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Abstract. In this article, we indicate a method for constructing differential

invariants of foliations of curves on a plane in various geometries. It is as-
sumed that the geometric structure of the plane is given by the Lie group of
admissible transformations. The foliations of curves on the Euclidean and de
Sitter planes are considered separately.

1. Introduction

Let M be an open connected domain of R2 and let γ : M −→ R be foliation
of curves. Such a foliation can be defined locally using the function f ∈ C∞(M)
whose differential does not vanish on M . The level lines of this function coincide
with the foliation curves. The function f is defined up to gauge transformations
f 7−→ F (f), F : R −→ R, where F is a smooth function.

Consider a three-dimensional manifold Ẽ = M ×R and one-dimensional locally

trivial bundle π̃ : Ẽ −→ M . Let x, y be local coordinates on M and let u be
a coordinate on R. Each local section s̃f : (x, y) 7→ (x, y, f(x, y)) of this bundle
defines a foliation of the curves f = c under the condition df ̸= 0.

Let a Lie group G acts on M : ϕ : (x, y) 7−→ (ϕ1(x, y), ϕ2(x, y)). Let F be the
function defining the gauge transformation. Define a mapping

ϕF : (x, y, u) 7−→ (ϕ1(x, y), ϕ2(x, y), F (u)).

Such transformations considered for different ϕ and F form a Lie pseudogroup

G̃. Differential invariants of this Lie pseudogroup are differential invariants of
the foliation of curves. The infinitesimal analogue of the gauge transformation is

the vector field H = h(u)∂u and the Lie algebra G̃ of the Lie pseudogroup G̃ is
generated by vector fields from Lie algebras G and a vector field H.

In order to get rid of the infinite-dimensional part of the Lie algebra G̃, instead of
the function f we consider the function fx/fy, assuming that the partial derivative
fy does not vanish on the Lie algebra G and the vector field H. This function is
a differential invariant with respect to gauge transformations. This observation
makes it possible to pass from an infinite-dimensional Lie algebra to a finite-
dimensional one and, therefore, from Lie pseudogroups to Lie groups. Instead of
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2 IRINA STRELTSOVA

the space Ẽ, consider the space E with coordinates (x, y, v), and instead of the
bundle π̃ we consider the bundle π : (x, y, v) 7−→ (x, y).

2. Jet space Jk(π)

For a function f ∈ C∞(M) such that fy ̸= 0, we define a local section of the
bundle π:

sf : (x, y) 7→
(
x, y,

fx(x, y)

fy(x, y)

)
. (2.1)

Each such section locally defines a foliation of curves. Let Jk(π) be the k-jet space
[2] of local sections of the bundle π with local coordinates v(n,m) (0 ≤ n+m ≤ k),
where

v(n,m)([sf ]
k
a) =

∂n+m

∂xnym

∣∣∣∣
a

(
fx
fy

)
.

and v(0,0) = v. Here [sf ]
k
a is a k-jet at a point a of the section sf : M → E.

Prolongations of the Lie group G and its Lie algebra G into the space Jk( pi) we
denote by G(k) and G(k) respectively.

Differential 1-forms

ωn,m = dvn,m − vn+1,mdx− vn,m+1dy, 0 ≤ n+m ≤ k (2.2)

define the Cartan distribution C(k) on the space Jk(π):

C(k) : Jk(π) ∋ θ 7→ C(k)(θ) =
∩

0≤n+m≤k

kerωn,m ⊂ Tθ(J
k(π)).

The function h = ω0,0(X) is called a generation function of a vector field X on
J0(π).

Let X(k) be a prolongation of the vector field X into the space Jk(π):

X(k) = − ∂h

∂v1,0

d

dx
− ∂h

∂v0,1

d

dy
+

∑
0≤n+m≤k

dn+mh

dxndym
∂

∂vn,m
. (2.3)

Here d
dx and d

dy are operators of total derivatives.

An evolutionary part [4] of vector field (2.3) is

S(k) =
∑

0≤n+m≤k

dn+mh

dxndym
∂

∂vn,m
.

Define projections πk,r : Jk(π) → Jr(π), (k = 0, 1, 2, . . . ; r ≤ k) where

πk,r : (x, y, vn,m) 7→ (x, y, vp,q), 0 ≤ n+m ≤ k; 0 ≤ p+ q ≤ r.

3. Differential invariants

A function J on the space Jk(π) is called a differential invariant of order ≤ k
of the Lie group GS, if (φ

(k))∗(J) = J for each transformation φ ∈ G (see, for
example, [1]).

A differential invariant J of order ≤ k satisfies to the differential equation

X(k)(J) = 0 (3.1)

for each vector field X ∈ G.

220



DIFFERENTIAL INVARIANTS OF CURVES’ FOLIATIONS 3

The set of all differential invariants forms an algebra with respect to addition
and multiplication operations.

Let us describe a method for calculating the dimensions of algebras of differential
invariants of order ≤ k (see [5]).

Suppose that G acts transitively on M . Let a be some point on the manifold
M . Since the Lie group G acts transitively, any point can be taken as a point a.
Consider the smooth manifold N (k)(a) = π−1

k,0(a) with coordinates vn,m, (n+m ≤
k).

Let Ga ⊂ G be the isotropy group of the point a. Transformations from the

prolonged Lie group G
(k)
a preserve the manifold Nk

a .
Let Ga ⊂ G be the corresponding to Ga Lie subalgebra. We call this subalgebra

the stabilizer of the point a. Note that the point a is a singular point for each
vector field from Ga.

Suppose that vector fields Y
(k)
1 , . . . , Y

(k)
r form a basis of the stabilizer G(k)

a

and let S
(k)
1 , . . . , S

(k)
r be their evolutionary parts. Vector fields S

(k)
1 , . . . , S

(k)
r are

tangent to Nk
a and let S

(k)

1 , . . . , S
(k)

r be their restrictions on Nk
a .

Note that k-jet of a section sf crosses N (k)(a) at only one point θ. Therefore
the dimension of the algebra of differential invariants of order ≤ k at the point θ

is equal to the rank of the tangent subspace Span(S
(k)

1 , . . . , S
(k))

r )|θ ⊂ TθN
(k)(a).

4. Invariant differentiations

An operator ∇ on the space J∞(π) is called an invariant differentiation if it
commutes with each prolongation of a vector field from the Lie algebra G.

Invariant differentiations can be used for constructing differential invariants.
For example, if J is a differential invariant, then the function ∇(J) is so too.
Indeed, for any vector field X ∈ G(∞) then X(J) = 0. On the other hand, since
[∇, X] = 0, then X(∇(J)) = 0.

Moreover, if ∇1 and ∇2 are two invariant differentiations and their commutator

[∇1,∇2] = J1∇1 + J2∇2, (4.1)

then the functions J1 and J2 are differential invariants.

5. Euclidean plane

Consider Euclidean plane with the metric g = dx2 + dy2. The Lie group of
motions consists of parallel translations and rotations. Corresponding Lie algebra
is generated by the vector fields

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = −y

∂

∂x
+ x

∂

∂y
.

Their prolongations into the 1-jet space are

X
(1)
1 =

∂

∂x
, X

(1)
2 =

∂

∂y
, X

(1)
3 = −y

∂

∂x
+ x

∂

∂y
− fy

∂

∂fx
+ fx

∂

∂fy
.
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In coordinates x, y, v = v(0,0) on J0(π), these vector fields have the form

Y1 =
∂

∂x
, Y2 =

∂

∂y
, Y3 = −y

∂

∂x
+ x

∂

∂y
− (v2 + 1)

∂

∂v
.

Theorem 5.1. The operators

∇1 =
1√

1 + v2

(
− d

dx
+ v

d

dy

)
and ∇2 =

1√
1 + v2

(
v
d

dx
+

d

dy

)
are invariant differentiations.

Using formula (4.1) we get two differential invariants of first order

J1 =
(vvy − vx)

2

(v2 + 1)3
, and J2 =

(vvx + vy)
2

(v2 + 1)3
.

In this case [∇1,∇2] = −J1∇1 + J2∇2.
We obtain second-order differential invariants by acting on them with invariant

differentiations:

J11 = ∇1(J1), J21 = ∇2(J1), J12 = ∇1(J2), J22 = ∇2(J2). (5.1)

We indicate their coordinate representations:

J11 =
1

(v2 + 1)3
(v4vyy + (−2vxy − 2v2y)v

3 + (vxx + 5vyvx + vyy)v
2+

+ (−2vxy + v2y − 3v2x)v − vyvx + vxx),

J21 =
1

(v2 + 1)3
(v4vxy + (−2vyvx − vxx − vyy)v

3 + (3v2x + 2v2y)v
2+

+ (4vyvx − vxx + vyy)v − vxy + v2y),

J12 =
1

(v2 + 1)3
(v4vxy + (−2vyvx − vxx + vyy)v

3 + (2v2x − 3v2y)v
2+

+ (4vyvx − vxx + vyy)v − v2x − vxy),

J22 =
1

(v2 + 1)3
(vxxv

4 + (2vxy − 2v2x)v
3 + (vyy − 5vyvx + vxx)v

2+

+ (2vxy + v2x − 3v2y)v + vyy + vyvx).

Here vx = v(1,0), vy = v(0,1), vxx = v(2,0), . . . .

Theorem 5.2. The dimension of the algebra of differential invariants of order
≤ k is ν(k) = Ck

k+2 − 1, and the number of independent differential invariants
whose order is k is k + 1.

Proof. For any k ≥ 0 the dimension of the Lie algebra G(k), and therefore the
dimension of an orbit in general position, is three. The dimension of the space
of k-jets is dim Jk(π) = Ck

k+2 + 2. Since the number of independent differential
invariants of order ≤ k coincides with the codimension of the orbit in general
position, it is equal to ν(k) = Ck

k+2 − 1. Therefore, the number of differential
invariants whose order is k is µ(k) = ν(k)− ν(k − 1) = k + 1. �
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DIFFERENTIAL INVARIANTS OF CURVES’ FOLIATIONS 5

The constructed second-order differential invariants J11, J21, J12, J22 are func-
tionally dependent. Indeed, according to theorem 5.2, there should only be three
differential second-order invariants. In our case

J2
1 + J2

2 − J12 + J21 = 0. (5.2)

Applying invariant differentiations to second-order differential invariants, we
obtain third-order invariants: Jijk = ∇i(∇j(Jk)) (i, j, k = 1, 2).

Compositions of the operators ∇1 ◦ ∇2 and ∇2 ◦ ∇1 give the same invariants
modulo lower-order invariants. Thus, we get six third-order invariants: J111, J112,
J211, J212, J221, J222.

We get 12 invariants whose order is not higher than three. According to the
theorem 5.2, independent invariants of order ≤ 3 should be nine. Therefore, there
must be three relations between them. The first relation is the relation (5.2). The
other two we can obtain by applying the differential operators ∇1 and ∇2 to (5.2).

Similarly, we can obtain differential invariants of any order.

Theorem 5.3. The algebra of differential invariants of the foliation of curves on
the Euclidean plane is generated by differential invariants J1 and J2 and by two
invariant differentiations ∇1 and ∇2.

6. De Sitter plane

Like Minkowski geometry, de Sitter geometry is one of the formalizations of
the theory of relativity. Model de Sitter universe was proposed in [6, 7]. Unlike
Minkowski geometry, it is better suited to describe a nontrivial gravitational field,
in particular, the expansion effect of the universe [8]. The problem of classifying
curves on the de Sitter plane is considered in [9].

We consider the upper half-plane

M = R2
+ = {(x, y) ∈ R2|y > 0},

with the metric

gS =
dx2 − dy2

y2
.

as a model of this space. this half-plane we call de Sitter plane.
The proper motions generate a 3-dimensional Lie group, which we denote by

GS and called de Sitter group. This group is generated by translations by x, the
transformation

Φt : x 7−→ − 2(−ty2 + tx2 − 2x)

t2x2 − 4tx− t2y2 + 4
, y 7−→ 4y

t2x2 − 4tx− t2y2 + 4

and homotheties.
The corresponding Lie algebra GS is generated by the vector fields

X =
∂

∂x
, Y =

(
x2

2
+

y2

2

)
∂

∂x
+ xy

∂

∂y
, H = x

∂

∂x
+ y

∂

∂y
.
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Their prolongations into the 1-jet space are

X(1) =
∂

∂x
,

Y (1) =

(
x2

2
+

y2

2

)
∂

∂x
+ xy

∂

∂y
+ (−xux − yuy)

∂

∂ux
+ (−yux − xuy)

∂

∂y
,

H(1) =x
∂

∂x
+ y

∂

∂y
− ux

∂

∂ux
− uy

∂

∂y
.

In coordinates x, y, v = v(0,0) on J0(π), these vector fields have the form

Y1 =
∂

∂x
,

Y2 =

(
x2

2
+

y2

2

)
∂

∂x
+ xy

∂

∂y
+ y(−1 + v2)

∂

∂v
,

Y3 =x
∂

∂x
+ y

∂

∂y
.

Theorem 6.1. The operators

∇1 =
y√

1− v2

(
v
d

dx
− d

dy

)
and ∇2 =

y√
1− v2

(
− d

dx
+ v

d

dy

)
are invariant differentiations.

Using formula (4.1), we get first order differential invariants

J1 =
v − v3 + yvvx − yvy

(−1 + v2)
3/2

, J2 =
yvvy + v2 − 1− yvx

(−1 + v2)
3/2

.

As above, we obtain second-order differential invariants by acting on them op-
erators ∇1 and ∇2:

J11 =
1√

1− v2(−1 + v2)5/2
(vxxv

4 + (−2vxy − 2v2x)v
3 + (5vxvy − vxx + vyy)v

2+

(−v2x − 3v2y + 2vxy)v − vyy + vxvy)y
2,

J21 =− 1√
1− v2(−1 + v2)5/2

(((yvxy + vx)v
4 − (2(vxvy +

1

2
vyy +

1

2
vxx))yv

3+

((2v2x + 3v2y)y − 2vx)v
2 − (4(vxvy −

1

4
vxx − 1

4
vyy))yv + (v2x − vxy)y + vx)y),

J12 =
1√

1− v2(−1 + v2)5/2
(((yvxy − vx)v

4 − (2(vxvy +
1

2
vyy +

1

2
vxx))yv

3+

((2v2y + 3v2x)y + 2vx)v
2 − (4(vxvy −

1

4
vxx − 1

4
vyy))yv + (−vxy + v2y)y − vx)y),

J22 =− 1√
1− v2(−1 + v2)5/2

y2(vyyv
4 + (−2vxy − 2v2y)v

3 + (5vxvy + vxx − vyy)v
2+

(−3v2x + 2vxy − v2y)v + vxvy − vxx).
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DIFFERENTIAL INVARIANTS OF CURVES’ FOLIATIONS 7

Theorem 5.2 is true for de Sitter plane too.

Theorem 6.2. The algebra of differential invariants of the foliation of curves on
the de Sitter plane is generated by differential invariants J1 and J2 and by two
invariant differentiations ∇1 and ∇2.

Remark 6.3. The described method for finding differential invariants can be ap-
plied to problems of classifying curves foliations in other geometries. In addition,
it is applicable to the classification problems of certain classes of differential equa-
tions (see, for example, [3]).
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