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Abstract. Deformations (special two-parameter families of probability mea-

sures) {Qn
k , 0 ≤ k ≤ n < ∞} and the corresponding deformed stochastic bases

of the 1st and 2nd kind with discrete time were axiomatically determined by
the first author in 2008. Subsequently, he and O.V. Nazarko laid the founda-

tions of a stochastic analysis on these structures. The present work continues
this topic. The main result of the paper is the theorem, which proves the
formula for representing measures {Qn

k , 0 ≤ k < n < ∞} by the measures

{Qi
i, 0 ≤ i < ∞}. This construction is important for the development of

the theory of deflators on deformed structures. The paper also gives the
most general definition of a deformed stochastic basis of the second kind with
continuous time. Some important properties of this object are given.

1. Introduction

Let (Ω, (Ft)
∞
t=0) be a filtered space with continuous (or discrete) time. Denote

by F∞ the least σ-field containing all Ft. If (Ω,F , P ) is a probability space and
G is a sub-σ-field of the σ-field F , then we use the notation

EP
G f = EP [f |G].

Consider a family Q = (Qt
s,Ft){0≤s<t<∞} of probability measures Qt

s on Ft

and generated by them the family of operators E = (Et
s){0≤s<t<∞} of conditional

expectation

Et
sf := E

Qt
s

Fs
f,

where f is a non-negative Ft-measurable random variable (r.v.).

Definition 1.1. A triplet

(Ω,Q,E) (1.1)

is called deformed stochastic basis (DSB).

In what follows, we denote the absolute continuity of measures by the symbol
<<, and the equivalence of measures by the symbol ∼.
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2 I. PAVLOV, I. TSVETKOVA, T. VOLOSATOVA

Definition 1.2. A DSB (1.1) is called deformed stochastic basis of the 2nd kind
(DSB2) if the following conditions are fulfilled:

1) ∀0 ≤ s < r < t < ∞ Qr
s|Fs << Qt

s|Fs ;
2) ∀0 ≤ s < r < t < ∞ Qr

s << Qt
r|Fr ;

3) ∀0 ≤ s < r < t < ∞ and for any Ft-measurable r.v. f ≥ 0 the equality

Et
sf = Er

sE
t
rf. (1.2)

is satisfied Qr
s -almost surely (a.s.). If instead of 1) the stronger condition

1′) ∀0 ≤ s < r < t < ∞ Qr
s|Fs = Qt

s|Fs

is satisfied, then such DSB2 is called regular.

Corollary 1.3. It evidently follows from the property 2) of Definition 1.2 that
∀0 ≤ s < r ≤ t < u < ∞ the relation Qr

s << Qu
t |Fr is satisfied.

Corollary 1.4. From the property 3) of Definition 1.2 it follows that ∀0 ≤ s =
s0 < s1 < · · · < sn = t < ∞ and for any non-negative Ft-mesurable r.v. f the
equality

Et
sf = Es1

s Es2
s1 . . . E

t
sn−1

f. (1.3)

is satisfied Qs1
s -a.s.

Proposition 1.5. If DSB2 (Ω,Q,E) is regular, then

a) the equalities (1.2) and (1.3) are satisfied Qt
s -a.s.;

b) ∀0 ≤ s = s0 < s1 < · · · < sn = t < ∞ and ∀A ∈ Ft

Qt
s(A) = EQs1

s Es2
s1 . . . E

t
sn−1

IA; (1.4)

c) ∀0 ≤ s < r < t < ∞ Qr
s = Qt

s|Fr .

Proof. The proof of a) is trivial. Let us prove b). Using (1.3), we have:

Qt
s(A) = EQt

sEt
s(IA) = EQt

sEQs1
s Es2

s1 . . . E
t
sn−1

IA.

Applying regularity condition Qs1
s |Fs = Qt

s|Fs (c.f. Definition 1.2), we obtain
(1.4). The property c) follows from b). �

Proposition 1.6. If DSB (1.1) satisfies the property 2) from Proposition 1.5 and
the equalities

Qt
s(A) = EQr

sEt
rIA (1.5)

are fulfilled ∀0 ≤ s < r < t < ∞ and ∀A ∈ Ft, then (1.1) is a regular DSB2.

Proof. From (1.5) it follows trivially that ∀0 ≤ s < r < t < ∞ Qr
s = Qt

s|Fr .
Thus, the regularity is proved. Let us prove now the equalities (1.2).

It follows from (1.5) that for any Ft-mesurable r.v. f ≥ 0

EQt
s(f) = EQr

sEt
rf. (1.6)

Let A ∈ Fs. We have EQt
s [IAE

t
sf ] = EQt

s(IAf). On the other hand, using the

equalityQr
s = Qt

s|Fr , we obtain EQt
s [IAE

r
sE

t
rf ] = EQr

s [IAE
r
sE

t
rf ] = EQr

sEt
r(IAf).

Applying (1.6) to r.v. IAf , we get the equality (1.2) Qt
s-a.s. and hence Qr

s-a.s. �
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CONSTRUCTION OF DEFORMED STOCHASTIC BASES OF THE 2ND KIND 3

Corollary 1.7. Consider a sequence of probability measures
(
Qs

s−1,Fs

)
s=1,2,...

with the property:

Qs
s−1 << Qs+1

s |Fs . (1.7)

Then the formula

Qt
s(A) = EQs+1

s Es+2
s+1 . . . E

t
t−1IA, (1.8)

where s < t and A ∈ Ft, defines a regular DSB2 with discrete time.

2. Closable DSB2

Definition 2.1. DSB2 (Ω,Q,E) is called closable if ∀0 ≤ t < ∞ there exists on
Ft a probability measure Qt

t (with associated identity operator Et
t on the set of

non-negative Ft-measurable r.v.) such that the property 2) of Definition 1.2 is
fulfilled ∀0 ≤ s ≤ r ≤ t < ∞ (i.e. ∀s < t Qs

s << Qt
s|Fs and Qt

s << Qt
t).

Remark 2.2. It is obvious that if DSB2 (Ω,Q,E) is closable, then the properties 1)
and 3) of Definition 1.2 also fulfilled ∀0 ≤ s ≤ r ≤ t < ∞ and ∀s < t the relations

Qs
s << Qt

t|Fs . (2.1)

are true.

Definition 2.3. DSB2 (Ω,Q,E) that satisfies the conditions of Definition 1.2
∀0 ≤ s ≤ r ≤ t < ∞ is called closed DSB2.

Proposition 2.4. A reguar DSB2 is uniquely closable to a reguar closed DSB2.

Proof. It is sufficient to put Qs
s = Qr

s|Fs
, 0 ≤ s < r < ∞. Since (Ω,Q,E) is

regular, this notation is correct. The rest is trivial. �

Example 2.5. Consider a regular closed DSB2 in the case Fs = F ,∀s ≥ 0. By
Proposition 2.4 we have Qs

s = Qt
s, and by Remark 2.2 Qs

s << Qt
t (0 ≤ s < t < ∞).

Conversely, let (Qs
s)

∞
s=0 be a sequence of probabilities such that for 0 ≤ s < t < ∞

Qs
s << Qt

t. For such s and t we put Qt
s = Qs

s. It is easy to see that if Q = (Qt
s, 0 ≤

s ≤ t < ∞), then (Ω,Q,E) is a regular closed DSB2.

Proposition 2.6. Let on the filtered space under consideration a family of prob-
abilities (Qt

t,Ft)
∞
t=0 satisfyng the condition (2.1) be defined. Put ∀s < t Qt

s = Qt
t

and Et
sf = EQt

t [f |Fs]. DSB (Ω,Q,E), where Q = (Qt
s,Ft){0≤s≤t<∞}, is closed

DSB2 if and only if ∀0 ≤ s < r < t < ∞ the equality

EQr
r

(
EQt

t [f |Fr ] |Fs

)
= EQt

t [f |Fs] . (2.2)

is fulfilled Qr
r-a.s.

Proof. Properties 1) and 2) of Definition 1.2 are satisfied trivially. Condition 3)
of this definition is equivalent to the equality (2.2). �

It is clear that if (Qt
t,Ft)

∞
t=0 is a consistent family of probability measures, then

the conditions of Proposition 2.6 are fulfilled.
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4 I. PAVLOV, I. TSVETKOVA, T. VOLOSATOVA

Example 2.7. Realize Proposition 2.6 in the case Fs = F ,∀s ≥ 0. Let (Qs
s)

∞
s=0

be a sequence of probabilities such that for 0 ≤ s < t < ∞ Qs
s << Qt

t. For such
s and t we put Qt

s = Qt
t. It is easy to see that if Q = (Qt

s, 0 ≤ s ≤ t < ∞), then
(Ω,Q,E) is a closed DSB2 but generally not regular. It is regular if and only if
Qs

s = Qt
t for all 0 ≤ s < t < ∞.

Proposition 2.8. Restriction of DSB2 (resp., closed DSB2) with continuous time
on discrete moments of time gives DSB2 (resp., closed DSB2) with discrete time.

Proof. The proof is trivial. �

Proposition 2.9. DSB2 with discrete time is always closable.

Proof. For any s = 0, 1, 2, . . . we put Qs
s := Qs+1

s |Fs . Prove the satisfying the
conditions of Definition 2.1. Really, if s < t, then using the property 1) from
Definition 1.2 we get Qs+1

s |Fs << Qt
s|Fs and hence Qs

s = Qs+1
s |Fs << Qt

s|Fs .
Further, applying the property 2) from Definition 1.2 we obtain Qt

s << Qt+1
t |Ft =

Qt
t. Other properties follow from here. �

Proposition 2.10. DSB2 with discrete time can be extended into closed DSB2
with continuous time.

Proof. By virtue of Proposition 2.9 we can assume that initial DSB2 with discrete
time is closed. From Remark 2.2 it follows that all the properties of Definition
1.2 are satisfied ∀0 ≤ s ≤ r ≤ t < ∞, where s, r and t are natural numbers. For

any real 0 ≤ s ≤ t < ∞ we put Ft := F[t] and Qt
s := Q

[t]
[s], where [t] is the integer

part of t. Taking arbitrary numbers 0 ≤ s ≤ r ≤ t < ∞ and writing down the
relations 1), 2) and 3) from Definition 1.2 for natural numbers 0 ≤ [s] ≤ [r] ≤
[t] < ∞, we obtain the satisfaction of Definition 1.2 for obtained (Ω,Q,E), where
Q = (Qt

s,Ft){0≤s≤t<∞}. �

3. General auxiliery results

In this section, we formulate several easy proved general lemmas, which we shall
use in the proof of main theorem of this article.

Lemma 3.1. Let on an measurable space (Ω,F) probabilities Q and P be defined

such that dQ = hdP . Let r.v.’s f and f̃ be measurable with respect to F and f = f̃
Q-a.s. Then fh = f̃h P -a.s.

Lemma 3.2. Let on a probability space (Ω,F , P ) a r.v. h ≥ 0 be defined P -a.s.
If H is sub-σ-field of σ-field F , then the imbedding {h > 0} ⊂ {EP [h|H] > 0} is
true P -a.s.

Lemma 3.3. Consider a filtered space (Ω, (Fn)
∞
n=0) with discrete time. Let a prob-

ability Qn
n−1 be defined on each σ-field Fn, n = 1, 2, . . . . Denote Qn

n = Qn+1
n |Fn

and suppose that ∀n = 1, 2, . . . dQn
n−1 = hn,n

n−1,ndQ
n
n. Then for k < n the following

formula is true:

dQk
k =

n∏
i=k+1

E
Qi+1

i

Fk
hi,i
i−1,idQ

n
n|Fk

. (3.1)
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CONSTRUCTION OF DEFORMED STOCHASTIC BASES OF THE 2ND KIND 5

Lemma 3.4. Let (Ω,F , P ) be a probability space, f be a r.v. on it, and f ≥ 0
P -a.s. Let H ⊂ G ⊂ F (H,G be σ-fields) and let us define on G a probability
measure Q such that dQ = hdP |G. Then

EQ
HEP

G f = ER[f |H] Q-a.s.,

where the probability measure R on F is defined by the equality dR = ĥdP and the

density ĥ is defined by the formula:

ĥ =
h

EP [h|H]
,

0

0
:= 1. (3.2)

4. The main theorem

In this section we consider DSB2 only in discrete time. The main purpose of
this paper is to prove the following theorem.

Theorem 4.1. Consider a sequence of probability measures
(
Qk

k−1,Fk

)
k=1,2,...

with the property
Qk

k−1 << Qk+1
k |Fk

, (4.1)

and for any k = 0, 1, 2, . . . let us put Qk
k := Qk+1

k |Fk
. For k < n let us introduce

the measures Qn
k by the formula dQn

k = hn,n
k,ndQ

n
n, where

hn,n
k,n =

n∏
i=k+1

hi,i
i−1,i

E
Qn−1

n−1

Fk

(
n−1∏

i=k+1

hi,i
i−1,i

) ,
0

0
:= 1. (4.2)

Then (Ω,Q,E) , where Q = (Qn
k ,Fn){0≤k≤n<∞}, is a closed DSB2.

Proof. We divide the proof into several parts.
1) It follows from Lemmas 3.1 and 3.2 that r.v. hn,n

k,n is well defined and is
non-negative Qn

n-a.s. Show that Qn
k is a probability measure. Using the equality

dQn
n−1 = hn,n

n−1,ndQ
n
n we have:

EQn
nhn,n

k,n =

= EQn
n−1


n−1∏

i=k+1

hi,i
i−1,i

E
Qn−1

n−1

Fk

(
n−1∏

i=k+1

hi,i
i−1,i

)
 = EQn−1

n−1


n−1∏

i=k+1

hi,i
i−1,i

E
Qn−1

n−1

Fk

(
n−1∏

i=k+1

hi,i
i−1,i

)
 = 1

(the last equality is obtained by taking inside the expectation according to the
measure Qn−1

n−1 a conditional expectation according to this measure with respect
to σ-field Fk).

2) Show now that the properties 1) and 2) from Definition 1.2 are satisfied. If
k < n, then

dQn
k |Fk

= EQn
n−1

[
hn,n
k,n−1 |Fk

]
dQn

n−1|Fk
= dQn

n−1|Fk
,

i.e.,
Qn

k |Fk
= Qn

n−1|Fk
. (4.3)
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Let now k < r < n. Applying (4.3) and (4.1), we have

Qr
k|Fk

= Qr
r−1|Fk

<< Qn
n−1|Fk

= Qn
k |Fk

,

and the property 1) from Definition 1.2 is established.
Oh the other hand, by the same arguments and the formula dQn

k = hn,n
k,n−1dQ

n
n−1

Qr
k << Qr

r−1 << Qn
n−1|Fr = Qn

r |Fr ,

i.e., the property 2) from Definition 1.2 is fulfilled.
3) For moments k < r < n express dQr

k through dQn
r |Fr . We have dQr

k =

hr,r
k,rdQ

r
r and dQr

r =
n−1∏

i=r+1

E
Qi+1

i

Fr
hi,i
i−1,idQ

n−1
n−1|Fr (c.f. Lemma 3.3). With the help

of Bayes theorem (c.f. [1], p.p. 274-275) the last formula can be easily tranformed
to the form:

dQr
r = E

Qn−1
n−1

Fr

(
n−1∏

i=r+1

hi,i
i−1,i

)
dQn−1

n−1|Fr = E
Qn−1

n−1

Fr

(
n−1∏

i=r+1

hi,i
i−1,i

)
dQn

n−1|Fr .

As a result, we get:

dQr
k = hr,r

k,rE
Qn−1

n−1

Fr

(
n−1∏

i=r+1

hi,i
i−1,i

)
dQn

n−1|Fr . (4.4)

From (4.3) it follows:

dQr
k = hr,r

k,rE
Qn−1

n−1

Fr

(
n−1∏

i=r+1

hi,i
i−1,i

)
dQn

r |Fr := hdQn
r |Fr . (4.5)

4) Finally, we show that the relation 3) of Definition 1.2 holds. In order to
apply Lemma 3.4, we use the following notations: H = Fk, G = Fr, F = Fn,

Q = Qr
k, P = Qn

r . Since dQr
k = hdQn

r |Fr (c.f. formula (4.5)), we put dR = ĥdQn
r ,

where ĥ is defined by the formula (3.2). By Lemma 3.4 ER
Fk

= Er
kE

n
r f . Since

dQn
r = hn,n

r,n dQ
n
n we have dR = ĥhn,n

r,n dQ
n
n. But dQn

k = hn,n
r,n dQ

n
n. It remains to

prove that ĥhn,n
r,n = hn,n

k,n Qn
n-a.s.(thus, we shell prove teh equality R = Qn

k ).

It is clear (c.f. formula (4.3)) that

ĥhn,n
r,n =

hr,r
k,rE

Qn−1
n−1

Fr

(
n−1∏

i=r+1

hi,i
i−1,i

)
hn,n
r,n

E
Qn

r

Fk

(
hr,r
k,rE

Qn−1
n−1

Fr

(
n−1∏

i=r+1

hi,i
i−1,i

)) =

=

n∏
i=k+1

hi,i
i−1,i

E
Qr−1

r−1

Fk

(
r−1∏

i=k+1

hi,i
i−1,i

)
E

Qn
r

Fk

(
hr,r
k,rE

Qn−1
n−1

Fr

(
n−1∏

i=r+1

hi,i
i−1,i

)) .
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CONSTRUCTION OF DEFORMED STOCHASTIC BASES OF THE 2ND KIND 7

Using (4.3) in the form Qn
r |Fr = Qn−1

n−1|Fr , let us transform the second factor in
the denominator:

E
Qn

r

Fk

(
hr,r
k,rE

Qn−1
n−1

Fr

(
n−1∏

i=r+1

hi,i
i−1,i

))
= E

Qn−1
n−1

Fk

(
E

Qn−1
n−1

Fr

(
hr,r
k,r

n−1∏
i=r+1

hi,i
i−1,i

))
=

= E
Qn−1

n−1

Fk

(
hr,r
k,r

n−1∏
i=r+1

hi,i
i−1,i

)
.

Replacing n with r in the formula (4.2) and applying it, we get

ĥhn,n
r,n =

n∏
i=k+1

hi,i
i−1,i

E
Qr−1

r−1

Fk

(
r−1∏

i=k+1

hi,i
i−1,i

)
E

Qn−1
n−1

Fk

(
hr,r
k,r

n−1∏
i=r+1

hi,i
i−1,i

) =

=

n∏
i=k+1

hi,i
i−1,i

E
Qn−1

n−1

Fk

(
n−1∏

i=k+1

hi,i
i−1,i

) = hn,n
k,n .

Using Lemma 3.1, it is easy to prove that the resulting equality is fulfilled
Qn

n-a.s.
Theorem 4.1 is completely proved. �

5. Nonuniqueness of the representation of the operator
Ek+1

k Ek+2
k+1 . . . E

n
n−1

It follows from Theorem 4.1 that En
k f = Ek+1

k Ek+2
k+1 . . . E

n
n−1f , i.e., the operator

Ek+1
k Ek+2

k+1 . . . E
n
n−1 can be representated as a conditional expectation with respect

to σ-field Fk and to the probability measure Qn
k , wich density with respect to

measure Qn
n−1 is defined by the formula (4.2). In this section, we show that the

representative probability measure for a given operator is not unique.
Let (Ω, (Fn)

∞
n=0) be a filtered space with discrete time, where each σ-field Fn

is generated by a decomposition of Ω into finite or countable many atoms. Let the
family of probability measures

(
Qn

n−1,Fn

)∞
n=0

be such that ∀n = 0, 1, 2, . . . Qn
n−1

loads all atoms of σ-field Fn. Then
(
Qn

n−1,Fn

)∞
n=0

generates (as in Theorem 4.1)
a closed DSB2.

Until the end of this section, we will work on a filtered space equipped with a
filtration of type F0 = {Ω, ∅}, Fn = σ{A1, A2, . . . , An, Bn} (we call such filtra-
tion special Haar filtration). Consider on this filtered space a family of prob-

abilities Q =
(
Qn

n−1,Fn

)∞
n=0

, satisfying the conditions given above. Denote

qkn = Qn
n−1(A

k) > 0 for k = 1, 2, . . . , n and qn = Qn
n−1(Bn) > 0. Our goal is

to describe all representing probability measures of the operator E2
1E

3
2 and find

among them the measure Q3
1.

We carry out the necessary reasoning.
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1) Let a r.v. f be measurable with respect to F3, that is

f = a1IA1 + a2IA2 + a3IA3 + b3IB3 .

Let us calculate:

E3
2f = a1IA1 + a2IA2 +

1

q33 + q3
(a3q

3
3 + b3q3) · IB2

,

E2
1E

3
2f = a1IA1 +

1

q22 + q2

[
a2q

2
2 +

q2
q33 + q3

(a3q
3
3 + b3q3)

]
· IB1 .

Let now P be any probability measure defined on F3. Denote P (Ak) = pk,
k = 1, 2, 3 and P (B3) = p3. It is clear that P (B1) = p2 + p3 + p3. We have:

EP [f |F1] = a1IA1 +
1

p2 + p3 + p3

[
a2p

2 + a3p
3 + b3p3

]
.

Thus, the following equivalence is true:

E2
1E

3
2f = EP [f |F1] ⇔

1

q22 + q2

[
a2q

2
2 +

q2
q33 + q3

(a3q
3
3 + b3q3)

]
=

1

p2 + p3 + p3

[
a2p

2 + a3p
3 + b3p3

]
0 < q22 + q2 < 1
0 < q33 + q3 < 1
0 < p2 + p3 + p3 < 1.

Since the first equality of this equivalence must hold for any F3-measurable f ,
the resulting system must have a solution for any a2, a3, b3. We will give these
parameters different meanings.

a) a2 = 1, a3 = b3 = 0. Then

1

c1
:=

q22
q22 + q2

=
p2

p2 + p3 + p3
.

b) a2 = b3 = 0, a3 = 1. Then

1

c2
:=

q2q
3
3

(q22 + q2)(q33 + q3)
=

p3

p2 + p3 + p3
.

c) a2 = a3 = 0, b3 = 1 . Then

1

c3
:=

q2q3
(q22 + q2)(q33 + q3)

=
p3

p2 + p3 + p3
.

Now our system can be written as:

p2

p2 + p3 + p3
=

1

c1
, c1 > 1

p3

p2 + p3 + p3
=

1

c2
, c2 > 1

p3
p2 + p3 + p3

=
1

c3
, c3 > 1

p2 + p3 + p3 < 1, p2 > 0, p3 > 0 p3 > 0.
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This system is equivalent to the following one:
p2(1− c1) + p3 + p3 = 0
p2 + p3(1− c2) + p3 = 0
p2 + p3 + p3(1− c3) = 0
p2 + p3 + p3 < 1, p2 > 0, p3 > 0 p3 > 0.

The general solution of this system is p2 =
t

c1
, p3 =

t

c2
, p3 =

t

c3
, 0 < t < 1.

Using the equality
1

c1
+

1

c2
+

1

c3
= 1, we obtain P =

(
1− t,

t

c1
,
t

c2
,
t

c3

)
, 0 < t < 1.

It is a finite open interval in the space R4.
2) Let us calculate the measure Q3

1. We naturally identify the measures Qn
n−1 with

the vectors of the space Rn+1. We have:

Q2
1 = (q12 , q

2
2 , q2), Q3

2 = (q13 , q
2
3 , q

3
3 , q3), Q2

2 = (q13 , q
2
3 , q

3
3 + q3).

Further:

h2,2
1,2 =

dQ2
1

dQ2
2

=
q12
q13

IA1 +
q22
q23

IA2 +
q2

q33 + q3
IB2 ;

EQ2
2 [h2,2

1,2|F1] =
q12
q13

IA1 +
1

q23 + q33 + q3

[
q22
q23

· q23 +
q2

q33 + q3
· (q33 + q3)

]
IB1 =

=
q12
q13

IA1 +
q22 + q2

q23 + q33 + q3
· IB1 ;

dQ3
1 =

h2,2
1,2

EQ2
2 [h2,2

1,2|F1]
=

(
IA1 +

q22(q
2
3 + q33 + q3)

q23(q
2
2 + q2)

IA2 +
q2(q

2
3 + q33 + q3)

(q22 + q2)(q33 + q3)
IB2

)
dQ3

2;

Q3
1 =

(
q13 ,

q22(q
2
3 + q33 + q3)

q22 + q2
,
q2q

3
3(q

2
3 + q33 + q3)

(q22 + q2)(q33 + q3)
,
q2q3(q

2
3 + q33 + q3)

(q22 + q2)(q33 + q3)

)
.

Denoting t̃ = q23 + q33 + q3, we get Q3
1 =

(
1− t̃,

t̃

c1
,
t̃

c2
,
t̃

c3

)
. It is clear

that the measure Q3
1 is identified with a point lying inside the interval P =(

1− t,
t

c1
,
t

c2
,
t

c3

)
, 0 < t < 1.

6. Conclusion

A detailed study of deformed stochastic bases is necessary not only for the fur-
ther development of generalized stochastic analysis, but also for financial mathe-
matics (deformed financial markets, deflators, etc.). Works [2]-[12] are devoted to
such investigations. The constructions of deformed stochachtic bases of the first
kind with discrete time are devoted to works [6] and [8]. Note that deformed sto-
chastic bases have been little studied in continuous time. The authors hope that
constructions similar to those made in Theorem 4.1 will be realized in this case as
well.
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