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Abstract. This paper deals with stochastic differential-algebraic equations.
Among those equations we find a class such that for equations from this class

we can obtain a necessary and sufficient condition for completeness of their
flows.

Introduction

The work is devoted to investigation of the problem of global in time existence of
solutions of stochastic differential-algebraic equations. We deal with the equations
of the form {

L̃DSξ(t) = M̃ξ(t) + f̃(t, ξ(t))
D2ξ(t) = Θ̄(ξ)

(0.1)

where L̃ is a degenerate matrix, M̃ is a nondegenerate matrix, DS is the symmetric
mean derivative and D2 is the quadratic mean derivative. We suppose that the
matrix pencil is regular and satisfies the rank-degree condition (all definitions are
given below). Among the equations of this type we find a class such that for those
equations we can prove the necessary and sufficient conditions for the completeness
of their flows.

The research is based on the theory of mean derivatives and conditions for com-
pleteness of flows generated by ordinary stochastic equations with mean deriva-
tives, on the theory of matrix pencils and on the theory of ordinary differential-
algebraic equations. Thus, the paper includes rather large preliminaries from all
those mathematical subjects. It consists of this Introduction and 4 sections. The
first one is devoted to brief introduction into the theory of mean derivatives and
equations with them. In the second one we give a survey of results of conditions
under which the flows generated by equations with symmetric mean derivatives
are complete. Then we describe some facts about matrix pencils and, in the last
section, we prove the main result of the paper.
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1. Mean derivatives

Consider the L1 stochastic process given on a certain probability space (Ω,F ,P)

with values in Rn. Denote by N ξ
t the “present” σ-subalgebra of F generated by

preimages of Borel sets under the mapping ξ(t) : Ω → Rn. By Eξ
t we denote the

conditional expectation with respect to N ξ
t . Followeing Nelson [1, 2, 3] we give

the definitions:

Definition 1.1. (i)The forward mean derivative Dξ(t) of ξ(t) at the time instant
t is the L1-random variable of the form

Dξ(t) = lim
∆t→+0

Eξ
t (

ξ(t+∆t)− ξ(t)

∆t
)

where the limit is supposed to exist in L1(Ω,F , P ) and ∆t → +0 means that
∆t → 0 ∆t > 0.

(ii) The backward mean derivative D∗ξ(t) of ξ(t) at the time instant t is the
L1-random variable of the form

D∗ξ(t) = lim
∆t→+0

Eξ
t (

ξ(t)− ξ(t−∆t)

∆t
)

where (as well as in (i)) the limit is supposed to exist in L1(Ω,F , P ) and ∆t → +0
means that ∆t → 0 ∆t > 0..

Definition 1.2. The derivative DS = 1
2 (D + D∗) is called the symmetric mean

derivative. The derivative DA = 1
2 (D−D∗) is called the the antisymmetric mean

derivative.

Definition 1.3. vξ(t) = vξ(t, ξ(t)) = DSξ(t) is called the current velocity of ξ(t).

Definition 1.4 ([4, 5]).

D2ξ(t) = lim
∆t→+0

Eξ
t (

(ξ(t+∆t)− ξ(t))(ξ(t+∆t)− ξ(t))∗

∆t
) (1.1)

is called the quadratic mean derivative where (ξ(t+∆t)− ξ(t)) is considered as a
column (vector in Rn), (ξ(t + ∆t) − ξ(t))∗ as a row (transposed vector) and the
limit is supposed to exist in L1(Ω,F , P ).

It is shown that the quadratic mean derivative takes values in the space of
symmetric positive semi-definite (n× n)-matrices, that we denote by S+(n). The
space of symmetric positive definite (n×n)-rmatrices is denoted by S+(n) (S+(n)
is the closure of S+(n)).

Let v : R× Rn → Rn and α : R× Rn → S̄+(n) be Borel measurable mappings.
The system of the form {

DSξ(t) = v(t, ξ(t))
D2ξ(t) = α(t, ξ(t))

(1.2)

is called the first order equation with current velocities.
Consider a smooth matrix field α0 = (αij(0, x)) ∈ S+. Since it is smooth

and not degenerate, there exists the smooth matrix field (αij(0, x)) of inverse
matrices. Since, in addition, by construction those matrices are not degenerate,
we can consider this field as a new Riemannian metric on Rn. We shall denote
this metric by α0(·, ·).
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Theorem 1.5 ([6]). Let v : [0, T ] × Rn → Rn and α : [0, T ] × Rn → S+(n) be
mappings smooth jointly in all variables. Let also the relations

∥v(t, x)∥ < K(1 + ∥x∥) (1.3)

tr α(t, x) < K(1 + ∥x∥2) (1.4)

and

∥Ξ̄(x)∥ < K(1 + ∥x∥) (1.5)

for a certain K > 0 hold, where Ξ̄(x) is the vector fields with coordinate represen-

tation ∂αij

∂xj
∂

∂xi . Let ξ0 be a random element with values in Rn, whose probabilistic
density ρ0 with respect to the volume form Λα0 of metric α0(·, ·) on Rn is smooth
and nowhere equals zero. Then for the initial condition ξ(0) = ξ0 equation (1.2)
has a solution well-defined on the entire interval t ∈ [0, T ] and this solution is
unique as a diffusion process.

We are interested in the flows generated by equation (1.2). We call such flows
as generalized ones since the densities of the initial conditions of their orbits are
smooth and nowhere equal zero. We denote such orbit with initial condition ξ0 as
ξt,ξ0(s).

To deal with a solution having initial values with densities nowhere equal to
zero, we have to modify the notion of local solution. Since the matrices (αij)
are non-degenerate, we can recover the coefficients of equation from the generator.
This is the reason why we explain this notion in terms of generators. For simplicity,
we consider the case where M is a linear space. The general case of a manifold we
leave to the reader as a simple exercise.

Consider in Rn an expanding sequence of compacts Vi with smooth bound-

aries, such that Vi ⊂ Vi+1

∞∪
i=1

Vi = M . We construct a system of smooth bell-

shaped functions φi, equal to one in Vi, zero outside Vi+1, and having uniformly
bounded first partial derivatives in all Vi+1\Vi. Let α∗ be a constant symmetric
non-degenerate matrix. Consider the sequence of generators, where the drift has
the form φia and the matrix of coefficients at the second order derivatives takes
the form φi(α) + (1 − φi)(α

∗). We note that the equations with such generators
satisfy the conditions introduced above. Since the coefficients of these equations
are smooth and bounded, they possess unique solutions. We call these solutions
the local solutions of equations under consideration.

Remark 1.6. Denote by ai the coordinates of vector a(t, x), by ai∗ the coodinates
of vector a∗(t, x) and by αij the elements of matrix α(t, x). It is easy to see
that the generator of generalized flow generated by equation (1.2), takes the form

A = ai ∂
∂xi + 1

2α
ij ∂2

∂xi∂xj while the inverse generator (the generator of inverse

generalized flow) takes the form A∗ = −ai∗
∂

∂xi +
1
2α

ij ∂2

∂xi∂xj

2. Necessary and sufficient conditions for completeness of stochastic
flows

Everywhere below we suppose that all initial values are integrable random vari-
ables.
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Definition 2.1. The generalized flow is called complete on [0, T ], if ξt,ξ0(s) a.s.
takes values in Rn for any random initial value ξ0, initial time instant t (with
0 ≤ t ≤ T ) and for all s ∈ [t, T ]. The generalized flow ξ(s) is called complete, if it
is complete on every interval [0, T ] ⊂ R.

Note that a particular case of Definition 2.1 is the standard definition of com-
pleteness of ordinary flow where only the orbits with (deterministic) initial condi-
tions (points in Rn) are involved.

Definition 2.2. Let X be a topological space. A function φ : X → R is called
proper (i.e., proper mapping to R), if the preimage of every relatively compact set
in R is relatively compact in X.

Theorem 2.3 ([7]). Let there exist a smooth positive proper function φ on Rn

such that L(t, x)φ < C for a certain C > 0 at all t ∈ R and x ∈ Rn, where L is
the generator of generalized flow ξ(s). Then the generalized flow ξ(s) is complete.

Note that the complete analogue of Theorem 2.3 is valid also for ordinary sto-
chastic flows.

Definition 2.4 ([7]). The generalized flow η(s) is continuous at infinity on the
interval [0, T ] ⊂ R, if for all 0 ≤ t ≤ T , for every compact K ⊂ Rn and for every
orbit ηt,ηi(s) the equality

lim
∥Eηi∥→+∞

P(ηt,ηi(T ) ∈ K) = 0. (2.1)

holds. The generalized flow is continuoua at infinity it this property holds for
every T > 0.

L. Schwartz has introduced the definition of continuity at infinity for the ordi-
nary flow, i.e., in which only the orbits with deterministic initial values sre involved
(see [9, 10]).

Theorem 2.5 ([7]). Let on Rn there exist a smooth positive proper function u such

than L̃u < C for a certain constant C > 0, where L̃ is the generator of backward
generalized flow η̃(t). Then the forward generalized flow η(t) is continuous at
infinity on [0, T ].

Theorem 2.6 ([7]). The generalized flow ξ(s) on Rn having smooth and strictly
elliptic generator and being continuous at infinity in the sense of Definition 2.4,
is complete on [0, T ] if and only if there exists a smooth positive proper function
u+ : Rn

+ → R such that L+u+ < C for a certain constant C > 0 at all points
(t, x) ∈ Rn

+.

Theorem 2.7 ([7]). The forward generalized flow ξ(s) and the backward gen-

eralized flow ξ̃(s) generated by equation (1.2), are simultaneously both complete
and continuous at infinity if and only if on Rn

+ there exist positive smooth proper
functions u(t, x) and ũ(t, x) such that the inequalities(

∂

∂t
+A

)
u < C and

(
− ∂

∂t
+ Ã

)
ũ < C̃

hold for certain positive constants C and C̃.
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3. Matrix pencils

We need also some facts from the theory of matrices. Detailed explanation of
this material can be found, e.g., in [8].

Definition 3.1. Let two n× n constant matrices A and B be given. The expres-
sion λA + B where λ is a real or complex valued parameter, is called the matrix
pencil. The polynomial det(λA+B) (with respect to λ) is called the characteristic
polynomial of the pencil. If det(λA+B) is not identical zero, the pencil is called
regular.

Theorem 3.2. Let the matrix pencil λA + B be regular. Then there exist non-
degenerate matrices P and Q such that

P (λA+B)Q = λ

(
Id 0
0 N

)
+

(
J 0
0 In−d

)
, (3.1)

where Id and In−d are unit matrices of the corresponding dimensions, N is an
upper triangle matrix consisting of Jordan boxes with zeros on diagonal and J is
a certain d× d block.

Definition 3.3. If the characteristic polynomial satisfies the equality

rank(A) = deg(det(λA+B)), (3.2)

we say that the polynomial satisfies the condition rank-degree.

Theorem 3.4. If the characteristic polynomial satisfies the rank-degree condition,
assertion of Theorem 3.2 holds true and formula (3.1) takes the form

P (λA+B)Q = λ

(
Id 0
0 0

)
+

(
J 0
0 In−d

)
. (3.3)

4. The main result

Consider a regular pencil λL̃ + M̃ (L̃ is degenerate and M̃ is nondegenerate)
and denote by P and Q the nondegenerate matrices from Theorem 3.2 for this
pencil.

We suppose that the pencil under consideration satisfies the rank-degree con-

dition. Construct L = PL̃Q and M = PM̃Q and by Theorem 3.4 obtain L =(
Id 0
0 0

)
and M =

(
J 0
0 In−d

)
, where J is nondegenerate since M̃ is nonde-

generate.
Now consider a certain symmetric positive definite matrix Ξ in Rd. Since it is

positive definite, it is non-degenerate. Introduce the matrix Θ =

(
Ξ 0
0 0

)
and

the matrix Θ̄ = QΘQ∗ in Rn. The matrix Θ̄ is symmetric and degenerate. Thus,
D2ξ(t) = Θ̄(ξ) is well-defined.

Consider the equation{
L̃DSξ(t) = M̃ξ(t) + f̃(t, ξ(t))

D2ξ(t) = Θ̄
. (4.1)
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Taking into account the above formulae and the definition of D2 by formula

(1.1), from (4.1) we obtain for η(t) = Q−1ξ(t) and f(t, x) = P f̃(t,Q−1x) the
equation {

LDSη(t) = Mη(t) + f(t)
D2η(t) = Θ

(4.2)

in Rn = Rd⊕Rn−d and equation (4.2) decomposes into two independent equations
in Rd and Rn−d, respectively:{

DSη
(1)(t) = Jη(1)(t) + f (1)(t, η(t))

D2η
(1)(t) = Ξ

(4.3)

in Rd and {
η(2)(t) + f (2)(t, η(t)) = 0

D2η
(2)(t) = 0

(4.4)

in Rn−d.

Condition 1. We suppose that for every point (t, y(1)) ∈ R × Rd there exists a
unique point y(2) = Φ(t, y(1)) ∈ Rn−d that is continuos jointly in (t, y(1)), coercive
(i.e. Φ(t, y(1)) → ∞ as (t, y(1)) → ∞) and such that −f (2)(t, y(1) + Φ(t, y(1))) =
Φ(t, y(1)) = y(2).

Remark 4.1. Under Condition 1 one can easily see that y(2) = Φ(t, y(1)) ∈ Rn−d is
a unique fixed point of the operator −f (2)(t, y(1)+(·)) : Rn−d → Rn−d. This fixed
point exists, e.g., if f (2)(t, y(1)+(·)) is Lipschitz continuous, i.e., if there exists k ∈
(0, 1) such that for every pair of points z1, z2 ∈ Rn−d and every (t, y(1)) ∈ R×Rd

the inequality ∥f (2)(t, y(1) + z1)− f (2)(t, y(1) + z2)∥ < k∥z1 − z2∥ holds. Note that
k may be a continuous function depending on (t, y(1)). A condition of this sort in
the language of functions y(1)(t) and y(2)(t) is used in [11, 12].

Under Condition 1 η(2)(t) = Φ(t, η(1)(t)), f (1)(t, η(t)) is represented in the form

f (1)(t, η(t)) = f (1)(t, η(1)(t) + η(2)(t)) = f (1)(t, η(1)(t) + Φ(t, η(1)(t))). (4.5)

Taking into account formula (4.5) and Remark 1.6, we see that for the flow gen-

erated by equation (4.2) on Rd, the generator A and the backward generator Ã
have the forms

A = Jx(1) + f (1)(t, x(1) +Φ(t, x(1))) +
1

2
Ξij ∂2

∂qi∂qj
(4.6)

and

Ã = −Jx(1) − f (1)(t, x(1) +Φ(t, x(1))) +
1

2
Ξij ∂2

∂qi∂qj
, (4.7)

respectively.
Note that in (4.6) and (4.7) we consider Jx(1) and f (1)(t, x(1) + Φ(t, x(1))) as

vector fields, i.e., the fields of first order differential operators on Rd.

Theorem 4.2. Let the matrix pencil in equation (4.1) be regular and satisfy the

rank-degree condition and Condition 1. The flow ξ(t) and the backward flow ξ̃(t),
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generated on Rn by equation (4.1), are simultaneously both complete and contin-
uous at infinity if and only if on Rd

+ there exist positive smooth proper functions
u(t, x) and ũ(t, x) such that the inequalities

(
∂

∂t
+ Jx(1) + f (1)(t, x(1) +Φ(t, x(1))) +

1

2
Ξij ∂2

∂qi∂qj
)u < C

and

(− ∂

∂t
− Jx(1) − f (1)(t, x(1) +Φ(t, x(1))) +

1

2
Ξij ∂2

∂qi∂qj
)ũ < C̃

hold for certain positive constants C C̃.

Proof. Indeed, by Theorem 2.7 the assertion of the theorem holds for the flow
η(1)(t) and the backward flow η̃(1)(t) on Rd generated by equation (4.3). Thus the

assertion of the theorem for the flows ξ(t) and ξ̃(t) on Rn follows from the formula
η(2)(t) = Φ(t, η(1)(t)) and from the fact that Φ(t, y(1)) is coercive. �
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