
mate

∥uκ(t, y)− uκ1(t, y1)∥2 ≤ MKu(t)[∥y − y1∥2 +WT1(N(κ), N(κ1)) (2.7)

holds.

Proof. Let κ ∈ P2(C × C). Then

∥uκ(t, y)− uκ1(t, y1)∥2 ≤ β1 + β2,

where β2
1 = 2∥uκ(t, y)− uκ(t, y1)∥2, β2

2 = 2∥uκ(t, y1)− uκ1(t, y1)∥2. Note that

β2
1 ≤

∫
C
|ρ(y − ξm(t, ω))− ρ(y1 − ξm(t, ω))|2G2

m(t, ξκm
m , uκ(ξm(ω))κ(dω) ≤

≤ L2
ρe

2tKc∥y − y1∥2.
To estimate β2 we apply the Jensen inequality to get

β2
2 ≤

∫
C×C

|ρ(y1 − ξm(t, ω))Gm(t, ξκm
m , uκ(ξm(ω)))− (2.8)

−ρ(y1 − ξm(t, ω1))Gm(t, ξκm
m , uκ1(ξm(ω1)))|2π(dω, dω1)

for any π ∈ Π(κ, κ1), where Π is a set of measures with marginals κ and κ1. Using
Lipschitz continuity of ρ and boundedness of um and Gm we may verify that there
exists a constant M > 0 such that an estimate

β2
2 ≤ M

[∫
C×C

[1 + t] sup
s≤t

ξm(s, (ω)− ξm(s, ω1|2+

+

∫ t

0

|uκ(s, ξm(s, ω))− uκ1(s, ξm(s, ω1))|2ds
]
π(dω, dω1).

Combining the above estimates we get that

ζm(s) =

∫
C×C

||uκ(s, ξm(s, ω))− uκ1(s, ξm(s, ω1))|2dsπ(dω, dω1)

satisfy the estimate

ζm(t) = K(t)

∫ t

0

ζ(s)ds+K(t)(t+ 2)

∫
C×C

sup
s≤t

|ξm(s, ω)− ξm(s, ω1)|2π(dω, dω1)

18
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for m = 1, 2, t ∈ [0, T ]. Hence by the Gronwall lemma we obtain

ζm(t) ≤ (t+ 2)MKu(t)e
tK(t)

∫
C×C

| sup
s≤t

ξm(s, ω)− ξm(s, ω1)|2π(dω, dω1). (2.9)

Summing up the above estimates we deduce (2.7). �

Now we can prove the following statement.

Theorem 2.4. Assume that C 1 holds. Then there exists a unique solution of
the system (2.4) and um(t, y) are bounded Lipschitz continuous functions.

Proof. By definition of the Wasserstein metrics we know that

WT1(N(κ), N(κ1)) ≤ E[sup
t≤T

∥ξ1(t)− ξ(t)∥2], (2.10)

hence

∥uκ(t, y)− uκ1(t, y1)∥2 ≤ MKu
(t)[∥y − y1∥2 +WT1

(N(κ), N(κ1)). (2.11)

Applying lemma 2.3 and we may deduce that

E[sup
t≤τ

|ξ1(t)− ξ(t)||2] ≤ KM,c

[∫ τ

0

E[sup
s≤t

|ξ1(s)− ξ(s)|2
]
dt+

∫ τ

0

W2
t (κ, κ1)dt

for any τ ≤ T1 and the constant KM,c depending on M and c.
Thus from the Gronwall lemma we obtain

E[sup
t≤τ

|ξ1(t)− ξ(t)||2] ≤ KM,ce
KM,cT1

∫ T1

0

W2
s (κ, κ1)ds.

Finally, from (2.10) we deduce the estimate

WT1(N(κ), N(κ1)) ≤ KM,ce
KM,cT1

∫ T1

0

W2
s (κ, κ1)ds.

Iterating this estimate we prove that N is a contraction and by the fixed point
theorem we end the proof of existence and uniqueness of a solution to (2.1). Bound-
edness and Lipschitz continuity of um(t, y) were proved above. �

3. Stability and instability of cross-diffusion system solutions

Let us consider some properties of solutions to (1.1) and in particular their
stability. Let in the absence of diffusion (Mm(u) ≡ 0,m = 1, 2, ) the system
(1.1) have stable constant solutions. Turing [15] discovered that if M1(u) = M1 ̸=
M2(u) = M2, it’s possible for the system to have a spatially heterogeneous solution.
Thus, diffusion terms, which in many cases are the stabilising factors preventing
pattern formation, in this case become essential to drive pattern formation.

Assume that the system (1.1) has a stationary solution u
(s)
m which is a constant

and let um(t) = u
(s)
m + vm(t) where vm(t) is a small deviation from the stationary

solution. Then vm(t) satisfy a linear system

∂v

∂t
=

1

2

∂2

∂y2
[A2v] +Bv, u(0, y) = v0(y), (3.1)
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in the neighborhood of a stationary point u
(s)
m where

B =

(
c1 − 2c11u

(s)
1 − c12u

(s)
2 c12u

(s)
2

c21u
(s)
1 c2 − c22u

(s)
2 − c21u

(s)
1

)
=

(
−b11 −b12
−b21 −b22

)
(3.2)

and

A2 =

(
α1 + 2α11u

(s)
1 + α22u

(s)
2 α12u

(s)
2

α21u
(s)
2 α2 + 2α22u

(s)
2 + α21u

(s)
1

)
=

(
a11 a12
a21 a22

)
.

(3.3)

Note that u
(s)
m are also equilibrium solutions of the system

dfm
dt

= cm(f), fm(0, y) = um0(y), m = 1, 2. (3.4)

Thus we can find them as solutions of the algebraic system

c1(v1, v2) = c1 − c11u1 − c12u2 = 0, c2(v1, v2) = c2 − c21u1 − c22u2 = 0. (3.5)

The system (3.5) has two solutions, namely ũ(s) = (0, 0) and

u(s) =

(
c1c22 − c2c12

detC
,
c2c11 − c1c21

detC

)
where C =

(
c11 c12
c21 c22

)
.

Let us examine a linear instability of vm = u
(s)
m satisfying (3.1). To this end we

look for a solution to (3.1) of the form

v =

(
v1
v2

)
=

(
ρ1
ρ2

)
exp(ikx+ λt), (3.6)

where λ ∈ R and k > 0.
To derive conditions for Turing instability we assume that (v01 , v

0
2) satisfying

(3.1) is a linearly stable solution of the form (3.6).
We say condition C3.1 holds if

a11 > 0, a22 > 0, detA2 = a11a12 − a12a21 > 0, T r B < 0, detB > 0.

The system (3.1) has a nontrivial solutions of the form (3.6) if determinant of
the matrix

k2A+B − λI =

(
k2a11 − b11 − λ k2a12 − b12
k2a21 − b21 k2a22 − b22 − λ

)
is equal to 0, that is

det(k2A+B−λI) = (k2a11−λ−b11)(k
2a22−λ−b22)−(k2a12−b12)(k

2a21−b21) = 0
(3.7)

From the last equality deduce a quadratic equation

λ2 + pλ+ q = 0

with respect to λ, where

p = −k2Tr A+ TrB, q = k4detA+ k2m(A,B) + detB = detLk

and

m(A,B) = −a11b22 + a21b12 + a12b21 − b11a22.
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If (3.1) is a linearly unstable system, its solution v(t, y) has to go to infinity as
t → ∞. This means that one of roots of (3.7) must have a positive real part or
that one of the eigenvalues of the matrix Lk = −k2A−B has a positive real part.

Since λ1,2 =
−p±

√
p2−4q

2 , one of λ1,2 should have a positive real part provided
q < 0.

By assumption TrB < 0, then TrLk = TrB − k2Tr A < 0 is always true since
by assumption a11 > 0 and a22 > 0. Hence if Lk has an eigenvalue with a positive
real part then the other eigenvalue has to be a negative real one.

For instability we need an estimate q = detLk < 0 for some k > 0. But the
function detLk has a minimum value

min
k

detLk = −m2(A,B)

4detA
+ detB at critical point k2∗ = −m(A,B)

2detA
. (3.8)

Hence if m(A,B) < 0 and mink det Lk < 0, then (u
(s)
1 , u

(s)
2 ) is an unstable equilib-

rium of (3.1). Now we can state the following result.

Theorem 3.1. Assume that (u
(s)
1 , u

(s)
2 ) are constant equilibrium solutions of (1.1),

matrices B and A are defined by (3.2), (3.3) and detA > 0, T rB < 0, a12 =
a21 = 0 and detB > 0. Then there exists an unbounded region G = {a11 >
0, a22 > 0, a22 = κa11}, for some κ > 0 such that for any (a11, a22) ∈ D the

point (v
(s)
1 , v(s)) is an unstable equilibrium solution of (3.1). If

min
k∈R

detLk = −m2(A,B)

4detA
+ detB < 0 (3.9)

and

k2∗ = −m(A,B)

2detA
> 0, (3.10)

then (u
(s)
1 , u

(s)
2 ) is unstable equilibrium solution of (3.1) but a stable solution of the

ODE (3.4).

Theorem 3.1 gives a general conditions that imply that adding self- or cross
diffusion to a dynamical system (3.4) yields an instability of the system. It allows
to analyse separately the effect of adding self and cross-diffusion.

We say condition C 3.2 holds if

detA > 0, a11 > 0, a22 > 0, b11 > 0, b22 < 0, T r B < 0, detB > 0.

In the absence of cross- diffusion we obtain conditions of classical Turing insta-
bility.

Theorem 3.2. Assume that (u
(s)
1 , u

(s)
2 ) is a constant stable equilibrium solution

of (1.1), C 3.2 holds and consider a system

∂um

∂t
=

1

2

∂2

∂y2
[αm + αm1u1]u1 + cm(u1, u2)um, um(0, y) = um0(y), m = 1, 2.

(3.11)
Then there exists an unbounded region G1 = {(a11, a22) : a11 > 0, a22 > θ} for

some θ > 0, such that (u
(s)
1 , u

(s)
2 ) is an unstable equilibrium solution of (3.11).
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14 YANA BELOPOLSKAYA

Proof. We consider the linearised system associated with (3.11) and deduce from
(3.9) that

min
k∈R+

detLk = − (a22b11 + a11b22)
2

2a11a22
at k2∗ =

a22b11 + a11b22
2a11a22

.

Set

κ(a11, a22) = −(a22b11 + a11b22)
2 + 4a22a11(b11b22 − b12b21) =

= 2[detB − b12b21]a11a22 − b222a
2
11 − a222b

2
11

and

β(a11, a22) = b11a22 + a11b22.

Since C 3.2 holds we deduce that κ(a11, a22) < 0 and β(a11, a22) > 0. Set θ = a22

a11
,

then

κ(a11, a22) = 0 iff b222 − 2θ[detB − b12b21] + θ2b211 = 0 (3.12)

and

β(a11, a22) = 0, iff θ = −b22
b11

= θ̂. (3.13)

Keeping in mind C 3.2 we deduce that roots θ± of (3.12) have the form

θ± =
detB − b12b21 ±

√
(detB − b11b22)2 − b211b

2
22

b211
. (3.14)

Since due to C 3.2 we have

(detB − b11b22)
2 − b211b

2
22 = detB[detB − 2b11b22] > 0,

we deduce that θ+ > θ̂ > θ− > 0. Finally, we have κ(a11, a22) > 0 between the
line a22 = θ+a11 and the line a22 = θ+a22 and β(a11, a22) > 0 between the line
a22 = θa11 and the b22-axis. Hence the region G1 between the line a22 = θ+a11
and a22-axis is an unstable region that is for any (a11, a22) ∈ G1 the solution

(u
(s)
1 , u

(s)
2 ) is an unstable equilibrium of (3.11). �

Let us show that Turing instability can arise in a system with cross-diffusion in
the case when in the corresponding system without cross diffusion there was no
such instability.

Theorem 3.3. Let (u
(s)
1 , u

(s)
2 ) be a constant equilibrium of (1.1) and C 3.2 holds.

In addition we assume that (u
(s)
1 , u

(s)
2 ) is a stable constant equilibrium of (3.11).

Given G1 defined in theorem 3.2 for fixed a11, a22 which are not in Ḡ1 there exists
an unbounded region G2 = {a21, a12} defined by

G2 = {(a21, a12) ∈ R2 : (a21b11 + a12b22) < a22b11 + a11b22 − 2
√
detA

√
detB}
(3.15)

such that for any point (a21, a12) ∈ G2 the solution (u
(s)
1 , u

(s)
2 ) is an unstable

equilibrium solution of (1.1).
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Proof. By assumption detA > 0 that yields a11a22 > a12a21. Consider (a11, a22)
inside a region between two components of the hyperbola a11a22 = a11a22 and
recall that from theorem 3.1 we know the explicit expression for µkdetLk which
is attained at the point k∗ (see (3.9) and (3.10)). Then keeping in mind C 3.2 we
can verify that (3.9) and (3.10) are equivalent to inequalities

κ1(a21, a12) = −(a21b11 + a12b22 − l)2 + 4detAdetB < 0, (3.16)

β1 = γ − a21b12 − a12b21 > 0, γ = a22b11 + a11b22. (3.17)

Let us show that the equations κ1(a21, a12) = 0 and a12a21 = a11a22 define an
ellipse and a hyperbola in the plane (a12, a21) with intersection points a, b which
belong to the line defined by the equation β1(a21, a12) = 0. Set

Θ = a21b12 + a12b21, R = a21b12 − a12b21, a21 =
Θ−R

2b21
, a12 =

Θ+R

2b12
.

Substituting the derived expressions for a12, a21 into equation κ1(a21, a12) = 0 we
derive an equation(

1 +
detB

b12b21

)
− 2γΘ− detB

b12b21
R2 − 4a11a22detB + γ2 = 0. (3.18)

Since detB > 0, b11 > 0, b22 < 0 we get b12b21 < 0. Thus,

detB

b12b21
< 0 and −

(
1 +

detB

b12b21

)
= −b11b22

b21b12
< 0

and we may rewrite (3.18) in the form

b11b22
b21b12

(
Θ− b12b21γ

b11b22

)2

− detB

b12b21
R2 = −γ2 detB

b11b22
+ 4a11a22detB. (3.19)

Since the right hand side of (3.18) is positive, the equation κ1(a21, a12) = 0 defines
an ellipse in (b12, b21)-plane.

Let a21a12 be a point of the hyperbola a21a12 = a11a22, then κ1(a21, a12) = 0
if and only if γ − a12b21 − a21b12 = 0. Thus, the hyperbola a21a12 = a11a22,
the ellipse κ1(a21, a12) = 0 and the line γ − a12b21 − a21b12 = 0 intersect at two
points. One can easily verify that if a point a21, a12 is outside the ellipse, then
κ1(a21, a12) < 0. �

Thus, we have shown that there are cases when Turing instability is the result
of the addition of cross-diffusion. On the other hand if the equilibrium is lost due
to self-diffusion it can be restored by adding the suitable cross-diffusion.

Theorem 3.4. Let a couple (u
(s)
1 , u

(s)
2 ) be a stable solution of (1.1), but is an

unstable solution of (3.11) that is Turing unstable. Then for fixed (a11, a22) ∈ G1

defined in theorem 3.2 there exists an unbounded region Q in the plane (d12, d21)
defined by

Q = {(a21, a12) ∈ R2 : a12a21 < a11a22, κ1(a21, a12) > 0, β1(a21, a12) < 0},

where κ1 and β1 are given by (3.16), (3.17) such that for any point (a21, a12) ∈ Q

the point (u
(s)
1 , u0

2(s)) is a stable equilibrium solution of (1.1).
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The proof of this theorem is similar to the proof of the previous theorem. Note
that the region Q is bounded by the short arc of the ellipse and the adjacent
hyperbola branches and its points are on the upper -left side of the boundary.
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