

CHARACTERISTIC SUBGROUPS OF A FINITE ABELIAN P-GROUP $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$

SARITA AND MANJEET JAKHAR

ABSTRACT. In this paper, we study the following points:- (i) list all characteristic subgroups of a finite abelian 2-group $\mathbb{Z}_{2^m} \times \mathbb{Z}_{2^n}$ when $m, n \in \mathbb{Z}^+$ (ii) list all characteristic subgroups of a finite abelian p-group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ when $m, n \in \mathbb{Z}^+$ where p is an odd prime (iii) lattices of characteristic subgroups of a finite abelian 2-group $\mathbb{Z}_{2^2} \times \mathbb{Z}_{2^5}$ and (iv) Lattices of characteristic subgroups of a finite abelian p-group $\mathbb{Z}_{p^2} \times \mathbb{Z}_{p^5}$ where p is odd prime.

1. Introduction

A subgroup N of a group G is called a characteristic subgroup if $\phi(N) = N$ for all automorphisms ϕ of G. This term was first used by *Frobenius* in 1895. In 1939, Baer [2] considered the following question "When do two groups have isomorphic subgroups lattices?" Since this is a very difficult problem. In 2011, Brent L. Kerby and Emma Rode [3] consider the related question "Lattices of characteristic subgroups of $\mathbb{Z}_p \times \mathbb{Z}_{p^2} \times \mathbb{Z}_{p^4}$ isomorphic to lattices of characteristic subgroups of $\mathbb{Z}_{p^2} \times \mathbb{Z}_{p^5}$ for any prime p". In 2017, Amit Sehgal and Manjeet Jakhar [7] consider the related question "Lattices of characteristic subgroups of $\mathbb{Z}_n \times \mathbb{Z}_n$ isomorphic to lattices of characteristic subgroups of \mathbb{Z}_n ". In 2021, Hayder Baqer Shelash and Ali Reza Ashraf [9] consider the related question for group $U_{6n}, V_{8n}, H(n)$. In 2021, Sarita and Manjeet Jakhar [8] consider the related question "Lattices of characteristic subgroups of $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ ". We will now consider the problem of lattices of characteristic subgroups of a finite abelian p-group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ when $m, n \in \mathbb{Z}^+$.

In Section 2, we list subgroups of group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$. In Section 3, we list all the automorphism group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ and by using these we list the characteristic subgroups of group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ in section 4 and 5 according as m = n or not. Finally in section 6, lattices of characteristic subgroups of group $\mathbb{Z}_{p^2} \times \mathbb{Z}_{p^5}$ is discussed for both the case when p is even or odd prime.

2. List of subgroups of group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$

We know that group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n} = \{x^i y^j | x^{p^m} = y^{p^n} = e, xy = yx, i = 0, 1, \dots, p^m - 1, j = 0, 1, \dots, p^{n-1}\}$ is an abelian group of order p^{m+n} . So converse of Lagrange's theorem is true for this group. So possible order of subgroup are $1, p, p^2, \dots, p^{m+n}$. Here, all subgroups are subgroups from abelian group, so they

²⁰⁰⁰ Mathematics Subject Classification. Primary 20K01; Secondary 20K27.

Key words and phrases. Subgroup; Cyclic Subgroup; Characteristic Subgroup; Group of all automorphisms;

must be abelian. Now we have to search for cyclic subgroups whose order are $1, p, p^2, \dots, p^n$ and abelian subgroups which are not cyclic of order p^2, p^3, \dots, p^{m+n}

2.1. List of cyclic subgroups of order $p^k (1 \le k \le m \le n)$ from group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$. We count elements of order p^k in $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ as $\sum_{i=0}^k ((\text{no. of elements of order } p^i \text{ from } \mathbb{Z}_{p^m}) \times (\text{no. of elements order } p^k \text{ from } \mathbb{Z}_{p^n}) + \sum_{i=0}^{k-1} (\text{no. of elements order } p^k \text{ from } \mathbb{Z}_{p^n}) + \sum_{i=0}^{k-1} (p^2 - 1)$. Hence, the number of cyclic subgroups of order p^k are $\frac{p^{2k-2}(p^2-1)}{\phi(p^k)} = p^{k-1}(p+1)$. The list of these $p^{k-1}(p+1)$ subgroups is $\langle x^{p^{m-k}}y^{jp^{n-k}} \rangle$ where $j = 1, 2, \cdots, p^k$ and $\langle x^{jp^{m-k+1}}y^{p^{n-k}} \rangle$ where $j = 1, 2, \cdots, p^{k-1}$

2.2. List of cyclic subgroups of order $p^k (1 \le m < k \le n)$ from group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$. We count elements of order p^k in $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ as $\sum_{i=0}^k ((\text{no. of elements of order } p^i \text{ from } \mathbb{Z}_{p^m}) \times (\text{no. of elements order } p^k \text{ from } \mathbb{Z}_{p^n}) = p^{k+m-1}(p-1)$. Hence, the number of cyclic subgroups of order p^k are $\frac{p^{k+m-1}(p-1)}{\phi(p^k)} = p^m$. The list of these p^m subgroups are $\langle x^j y^{p^{n-k}} \rangle$ where $j = 1, 2, \cdots, p^m$ and $k = m+1, m+2, \cdots, n$.

2.3. List of abelian subgroups which are not cyclic subgroups of order p^k from group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ where $2 \le k \le n$. By fundamental theorem of finite abelian group, we know that number of non-isomorphic abelian groups of order p^k are p(k), out of which only one group is cyclic. So abelian group have p(k) - 1 subgroups which are not cyclic.

Theorem 2.1. [5] Number of internal direct product of cyclic subgroup of order p^{k_1} with cyclic subgroup of order p^{k_2} with $1 \le k_1 \le k_2 \le m \le n$ is $p^{k_1+k_2-1}(p+1)$ from group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$.

Theorem 2.2. [5] Number of internal direct product of cyclic subgroup of order p^{k_1} with cyclic subgroup of order p^{k_2} with $1 \le k_1 \le m < k_2 \le n$ is p^{m+k_1} from group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$.

Theorem 2.3. [5, 8] Number of internal direct product of cyclic subgroup of order p^{k_1} with subgroup isomorphic to $\mathbb{Z}_{p^{k_2}} \times \mathbb{Z}_{p^{k_3}} \times \cdots \times \mathbb{Z}_{p^{k_s}}$ is 0 from group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ where $s \geq 3$, $k_i \geq 1$ and $\sum_{i=1}^{s} k_i \leq (m+n)$. In other words, group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ does not possess any subgroup of rank more than two.

Proof. If A is any cyclic subgroups of order p^{k_1} from $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ and B is a subgroup isomorphic to $\mathbb{Z}_{p^{k_2}} \times \mathbb{Z}_{p^{k_3}} \times \cdots \times \mathbb{Z}_{p^{k_s}}$ where $s \geq 3$ from $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$, then $A \bigcap B \neq \{e\}$ because there are only p+1 cyclic subgroups of order p in $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ and A contains a unique subgroup of order p and B contains at-least p+1 cyclic subgroups of order p. So cyclic subgroup of order p must contain in B if B is possible. So, internal direct product of cyclic subgroup of order p^{k_1} with subgroup isomorphic to $\mathbb{Z}_{p^{k_2}} \times \mathbb{Z}_{p^{k_3}} \times \cdots \times \mathbb{Z}_{p^{k_s}}$ from $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ is not possible.

Hence, we conclude that the abelian p-group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ does not possess any subgroup of rank three or more.

Theorem 2.4. [5] Number of subgroups from group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ which are isomorphic to $\mathbb{Z}_{p^k} \times \mathbb{Z}_{p^k}$ where $1 \leq k \leq m \leq n$ is 1.

Further, only subgroup which is isomorphic to $\mathbb{Z}_{p^k} \times \mathbb{Z}_{p^k}$ where $1 \le k \le m \le n$ is $\langle x^{p^{m-k}}, y^{p^{n-k}} \rangle$.

Theorem 2.5. [5] Number of subgroups from group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ which are isomorphic to $\mathbb{Z}_{p^{k_1}} \times \mathbb{Z}_{p^{k_2}}$ where $1 \leq k_1 < k_2 \leq m \leq n$ is $p^{k_2-k_1-1}(p+1)$.

Further, subgroups which are isomorphic to $\mathbb{Z}_{p^{k_1}} \times \mathbb{Z}_{p^{k_2}}$ where $1 \leq k_1 < k_2 \leq m \leq n$ are $\langle x^{p^{m-k_1}}, x^{sp^{m-k_2+1}}y^{p^{n-k_2}} \rangle$ where $s = 1, 2, \cdots, p^{k_2-k_1-1}$ and $\langle x^{p^{m-k_2}}y^{sp^{n-k_2}}, y^{p^{n-k_1}} \rangle$ where $s = 1, 2, \cdots, p^{k_2-k_1}$

Theorem 2.6. [5] Number of subgroups from group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ which are isomorphic to $\mathbb{Z}_{p^{k_1}} \times \mathbb{Z}_{p^{k_2}}$ where $1 \leq k_1 \leq m < k_2 \leq n$ is p^{m-k_1} .

Further, subgroups which are isomorphic to $\mathbb{Z}_{p^{k_1}} \times \mathbb{Z}_{p^{k_2}}$ where $1 \leq k_1 \leq m < k_2 \leq n$ are $\langle x^{p^{m-k_1}}, x^s y^{p^{n-k_2}} \rangle$ where $s = 1, 2, \cdots, p^{m-k_1}$. Finally list of subgroups of group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ given below:-

 $\begin{array}{l} \text{(i)} < e > \cong \mathbb{Z}_{1} \\ \text{(ii)} < x^{p^{m-k}} y^{jp^{n-k}} > \cong \mathbb{Z}_{p^{k}} \text{ where } j = 1, 2, \cdots, p^{k} \text{ and } 1 \leq k \leq m \leq n \\ \text{(iii)} < x^{jp^{m-k+1}} y^{p^{n-k}} > \cong \mathbb{Z}_{p^{k}} \text{ where } j = 1, 2, \cdots, p^{k-1} \text{ and } 1 \leq k \leq m \leq n \\ \text{(iv)} < x^{j} y^{p^{n-k}} > \cong \mathbb{Z}_{p^{k}} \text{ where } j = 1, 2, \cdots, p^{m} \text{ and } k = m+1, m+2, \cdots, n. \\ \text{(v)} < x^{p^{m-k}}, y^{p^{n-k}} > \cong \mathbb{Z}_{p^{k}} \times \mathbb{Z}_{p^{k}} \text{ where } 1 \leq k \leq m \leq n \\ \text{(vi)} < x^{p^{m-k_{1}}}, x^{sp^{m-k_{2}+1}} y^{p^{n-k_{2}}} > \cong \mathbb{Z}_{p^{k_{1}}} \times \mathbb{Z}_{p^{k_{2}}} \text{ where } 1 \leq k_{1} < k_{2} \leq m \leq n \text{ and } \\ s = 1, 2, \cdots, p^{k_{2}-k_{1}-1} \\ \text{(vii)} < x^{p^{m-k_{1}}}, x^{sy^{p^{n-k_{2}}}}, y^{p^{n-k_{1}}} > \cong \mathbb{Z}_{p^{k_{1}}} \times \mathbb{Z}_{p^{k_{2}}} \text{ where } 1 \leq k_{1} < k_{2} \leq m \leq n \text{ and } \\ s = 1, 2, \cdots, p^{k_{2}-k_{1}} \\ \text{(viii)} < x^{p^{m-k_{1}}}, x^{syp^{n-k_{2}}} > \cong \mathbb{Z}_{p^{k_{1}}} \times \mathbb{Z}_{p^{k_{2}}} \text{ where } 1 \leq k_{1} \leq k_{2} \leq n \text{ and } \\ s = 1, 2, \cdots, p^{k_{2}-k_{1}} \end{array}$

Hence, we get the list of $\sum_{d=0}^{m} (m-d+1)(n-d+1)\phi(p^d)$ subgroups of group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ which is same as result in [1, 4].

3. List of Automorphisms of Group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ where $1 \leq m < n$

We know that $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n} = \{x^i y^j | x^{p^m} = y^{p^n} = e, xy = yx, i = 0, 1, \dots, p^m - 1, j = 0, 1, \dots, p^{n-1}\}$ is an abelian group of order p^{m+n} . This group is generated by two elements x and y where order of x is p^m and y is p^n .

We map y into an element of order p^n and elements of order p^n are obtained from product of elements from \mathbb{Z}_{p^m} (say α) whose order divides p^m and elements of order p^n from \mathbb{Z}_{p^n} (say β). Assume $\alpha = x^{i_1}$ with $o(\alpha)|p^m$ and $\beta = y^{j_1}$ with $o(\beta) = p^n$. So, there is no condition on i_1 and $(j_1, p^n) = 1$. So $y \mapsto x^{i_1}y^{j_1} \Rightarrow y^{p^m} \mapsto y^{j_1p^m}$. So, image of y depends upon values of i_1 and j_1 , here possibilities for i_1 and j_1 are p^m and $p^{n-1}(p-1)$ respectively. Hence, the possibilities for y are $p^{m+n-1}(p-1)$

So every element of order p of the type $y^{j_1p^{n-1}}$ from $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ is already mapped. So x maps into an element of order p^m from $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ other than elements of whose p^{m-1} power is $y^{j_1p^{n-1}}$. Hence, x maps to $x^{i_2}y^{j_2p^{n-m}}$ where $(i_2, p^m) = 1$ and there is no condition on j_2 . So, map of x depends upon values of i_2 and j_2 . Here possibilities for i_2 and j_2 are $p^{m-1}(p-1)$ and p^m respectively. Hence, the possibilities for x are $p^{m+m-1}(p-1)$.

Finally, we define an automorphism $f : \mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n} \mapsto \mathbb{Z}_p \times \mathbb{Z}_{p^n}$ as $f(y) = x^{i_1}y^{j_1}$ and $f(x) = x^{i_2}y^{j_2p^{n-m}}$ where $i_1, i_2, j_2 = 1, 2, \cdots, p^m$ with $(i_2, p^m) = 1$ and $j_1 = 1, 2, \cdots, p^n$ with $(j_1, p^n) = 1$. Hence, the total number of automorphisms are $p^{3m+n+2}(p-1)^{2^2}$ which is same as result in [6].

4. List of the Characteristic Subgroups of Group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^m}$

From [7], we know that only m+1 subgroups of group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^m} = \{x^i y^j | x^{p^m} = y^{p^m} = e, xy = yx, i = 0, 1, \dots, p^m - 1, j = 0, 1, \dots, p^{m-1}\}$ are characteristic subgroups which are listed below:-(i) $\langle e \rangle \cong \mathbb{Z}_1$

(ii) $\langle x^{p^{m-k}}, y^{p^{m-k}} \rangle \cong \mathbb{Z}_{p^k} \times \mathbb{Z}_{p^k}$ where $1 \le k \le m$

5. List of the Characteristic Subgroups of Group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ with m < nTheorem 5.1. Let $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n} = \{x^i y^j | x^{p^m} = y^{p^n} = e, xy = yx, i = 0, 1, \dots, p^m - 1, j = 0, 1, \dots, p^n - 1\}$, then list of characteristic subgroups of group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ when $1 \le m < n$ given below:-(i) $< e > \cong \mathbb{Z}_1$

 $\begin{aligned} &(i) < e \geq \mathbb{Z}_1 \\ &(ii) < x^{p^{m-k}}, y^{p^{n-k}} \geq \mathbb{Z}_{p^k} \times \mathbb{Z}_{p^k} \text{ where } 1 \leq k \leq m < n \\ &(iii) < y^{p^{n-k}} \geq \mathbb{Z}_{p^k} \text{ where } 1 \leq k \leq n-m \\ &(iv) \text{ (only for case when } p \text{ is even } prime) < x^{p^{m-1}}y^{p^{n-k}} \geq \mathbb{Z}_{p^k} \text{ where } 2 \leq k \leq n-m \\ &(v) < x^{p^{m-k_1}}, y^{p^{n-k_2}} \geq \mathbb{Z}_{p^{k_1}} \times \mathbb{Z}_{p^{k_2}} \text{ where } 1 \leq k_1 \leq m < n, k_1 < k_2 \leq n \text{ and} \\ &1 \leq k_2 - k_1 \leq n-m. \\ &(vi) \text{ (only for case when } p \text{ is even } prime) < x^{p^{m-k_1}}, x^{p^{m-k_1-1}}y^{p^{n-k_2}} \geq \mathbb{Z}_{p^{k_1}} \times \mathbb{Z}_{p^{k_2}} \end{aligned}$

where $1 \le k_1 < m < n, k_1 < k_2 \le n$ and $2 \le k_2 - k_1 \le n - m$.

Proof. Case 1:- Subgroups $\langle e \rangle \cong \mathbb{Z}_1$ and $\langle x^{p^{m-k}}, y^{p^{n-k}} \rangle \cong \mathbb{Z}_{p^k} \times \mathbb{Z}_{p^k}$ where $1 \leq k \leq m < n$

Out of $\sum_{d=0}^{m} (m-d+1)(n-d+1)\phi(p^d)$ subgroups, m+1 subgroups namely $\langle e \rangle$ and $\langle x^{p^{m-k}}, y^{p^{n-k}} \rangle$ where $1 \leq k \leq m \leq n$ have property that they are not isomorphic to any other subgroups of the group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$. Hence, image of these subgroups cannot be changed with any of the group automorphisms of the group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$, so they are characteristic subgroups of $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$.

Case 2:- Subgroups $< x^{p^{m-k}}y^{jp^{n-k}}>\cong \mathbb{Z}_{p^k}$ where $j=1,2,\cdots,p^k$ and $1\leq k\leq m< n$

Subgroups $\langle x^{p^{m-k}}y^{jp^{n-k}}\rangle$ with $j = 1, 2, \cdots, p^k$ are not characteristic subgroups of $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ if we choose automorphism $f(x) = xy^{p^{n-m}}$ and f(y) = y then CHARACTERISTIC SUBGROUPS OF A FINITE ABELIAN P-GROUP $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$

$$f(x^{p^{m-k}}y^{jp^{n-k}}) = x^{p^{m-k}}y^{(j+1)p^{n-k}} \notin x^{p^{m-k}}y^{jp^{n-k}} > \text{because } j \neq j+1 \pmod{p}$$

Case 3:- Subgroups $\langle x^{jp^{m-k+1}}y^{p^{n-k}} \rangle \cong \mathbb{Z}_{p^k}$ where $j = 1, 2, \cdots, p^{k-1} - 1$ except p^{k-2} and $2 \leq k \leq m < n$

Subgroups $\langle x^{jp^{m-k+1}}y^{p^{n-k}} \rangle$ with $j = 1, 2, \cdots, p^{k-1} - 1$ except p^{k-2} are not characteristic subgroups of $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ if we choose automorphism $f(x) = xy^{p^{n-m}}$ and $f(y) = y^2$ then $f(x^{jp^{m-k+1}}y^{p^{n-k}}) = x^{jp^{m-k+1}}y^{(jp+2)p^{n-k}} \notin \langle x^{jp^{m-k+1}}y^{p^{n-k}} \rangle$ because $1 \not\equiv jp + 2 \pmod{p}$

Case 4:- Subgroups $\langle x^j y^{p^{n-k}} \rangle \cong \mathbb{Z}_{p^k}$ where $j = 1, 2, \cdots, p^m - 1$ except p^{m-1} and $1 \le m < k \le n$

Subgroups $\langle x^j y^{p^{n-k}} \rangle$ with $j = 1, 2, \cdots, p^m - 1$ except p^{m-1} are not characteristic subgroups of $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ if we choose automorphism $f(x) = xy^{p^{n-m}}$ and $f(y) = y^2$ then $f(x^j y^{p^{n-k}}) = x^j y^{(jp^{m-k}+2)p^{n-k}} \notin \langle x^j y^{p^{n-k}} \rangle$ because $1 \neq jp^{m-k} + 2(mod p)$

Case 5:- Subgroups $\langle y^{p^{n-k}} \rangle \cong \mathbb{Z}_{p^k}$ where $1 \leq k \leq n-m$

By use of concept $1 \le k \le n-m$, we have $x^{i_1p^{n-k}} = e$. Subgroups $\langle y^{p^{n-k}} \rangle \cong \mathbb{Z}_{p^k}$ where $1 \le k \le n-m$ are characteristic subgroups of $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ because we can choose any automorphism as $y \mapsto x^{i_1}y^{j_1}$ where $(j_1, p) = 1 \implies y^{p^{n-k}} \mapsto y^{j_1p^{n-k}}$. So, we get $f(y^{p^{n-k}}) = y^{j_1p^{n-1}} \in \langle y^{p^{n-k}} \rangle$, hence we get $f(\langle y^{p^{n-k}} \rangle) = \langle y^{p^{n-k}} \rangle$.

Case 6:- Subgroups $< y^{p^{n-k}} > \cong \mathbb{Z}_{p^k}$ where $n - m < k \le n$

By use of concept $n-m < k \le n$, we have $x^{i_1 p^{n-k}} \ne e$. Subgroups $\langle y^{p^{n-k}} \rangle \cong \mathbb{Z}_{p^k}$ where $n-m < k \le n$ are not characteristic subgroups of $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ because we can choose automorphism as $y \mapsto x^{i_1 y^{j_1}}$ where $(j_1, p) = 1 \implies y^{p^{n-k}} \mapsto x^{i_1 p^{n-k}} y^{j_1 p^{n-k}}$. So, we get $f(y^{p^{n-k}}) = x^{i_1 p^{n-k}} y^{j_1 p^{n-1}} \notin \langle y^{p^{n-k}} \rangle$, hence we get $f(\langle y^{p^{n-k}} \rangle) \notin \langle y^{p^{n-k}} \rangle$.

Case 7:- Subgroups $< x^{p^{m-1}}y^{p^{n-k}} >\cong \mathbb{Z}_{p^k}$ where $1\leq k\leq n$ and p is an odd prime

Subgroups $\langle x^{p^{m-1}}y^{p^{n-k}} \rangle \cong \mathbb{Z}_{p^k}$ where $1 \leq k \leq n$ are not characteristic subgroups of $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ because we can choose automorphism as $y \mapsto y^2$ and $x \mapsto xy^{p^{n-m}}$ So, we get $f(x^{p^{m-1}}y^{p^{n-k}}) = x^{p^{m-1}}y^{p^{n-1}}y^{2p^{n-k}} \notin \langle x^{p^{m-1}}y^{p^{n-k}} \rangle$, hence we get $f(\langle x^{p^{m-1}}y^{p^{n-k}} \rangle) \notin \langle x^{p^{m-1}}y^{p^{n-k}} \rangle$ because $p^{k-1} + 2 \not\equiv 1 \pmod{p}$

Case 8:- Subgroups $\langle x^{p^{m-1}}y^{p^{n-k}} \rangle \cong \mathbb{Z}_{p^k}$ where $2 \leq k \leq n-m$

SARITA AND MANJEET JAKHAR

By use of concept $2 \leq k \leq n-m$, we have $x^{i_1p^{n-k}} = e$ and $x^{i_2p^{m-1}} = x^{p^{m-1}}$ when $(i_2, p) = 1$. Subgroups $\langle x^{p^{m-1}}y^{p^{n-k}} \rangle \cong \mathbb{Z}_{p^k}$ where $2 \leq k \leq n-m$ are characteristic subgroups of $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ because we can choose any automorphism as $y \mapsto x^{i_1}y^{j_1}$ where $(j_1, p) = 1 \implies y^{p^{n-k}} \mapsto y^{j_1p^{n-k}}$ and $x \mapsto x^{i_2}y^{j_2p^{n-m}}$ where $(i_2, p) = 1$. So, we get $f(x^{p^{m-1}}y^{p^{n-k}}) = x^{p^{m-1}}y^{j_2p^{n-1}}y^{j_1p^{n-k}} \in \langle x^{p^{m-1}}y^{p^{n-k}} \rangle$, hence we get $f(\langle x^{p^{m-1}}y^{p^{n-k}} \rangle) = \langle x^{p^{m-1}}y^{p^{n-k}} \rangle$.

Case 9:- Subgroups $< x^{p^{m-1}}y^{p^{n-k}} > \cong \mathbb{Z}_{p^k}$ where $n-m < k \leq n$

By use of concept $n - m < k \le n$, we have $x^{i_1 p^{n-k}} \ne e$ and $x^{i_2 p^{m-1}} = x^{p^{m-1}}$ when $(i_2, p) = 1$. Subgroups $< x^{p^{m-1}} y^{p^{n-k}} > \cong \mathbb{Z}_{p^k}$ where $n - m < k \le n$ are not characteristic subgroups of $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ because we can choose automorphism as $y \mapsto x^{i_1} y^{j_1}$ where $(j_1, p) = 1 \Longrightarrow y^{p^{n-k}} \mapsto x^{i_1 p^{n-k}} y^{j_1 p^{n-k}}$ and $x \mapsto x^{i_2} y^{j_2 p^{n-m}}$. So, we get $f(x^{p^{m-1}} y^{p^{n-k}}) = x^{p^{m-1}} y^{j_2 p^{n-1}} x^{i_1 p^{n-k}} y^{j_1 p^{n-k}}$. If m - 1 > n - k and with use of $(j_1, p) = 1$, we get $(j_1 + j_2 p^{k-1})$ is odd. So, $f(x^{p^{m-1}} y^{p^{n-k}}) = x^{p^{m-1}} x^{p^{n-k}} y^{(j_1+j_2 p^{k-1})p^{n-k}} \ne (j_1 + j_2 p^{k-1})$ is odd. So, $f(x^{p^{m-1}} y^{p^{n-k}}) = y^{(j_1+j_2 p^{k-1})p^{n-k}} \notin x^{p^{m-1}} y^{p^{n-k}} >$.

Case 10:- Subgroups $\langle x^{p^{m-k_2}}y^{sp^{n-k_2}}, y^{p^{n-k_1}} \rangle \cong \mathbb{Z}_{p^{k_1}} \times \mathbb{Z}_{p^{k_2}}$ where $s = 1, 2, \cdots, p^{k_2-k_1}$ and $1 \leq k_1 < k_2 \leq m < n$.

On the basis above 9 cases, we know that group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ has only characteristic subgroup of order p is $y^{p^{n-1}}$ when $1 \le m < n$, so group $< x^{p^{m-k_2}} y^{sp^{n-k_2}}, y^{p^{n-k_1}} >$ where $s = 1, 2, \dots, p^{k_2-k_1}$ and $1 \le k_1 < k_2 \le m < n$ has a characteristic subgroup of order p as $< x^{p^{m-1}} y^{sp^{n-1}} >$.

If possible, assume that subgroups $\langle x^{p^{m-k_2}}y^{sp^{n-k_2}}, y^{p^{n-k_1}} \rangle$ is characteristic subgroup of group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$. By transitivity property of characteristic subgroup, then subgroup $\langle x^{p^{m-1}}y^{sp^{n-1}} \rangle$ is a characteristic subgroup of order p from group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ which is contradiction. Hence, our supposition is wrong and we say that subgroup $\langle x^{p^{m-k_2}}y^{sp^{n-k_2}}, y^{p^{n-k_1}} \rangle \cong \mathbb{Z}_{p^{k_1}} \times \mathbb{Z}_{p^{k_2}}$ where $s = 1, 2, \cdots, p^{k_2-k_1}$ and $1 \leq k_1 < k_2 \leq m < n$ are not characteristic subgroups of $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$.

Case 11:- Subgroups $\langle x^{p^{m-k_1}}, x^{sp^{m-k_2+1}}y^{p^{n-k_2}} \rangle \cong \mathbb{Z}_{p^{k_1}} \times \mathbb{Z}_{p^{k_2}}$ where $s = 1, 2, \cdots, p^{k_2-k_1-1} - 1$ except $p^{k_2-k_1-2}$ and $1 \leq k_1 < k_2 \leq m < n$

Subgroups $\langle x^{p^{m-k_1}}, x^{sp^{m-k_2+1}}y^{p^{n-k_2}} \rangle \cong \mathbb{Z}_{p^{k_1}} \times \mathbb{Z}_{p^{k_2}}$ where $1 \leq k_1 < k_2 \leq m < n$ and $s = 1, 2, \cdots, p^{k_2-k_1-1} - 1$ except $p^{k_2-k_1-2}$ are not characteristic subgroups of $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ if we choose automorphism $f(x) = xy^{p^{n-m}}$ and $f(y) = y^2$ then $f(x^{sp^{m-k_2+1}}y^{p^{n-k_2}}) = x^{sp^{m-k_2+1}}y^{(sp+2)p^{n-k_2}} \notin \langle x^{p^{m-k_1}}, x^{sp^{m-k_2+1}}y^{p^{n-k_2}} \rangle$ because $1 \not\equiv sp + 2(mod \ p)$

Case 12:- Subgroups $\langle x^{p^{m-k_1}}, x^s y^{p^{n-k_2}} \rangle \cong \mathbb{Z}_{p^{k_1}} \times \mathbb{Z}_{p^{k_2}}$ where $1 \le k_1 \le m < k_2 \le n$ and $s = 1, 2, \cdots, p^{m-k_1-1} - 1$ except p^{m-k_1-2} .

Subgroups $\langle x^{p^{m-k_1}}, x^s y^{p^{n-k_2}} \rangle \cong \mathbb{Z}_{p^{k_1}} \times \mathbb{Z}_{p^{k_2}}$ where $s = 1, 2, \cdots, p^{m-k_1-1}-1$ except p^{m-k_1-2} and $1 \leq k_1 \leq m < k_2 \leq n$ are not characteristic subgroups of $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ if we choose automorphism $f(x) = xy^{p^{n-m}}$ and $f(y) = y^2$ then $f(x^s y^{p^{n-k_2}}) = x^s y^{(sp^{k_2-m}+2)p^{n-k_2}} \notin \langle x^{p^{m-k_1}}, x^s y^{p^{n-k_2}} \rangle$ because $1 \notin (sp^{k_2-m}+2)(mod p)$

Case 13:- Subgroups $\langle x^{p^{m-k_1}}, y^{p^{n-k_2}} \rangle \cong \mathbb{Z}_{p^{k_1}} \times \mathbb{Z}_{p^{k_2}}$ where $1 \le k_1 \le m < n$, $k_1 < k_2 \le n$ and $1 \le k_2 - k_1 \le n - m$.

Subgroups $\langle x^{p^{m-k_1}}, y^{p^{n-k_2}} \rangle \cong \mathbb{Z}_{p^{k_1}} \times \mathbb{Z}_{p^{k_2}}$ where $1 \leq k_1 \leq m < n, k_1 < k_2 \leq n$ and $1 \leq k_2 - k_1 \leq n - m$ are characteristic subgroups of $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ because we can choose any automorphism as $y \mapsto x^{i_1}y^{j_1}$ where $(j_1, p) = 1 \Longrightarrow y^{p^{n-k_2}} \mapsto x^{i_1p^{n-k_2}}y^{j_1p^{n-k_2}}$ and $x \mapsto x^{i_2}y^{j_2p^{n-m}}$ where $(i_2, p) = 1 \Longrightarrow x^{p^{m-k_1}} \mapsto x^{i_2p^{m-k_1}}y^{j_2p^{n-k_1}}$. So, we get $f(\langle x^{p^{m-k_1}}, y^{p^{n-k_2}} \rangle) = \langle x^{i_2p^{m-k_1}}y^{j_2p^{n-k_1}}, x^{i_1p^{n-k_2}}y^{j_1p^{n-k_2}} \rangle$. By use of concept $1 \leq k_2 - k_1 \leq n - m$, we have $m - k_2 < m - k_1 \leq n - k_2 < n - k_1$, it is easily to see that $\langle x^{p^{m-k_1}}, y^{p^{n-k_2}} \rangle = \langle x^{i_2p^{m-k_1}}y^{j_2p^{n-k_1}}, x^{i_1p^{n-k_2}}y^{j_1p^{n-k_2}} \rangle$

Case 14:- Subgroups $\langle x^{p^{m-k_1}}, y^{p^{n-k_2}} \rangle \cong \mathbb{Z}_{p^{k_1}} \times \mathbb{Z}_{p^{k_2}}$ where $1 \le k_1 \le m < n$, $k_1 < k_2 \le n$ and $k_2 - k_1 > n - m$.

By use of concept $k_2 - k_1 > n - m$, we have $m - k_1 > n - k_2$ and above case it is easily to see that $\langle x^{p^{m-k_1}}, y^{p^{n-k_2}} \rangle \neq \langle x^{i_2 p^{m-k_1}} y^{j_2 p^{n-k_1}}, x^{i_1 p^{n-k_2}} y^{j_1 p^{n-k_2}} \rangle$. Hence, subgroup $\langle x^{p^{m-k_1}}, y^{p^{n-k_2}} \rangle$ are not characteristic subgroups of $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$.

Case 15:- Subgroups $\langle x^{p^{m-k_1}}, x^{p^{m-k_1-1}}y^{p^{n-k_2}} \rangle \cong \mathbb{Z}_{p^{k_1}} \times \mathbb{Z}_{p^{k_2}}$ where $1 \leq k_1 < m < n, k_1 < k_2 \leq n$ and $k_2 - k_1 \geq 2$ for every odd prime.

Subgroups $\langle x^{p^{m-k_1}}, x^{p^{m-k_1-1}}y^{p^{n-k_2}} \rangle \cong \mathbb{Z}_{p^{k_1}} \times \mathbb{Z}_{p^{k_2}}$ where where $1 \leq k_1 < m < n, k_1 < k_2 \leq n$ and $k_2 - k_1 \geq 2$ are not characteristic subgroups of $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ because we can choose automorphism as $y \mapsto y^2$ and $x \mapsto xy^{p^{n-m}}$ So, we get $f(x^{p^{m-k_1-1}}y^{p^{n-k_2}}) = x^{p^{m-k_1-1}}y^{(p^{k_2-k_1-1}+2)p^{n-k_2}} \notin \langle x^{p^{m-k_1}}, x^{p^{m-k_1-1}}y^{p^{n-k_2}} \rangle$, hence we get $f(\langle x^{p^{m-k_1}}, x^{p^{m-k_1-1}}y^{p^{n-k_2}} \rangle) \notin \langle x^{p^{m-k_1}}, x^{p^{m-k_1-1}}y^{p^{n-k_2}} \rangle$ because $(p^{k_2-k_1-1}+2) \not\equiv 1 \pmod{p}$

Case 16:- Subgroups $\langle x^{p^{m-k_1}}, x^{p^{m-k_1-1}}y^{p^{n-k_2}} \rangle \cong \mathbb{Z}_{p^{k_1}} \times \mathbb{Z}_{p^{k_2}}$ where $1 \leq k_1 < m < n, k_1 < k_2 \leq n$ and $2 \leq k_2 - k_1 \leq n - m$ for even prime only.

Subgroups $\langle x^{p^{m-k_1}}, x^{p^{m-k_1-1}}y^{p^{n-k_2}} \rangle \cong \mathbb{Z}_{p^{k_1}} \times \mathbb{Z}_{p^{k_2}}$ where $1 \leq k_1 < m < n$, $k_1 < k_2 \leq n$ and $2 \leq k_2 - k_1 \leq n - m$ are characteristic subgroups of $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ because we can choose any automorphism as $y \mapsto x^{i_1}y^{j_1}$ where $(j_1, p) = 1 \implies$ $\begin{array}{l} y^{p^{n-k_2}} \mapsto x^{i_1p^{n-k_2}} y^{j_1p^{n-k_2}} \text{ and } x \mapsto x^{i_2} y^{j_2p^{n-m}} \text{ where } (i_2,p) = 1 \implies x^{p^{m-k_1}} \mapsto x^{i_2p^{m-k_1}} y^{j_2p^{n-k_1}}.\\ \text{So, we get value of } f(< x^{p^{m-k_1}}, x^{p^{m-k_1-1}} y^{p^{n-k_2}} >) \text{ as } < x^{i_2p^{m-k_1}} y^{j_2p^{n-k_1}}, x^{i_2+i_1p^{((n-m)-(k_2-k_1-1))}} y^{(j_1+j_2p^{k_2-k_1-1})p^{n-k_2}} >.\\ \text{By use of concept } 2 \le k_2 - k_1 \le n-m, \text{ we have } m - k_2 < m - k_1 \le n - k_2 < n - k_1, \\ \text{it is easily to see that subgroup } < x^{p^{m-k_1}}, x^{p^{m-k_1-1}} y^{p^{n-k_2}} > \text{ is same to subgroup } < x^{i_2p^{m-k_1}} y^{j_2p^{n-k_1}}, x^{i_2+i_1p^{((n-m)-(k_2-k_1-1))}} y^{(j_1+j_2p^{k_2-k_1-1})p^{n-k_2}} >.\\ \text{Hence, we get } f(< x^{p^{m-k_1}}, x^{p^{m-k_1-1}} y^{p^{n-k_2}} >) = < x^{p^{m-k_1}}, x^{p^{m-k_1-1}} y^{p^{n-k_2}} > \\ \text{Case 17:- Subgroups } < x^{p^{m-k_1}}, x^{p^{m-k_1-1}} y^{p^{n-k_2}} >\cong \mathbb{Z}_{p^{k_1}} \times \mathbb{Z}_{p^{k_2}} \text{ where } 1 \le k_1 < x^{p^{k_2}} \end{bmatrix}$

Case 17:- Subgroups $\langle x^{p-1}, x^{p-1}, y^{p-1} \rangle \cong \mathbb{Z}_{p^{k_1}} \times \mathbb{Z}_{p^{k_2}}$ where $1 \leq k_1 < m < n, k_1 < k_2 \leq n$ and $k_2 - k_1 > n - m$ for even prime only.

By use of concept $n - m < k_2 - k_1$, we have $m - k_1 > n - k_2$. Subgroups $< x^{p^{m-k_1}}, x^{p^{m-k_1-1}}y^{p^{n-k_2}} > \cong \mathbb{Z}_{p^{k_1}} \times \mathbb{Z}_{p^{k_2}}$ where $1 \le k_1 < m < n, k_1 < k_2 \le n$ and $k_2 - k_1 > n - m$ are not characteristic subgroups of $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ because we can choose automorphism as $y \mapsto x^{i_1}y^{j_1}$ where $(j_1, p) = 1$ and $x \mapsto x$. So, we get $f(< x^{p^{m-k_1}}, x^{p^{m-k_1-1}}y^{p^{n-k_2}} >) = < x^{p^{m-k_1}}, x^{p^{m-k_1-1}}x^{p^{n-k_2}}y^{p^{n-k_2}} >$. If $m - k_1 - 1 = n - k_2$, we get $< x^{p^{m-k_1}}, x^{p^{m-k_1-1}}x^{p^{n-k_2}}y^{p^{n-k_2}} > \neq < x^{p^{m-k_1}}, x^{p^{m-k_1-1}}y^{p^{n-k_2}} >$. If $m - k_1 - 1 > n - k_2$, we get $(p^{(k_2 - k_1) - (n - m) - 1} + 1)$ is odd. So, $< x^{p^{m-k_1}}, x^{p^{m-k_1-1}}x^{p^{n-k_2}}y^{p^{n-k_2}} > \neq < x^{p^{m-k_1}}, x^{p^{m-k_1-1}}y^{p^{n-k_2}} >$.

Finally, we combine the results of section 4 and 5 in next theorem

Theorem 5.2. Let $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n} = \{x^i y^j | x^{p^m} = y^{p^n} = e, xy = yx, i = 0, 1, \cdots, p^m - 1, j = 0, 1, \cdots, p^n - 1\}$, then list of characteristic subgroups of group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ when $1 \leq m \leq n$ given below:-(i) $< e > \cong \mathbb{Z}_1$ (ii) $< x^{p^{m-k}}, y^{p^{n-k}} > \cong \mathbb{Z}_{p^k} \times \mathbb{Z}_{p^k}$ where $1 \leq k \leq m \leq n$ (iii) $< y^{p^{n-k}} > \cong \mathbb{Z}_{p^k}$ where $1 \leq k \leq n - m$ (iv) (only for case when p is even prime) $< x^{p^{m-1}}y^{p^{n-k}} > \cong \mathbb{Z}_{p^k}$ where $2 \leq k \leq n - m$ (v) $< x^{p^{m-k_1}}, y^{p^{n-k_2}} > \cong \mathbb{Z}_{p^{k_1}} \times \mathbb{Z}_{p^{k_2}}$ where $1 \leq k_1 \leq m < n, k_1 < k_2 \leq n$ and $1 \leq k_2 - k_1 \leq n - m$. (vi) (only for case when p is even prime) $< x^{p^{m-k_1}}, x^{p^{m-k_1-1}}y^{p^{n-k_2}} > \cong \mathbb{Z}_{p^{k_1}} \times \mathbb{Z}_{p^{k_2}}$ where $1 \leq k_1 < m < n, k_1 < k_2 \leq n$ and $2 \leq k_2 - k_1 \leq n - m$.

6. Lattice of Characteristic Subgroups of group $\mathbb{Z}_{p^2} \times \mathbb{Z}_{p^5}$ where p is prime

Now we write one already known results which are very useful to form characteristic subgroup lattice for group $\mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}$ where p may be even or odd prime.

Theorem 6.1. [10] Characteristic property is transitive. That is, if N is characteristic subgroup of K and K is characteristic subgroup of G, then N is characteristic subgroup of G. CHARACTERISTIC SUBGROUPS OF A FINITE ABELIAN P-GROUP $\mathbb{Z}_{p^m}\times\mathbb{Z}_{p^n}$

- $\langle x, y \rangle$ $< x, y^3 >$ $< x^3, y^3 >$ $< y^9 >$ $< x, y^9 >$ $< x^3, y^9 >$ $< x, y^{27} >$ $< y^{27}$ $< x^3, y^{27} >$ $< y^{81} >$ $< x^3, y^{81} >$ $\langle e \rangle$
- 6.1. Lattice of Characteristic Subgroups of group $\mathbb{Z}_9 \times \mathbb{Z}_{243}$.

Fig-1 Lattices of characteristic subgroups $\mathbb{Z}_9\times\mathbb{Z}_{243}$

6.2. Lattice of Characteristic Subgroups of group $\mathbb{Z}_4 \times \mathbb{Z}_{32}$.

SARITA AND MANJEET JAKHAR

Fig-2 Lattices of characteristic subgroups $\mathbb{Z}_4\times\mathbb{Z}_{32}$

References

1. Admasu, F.S. and Sehgal, A.(2021). Counting subgroups of fixed order in finite abelian groups. *Journal of Discrete Mathematical Sciences and Cryptography*, 24(1), 263-276.

CHARACTERISTIC SUBGROUPS OF A FINITE ABELIAN P-GROUP $\mathbb{Z}_{p^m}\times\mathbb{Z}_{p^n}$

- Baer, R., (1939). The Significance of the System of Subgroups for the Structure of the Group. American Journal of Mathematics, 61(1), 1-44.
- Kerby , B.L. and Rode , E. (2011). Characteristic subgroups of finite abelian groups Communications in Algebra, 39(4), 1315 – 1343.
- Sehgal, A.and Kumar, Y.,(2013). On Number of Subgroups of finite Abelian Group Z_m ⊗ Z_n. International Journal of Algebra, 7(19), 915-923.
- Sehgal, A., Sehgal, S. and Sharma, P.K., (2015). The number of subgroups of a finite abelian p-group of rank two. *Journal for Algebra and Number theory Academia*, 5(1), 23-31.
- Sehgal, A., Sehgal, S. and Sharma, P.K., (2015). The number of automorphism of a finite abelian group of rank two. *Journal of Discrete Mathematical Sciences and Cryptography*, 19(1), 163-171.
- 7. Sehgal, A. and Jakhar, M.,(2017). Characteristic Subgroups of a finite Abelian Group $Z_n \times Z_n$. Annals of Pure and Applied Mathematics, 14(1), 119-123.
- 8. Sarita and Jakhar, M., (2021). Characteristic Subgroups of a Finite Abelian p-Group $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$. Journal of Mathematical Control Science and Applications, 7(2), 155-162
- Shelash, H. B. and Ashrafi, A. R.,(2021). The Number of Subgroups of a Given Type in Certain Finite Groups. Iranian Journal of Mathematical Sciences and Informatics, 16 (2) :73-87
- 10. Gallian, J. A., Contemporary Abstract Algebra, Norosa, 1999.
- 11. The GAP Team, GAP Groups, Algorithms, and Programming, Version 4.7.5; 2014.

SARITA: RESEARCH SCHOLAR, DEPARTMENT OF MATHEMATICS, NIILM UNIVERSITY, KAITHAL-136037, INDIA

Email address: sehgalsarita7@gmail.com

MANJEET JAKHAR: DEPARTMENT OF MATHEMATICS, NIILM UNIVERSITY, KAITHAL-136037, INDIA *Email address*: dr.manjeet.jakhar@gmail.com