
EULER EQUATIONS FOR COSSERAT MEDIA

VALENTIN LYCHAGIN

Abstract. We consider Cosserat media as SO(3)-structures over a domain
D ⊂ R3. Motions of such media are given by infinitesimal automorphisms
of the SO(3)-bundle. We present Euler-type equations for such media and

discuss their structure.

1. Introduction

This paper is a realization of approach ([6]) for the case of media formed by
‘rigid microelements’ ([4]), or Cosserat’ media.

We show that the geometry hidden behind of the such type of media is a SO(3)-
structure over a spacial domain D.

Namely, the dynamics in such media are given by vector fields on the bundle
π : Φ → D of SO(3)-frames over D. These fields are solutions of the system of
differential equations ([6]) that generalize the well known Navier-Stocks equations.

To construct these equations we need two additional geometric objects: (1) con-
nection in the bundle π, we call it media connection, and (2) left SO(3)-invariant
metric on fibres of π. The last determines the mechanics of ‘rigid microelements’
and the media connection allows us to compare ‘rigid microelements’ at different
points of D. The third ingredient that we needed to construct the system of dif-
ferential equations is the thermodynamics of media. We apply here the point of
view ([7]), where thermodynamics were considered as measurement of extensive
quantities.

Using these remarks and observations we present here the Euler type equations
that govern the motion. To make the presentation as compact as possible we
restrict ourselves by this type equations only although the difference between Euler
and Navier-Stocks type equations consists only in the description of the stress
tensor.

The final form of the Euler equations is given by (5.3), (5.4), (5.5).

2. Geometry of SO(3)

Here we collect the main properties of the orthogonal group SO(3).
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2 VALENTIN LYCHAGIN

Let (T, g) be a an Euclidian vector space, dimT = 3, where g is a metric tensor.
Let A ∈ End (T) be a linear operator in T and let A′ ∈ End (T) be the g-adjoint
operator, i.e g (AX,Y ) = g (X,AY ) for all X,Y ∈ T. Remind that

SO(3) = {A ∈ End (T) |AA′ = 1, detA = 1} .
Geometrically, elements of the group are counterclockwise rotations R (ϕ, n) on
angle ϕ about the axis through unit vector n ∈ T. One has R (ϕ, n) = R (−ϕ,−n)
and R (π, n) = R (π,−n). Therefore, as a smooth manifold, SO(3) is diffeomorphic
to the projective space RP3.

The Lie algebra of the group,

so (3) = {A ∈ End (T) |A+A′ = 0} ,
consists of skew symmetric operators.

There is the hat isomorphism of the Lie algebras

∧ : (T,×) → so (3) ,

where (T,×) is the Lie algebra of vectors in T with respect to the cross product
×.

In an orthonormal basis (e1, e2, e3) this isomorphism has the following form

∧ : w = (w1, w2, w3) 7→ ŵ = w1ê1 + w2ê2 + w3ê3 =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 .
2.1. Exponent and logarithm. In the case of Lie algebra so (3) the exponential
map

exp: so (3) → SO(3),

has the following Rodrigues’ form (see, for example, [1], [3])

exp (ϕn̂) = 1+sin (ϕ) n̂+ (1− cos (ϕ))n̂2,

and exp (ϕn̂) = R (ϕ, n).
This formula gives us the following description of the logarithm map

ln (R) =
arcsin (ϕ)

2ϕ
(R−R′) ,

where R ∈ SO(3) and

ϕ =
3 +

√
−TrR2

2
.

2.2. Left invariant tensors on SO(3). The Baker–Campbell–Hausdorff for-
mula in so (3) has very concrete form.

Namely, let X,Y ∈ so (3), then exp (X) ·exp (Y ) ∈ SO(3) and therefore has the
form exp (Z(X,Y )), for some element Z(X,Y ) ∈ so (3).

Then (see, for example, [2]),

Z (X,Y ) = αX + β Y + γ [X,Y ],

where

α =
a arcsin (d)

dθ
, β =

b arcsin (d)

dϕ
, γ =

arcsin (d)

dϕθ
,
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EULER EQUATIONS FOR COSSERAT MEDIA 3

a, b, c, d are defined as follows

a = sin (θ) cos2
(
ϕ

2

)
− ω sin (ϕ) sin2

(
θ

2

)
,

b = sin (ϕ) cos2
(
θ

2

)
− ω sin (θ) sin2

(
ϕ

2

)
c =

1

2
sin (θ) sin (ϕ)− 2ω sin2

(
θ

2

)
sin2

(
ϕ

2

)
,

d =
√
a2 + b2 + 2ωab+ (1− ω2) c2,

and

θ =

√
−TrX2

2
, ϕ =

√
−TrX2

2
, ω = θ−1ϕ−1

√
−TrXY

2
.

Applying these formulae for the case X = tn̂, Y , where n is a unit vector, we get

α =
ϕ

2
cot

(
ϕ

2

)
+O (t) , β = 1 + t

(
ω

2
cot

(
ϕ

2

)
+
ω

ϕ

)
+O

(
t2
)
, γ =

1

2
+O (t) .

Denote by E1, E2, E3 the left invariant vector fields on SO(3) that correspond
to the basis e1, e2, e3 in so (3).

Then the above formulae give us the following expressions for E1, E2, E3 in the
canonical coordinates (x1, x2, x3) of the first kind:

E1 =
ϕ

2
cot

(
ϕ

2

)
∂1 +

1

2
(x2∂3 − x3∂2)+

x1

(
1

2
cot

(
ϕ

2

)
+

1

ϕ

)
(x1∂1 + x2∂2 + x3∂3) ,

E2 =
ϕ

2
cot

(
ϕ

2

)
∂2 +

1

2
(x3∂1 − x1∂3)+

x2

(
1

2
cot

(
ϕ

2

)
+

1

ϕ

)
(x1∂1 + x2∂2 + x3∂3) ,

E3 =
ϕ

2
cot

(
ϕ

2

)
∂3 +

1

2
(x1∂2 − x2∂1)+

x3

(
1

2
cot

(
ϕ

2

)
+

1

ϕ

)
(x1∂1 + x2∂2 + x3∂3) ,

where

ϕ =
√
x21 + x22 + x23, and ∂i =

∂

∂xi
.

Remark that basis vectors e1, e2, e3 have the following commutation relations:
[eσ(1), eσ(2)] = sign (σ) eσ(3), for any permutation σ of three letters and accordingly
vector fields E1, E2, E3 inherit the same commutation relations

[Eσ(1), Eσ(2)] = sign (σ)Eσ(3).

Let us denote by Ω1, Ω2, Ω3 ∈ Ω1 (SO(3)) differential 1-forms on Lie group SO(3)
such that Ωi (Ej) = δij , then

dΩσ(3) + sign (σ) Ωσ(1) ∧ Ωσ(2).
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4 VALENTIN LYCHAGIN

Vector fields Ei and differential 1-forms Ωi give us the bases (over R) in the space
of left invariant vector fields and correspondingly invariant differential 1-forms on
SO(3).

Moreover, any left invariant tensor on SO(3) is a linear combination of tensor
products Ei and Ωj with constant coefficients.

Thus any left invariant metric g on SO(3) is defined by a positive self adjoint
operator Λ on so (3), so-called inertia tensor.

We will take basis e1, e2, e3 to be eigenvectors of the operator Λ.
Thus we get:

gλ =
1

2

(
λ1Ω

2
1 + λ2Ω

2
2 + λ3Ω

2
3

)
, (2.1)

where λi, λi > 0, are eigenvalues of the operator and Ω2
i are the symmetric squares

of the 1-forms.

2.3. Levi-Civita connections on SO(3). Let ∇ be the Levi-Civita connection
associated with left invariant metric gλ. We denote by ∇i the covariant derivative
along vector field Ei.

Then we have

∇i (Ej) =
∑
k

Γk
ijEk,

where Γk
ij are the Christoffel symbols.

This connection preserves the metric and therefore

g (∇i (Ej) , Ek) + g (Ej ,∇i (Ek)) = 0,

or

λkΓ
k
ij + λjΓ

j
ik = 0, (2.2)

for all i, j, k = 1, 2, 3.
The condition for the connection to be torsion-free gives us the following rela-

tions:

∇σ(1)

(
Eσ(2)

)
−∇σ(2)

(
Eσ(1)

)
= Eσ(3),

for all permutations σ, or

Γk
σ(1),σ(2) − Γk

σ(2),σ(1) = δk,σ(3). (2.3)

The solution of these equations is the following

Γ3
12 =

λ− λ1
λ3

,Γ1
23 =

λ− λ2
λ1

,Γ2
31 =

λ− λ3
λ2

, (2.4)

Γ3
21 = Γ3

12 − 1,Γ1
32 = Γ1

23 − 1,Γ2
13 = Γ2

31 − 1,

where λ = λ1 + λ2 + λ3, and all other Christoffel symbols are trivial.
Thus we have the only non-trivial relations:

∇1 (E2) =
λ− λ1
λ3

[E1, E2],∇2 (E3) =
λ− λ2
λ1

[E2, E3],∇3 (E1) =
λ− λ3
λ2

[E3, E1],

∇2 (E1) =
λ− λ2
λ3

[E2, E1],∇3 (E2) =
λ− λ3
λ1

[E3, E2],∇1 (E3) =
λ− λ1
λ2

[E1, E3],
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EULER EQUATIONS FOR COSSERAT MEDIA 5

Theorem 2.1. The Levi-Civita connection for left invariant the metric gλ has the
form:

∇σ(1)

(
Eσ(2)

)
= sign (σ)

λ− λσ(1)

λσ(3)
Eσ(3),

∇i (Ei) = 0,

for all permutations σ ∈ S3 and i = 1, 2, 3.

3. Cosserat media and SO (3)-structures

Let D be a domain in R3 considered as Riemannian manifold equipped with the
standard metric g0. Then by Cosserat medium we mean a medium composed with
solids or having ‘rigid microstructure’, ([4]). We assume that on the microlevel
this media is formed by rigid elements, which we represent as orthonormal frames
fa : R3 → TaB.

Thus configuration space of these media is the principal SO (3)-bundle π : Φ →
D of orthonormal frames on D, (see, for example, [5]). The projection π assign
the centre mass a of element fa.

3.1. Metrics and connections, associated with Cosserat medium. The
group SO (3) acts in the natural way on fibres of projection π and we will continue
to use notations E1, E2, E3 for the induced vertical vector fields on Φ.

These fields form the basis in the module of vertical vector fields on Φ and
accordingly differential 1-forms Ω1,Ω2,Ω3 define the dual basis in the space of
vertical differential forms.

We assume also that the media is characterized by a SO (3)-connection in the
bundle π. This connection, we call it media connection and denote by ∇µ, allows
us to compare microelements at different points of D.

To define the connection, we consider a microelement as orthonormal frame
b = (b1, b2, b3), formed by vector fields bi on D. Then the covariant derivatives
∇X along vector field X is defined by the connection form ω ∈ Ω1 (D,so (3)), i.e.
differential 1-form on D with values in the Lie algebra so (3), and such that

∇µ
X (b) = ω (X) b. (3.1)

By using the hat morphism, we represent the form as before

ω =

∥∥∥∥∥∥
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

∥∥∥∥∥∥ ,
where ωi are differential 1-forms on D.

Then formula (3.1) shows us that a microelement subject to rotation along vec-

tor (ω1(X), ω2(X), ω3(X)) on the angle ϕ (X) =

√
ω1 (X)

2
+ ω2 (X)

2
+ ω3 (X)

2
,

when we transport it on vector X.
Let (x1, x2, x3) be the standard Euclidian coordinates on D and ∂ = (∂1, ∂2, ∂3)

be the corresponding frame. Here ∂i = ∂/∂xi.
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6 VALENTIN LYCHAGIN

In these coordinates we have

ωi =

3∑
j=1

ωijdj ,

where dj = dxj .
The connection form ω will be the following

ω =

∥∥∥∥∥∥
0 −ω31 ω21

ω31 0 −ω11

−ω21 ω11 0

∥∥∥∥∥∥ d1+
∥∥∥∥∥∥

0 −ω32 ω22

ω32 0 −ω12

−ω22 ω12 0

∥∥∥∥∥∥ d2+
∥∥∥∥∥∥

0 −ω33 ω23

ω33 0 −ω13

−ω23 ω13 0

∥∥∥∥∥∥ d3.
This connection allows us to split tangent spaces TbΦ into direct sum

TbΦ = Vb +Hb,

where Vb is the vertical part with basis E1,b, E2,b, E3,b, and the horizontal space
Hb is formed by vectors

Xa − ωa (Xa) ,

where a = π (b).
Remark that geometrically spaces Hb represent ‘constant frames’ due to (3.1)

and the basis in this space is

∂1 − ω11E1 − ω21E2 − ω31E3,

∂2 − ω12E1 − ω22E2 − ω32E3,

∂3 − ω13E1 − ω23E2 − ω33E3.

The horizontal distribution H : b ∈ Φ → Hb ⊂ TbΦ could be also defined as the
kernel of the following differential 1-forms on Φ:

θ1 = Ω1 + ω11d1 + ω12d2 + ω13d3,

θ2 = Ω2 + ω21d1 + ω22d2 + ω23d3,

θ3 = Ω2 + ω31d1 + ω32d2 + ω33d3.

By metric associated with the left invariant metric gλ and standard metric g0
and media connection form ω we mean direct sum of metric gλ on the vertical
space V and the standard metric g0 on the horizontal space H.

We also call the media homogeneous if the connection form ω as well as the
inertia tensor Λ are constants. Moreover, for the case of homogeneous media the
Euclidian coordinates (x1, x2, x3) in the domain D are chosen in a such way that

operators ∂̂i ∈ so (3) are eigenvectors of the inertia tensor Λ.
Summarizing we get the following

Proposition 3.1. The metric gµ associated with the triple (gλ, g0, ω) has the
following form

gµ =
1

2

3∑
i=1

(
λiΩ

2
1 + d2i

)
.

Remark 3.2. Frame (E1, E2, E3, ∂1 − ω (∂1) , ∂2 − ω (∂2) , ∂2 − ω (∂2)) and coframe
(Ω1,Ω2,Ω3, d1, d2, d3) are dual and gµ-orthogonal.
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EULER EQUATIONS FOR COSSERAT MEDIA 7

3.2. Levi-Civita connection on Cosserat media. Assume that the media is
homogeneous and let ∇ be the Levi-Civita connection on the configuration space
Φ associated with metric gµ. Then for basic vector fields ∂i, Ej , where i, j = 1, 2, 3,
we have the following commutation relations

[∂i, ∂j ] = [∂i, Ej ] = 0, [Eσ(1), Eσ(2)] = sign (σ)E(3).

Moreover, it is easy to see that the equations for Christoffel symbols do not
depend on the connection form ω. On the other hand, it is clear that the Levi-
Civita connection ∇, for the case ω = 0, is the direct sum of the trivial connection
on D and the left invariant Levi-Chivita connection on SO (3). Thus we get the
following result.

Theorem 3.3. The Levi-Civita connection ∇c on the configuration space Φ as-
sociated with metric gµ and homogeneous media has the form, where the only non
trivial covariant derivatives are

∇Eσ(1)

(
Eσ(2)

)
= sign (σ)

λ− λσ(1)

λσ(3)
Eσ(3),

for all permutations σ ∈ S3.

3.3. Deformation tensor. Dynamics we describe by π-projectable vector fields
on Φ (see [6], for more details):

U :=
3∑

i=1

(Xi (x) ∂i + Yi (x, y)Ei) .

Here x = (x1, x2, x3) are the Euclidian coordinates on D and y = (y1, y2, y3) are
the canonical coordinates on SO (3).

Due to the above theorem and relations (2.4) the covariant differential D with
respect to the Levi-Civita connection ∇c acts in the following way:

D (∂i) = 0, i = 1, 2, 3, (3.2)

D (E1) = (α2 + 1)Ω3 ⊗ E2 + (α3 − 1) Ω2 ⊗ E3,

D (E2) = (α1 − 1)Ω3 ⊗ E1 + α3 Ω1 ⊗ E3,

D (E3) = α1Ω2 ⊗ E1 + α2Ω1 ⊗ E2,

where

Γ1
32 = α1 − 1, Γ1

23 = α1 =
λ− λ2
λ1

, Γ2
31 = α2 + 1,

Γ2
13 = α2 =

λ1
λ2
, Γ3

21 = α3 − 1, Γ3
12 = α3 =

λ− λ1
λ3

.

Respectively, for the dual frame (Ω1,Ω2,Ω3) , we have

D (Ω1) = −α1Ω2 ⊗ Ω3 − (α1 − 1)Ω3 ⊗ Ω2,

D (Ω2) = −α2Ω1 ⊗ Ω3 − (α2 + 1)Ω3 ⊗ Ω1, (3.3)

D (Ω3) = −α3Ω1 ⊗ Ω2 − (α3 − 1)Ω2 ⊗ Ω1.
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8 VALENTIN LYCHAGIN

By the rate of deformation tensor ∆(U) we mean tensor

∆ (U) = D (U) =
3∑

i,j=1

(∂iXi dj ⊗ ∂i + ∂iYi dj ⊗ Ei + Ej (Yi)Ωj ⊗ Ei)+
3∑

i=1

YiD (Ei) .

4. Thermodynamics of Cosserat media

The thermodynamics of the Cosserat media is based on measurement (see, [7],
[6]) of extensive quantities: inner energy E , volume V , mass m, and deforma-
tion D. The corresponding dual, or intensive quantities are the temperature T ,
preasure p, chemical potential ξ and the stress tensor σ.

The first law of thermodynamics requires that on thermodynamical states the
following differential 1-form

dE − (T dS − p dV +Tr(σ∗dD) + ξ dm) (4.1)

should be zero.
In other words, the thermodynamical state is a maximal integral manifold L of

differential form (4.1).
It is more convenient to use another but proportional differential 1-form

dS − T−1 (dE + p dV − Tr(σ∗dD)− ξ dm) . (4.2)

Here differential forms: dE, T dS, −p dV +Tr(σ∗dD) and ξ dm represent change
of inner energy,heat,work and mass respectively.

Extensivity of quantities E, V,D,m, S means that their simultaneous rescaling
does not change the intensives as well as the thermodynamic state.

In other words, if we represent (S, p, σ, ξ) as functions of the extensive variables
(E, V,D,m), then S = S (E, V,D,m) is a homogeneous function of degree one.

Let (s, ε, ρ,∆) be the densities of (S,E,m,D).
Then substituting expression S = V s(ε, ρ,∆) into (4.2) we get that 1-form

ψ = ds− T−1 (dε− Tr (σ∗d∆)− ξ dρ)

should be zero and

ε− Ts = Tr (σ∗∆)− p+ ξρ.

The last condition shows that the density of Gibbs free energy ε− Ts equals sum
of density of deformation Tr (σ∗∆) and mechanical −p and chemical ξ ρ works.

All these observations could be formulated as follows.
Let us introduce the thermodynamic phase space of Cosserat medium ([6]) as

the contact space Ψ̃ = R5 × End (T∗)× End (T), dim Ψ̃ = 23 with points (s, T, ε,
ξ, ρ, σ, ∆) ∈ Ψ, where σ ∈ End (T∗), ∆ ∈ End (T) and equipped with contact

form ψ. Then by thermodynamic states we mean Legendrian manifolds L̃ ⊂ Ψ̃,

dim L̃ = 11, of the differential ψ, or respectively, after eliminating entropy from
the consideration, their Lagrangian projections L ⊂ Ψ into Ψ = R4 × End (T∗)×
End (T), where the symplectic structure on Ψ given by the differential 2-form

dψ = τ−2 (dT ∧ dε− ξdT ∧ dρ− dT ∧ Tr (σ∗d∆))− T−1 (dξ ∧ dρ− Tr (dσ∗d∆)) .

As it was shown in ([7],[6]) we should require, in addition, that the differential
symmetric form κ shall define the Riemannian structure on L.
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EULER EQUATIONS FOR COSSERAT MEDIA 9

Also, similar to ([6]) we consider only such Legendrian manifolds L̃ where
(T, ρ,∆) are coordinates. In this case we will write down form T−1ψ as

d(ε− Ts)− (s dT +Tr (σ∗d∆) + ξ dρ) .

Therefore, manifold L̃ is Legendrian if and only if

s = hT , σ = h∆, ξ = hρ, (4.3)

where h is the Gibbs free energy

h = ε− Ts.

In the case of Newton-Cosserat media we have in addition SO (3) × SO (3) sym-
metry and Gibbs free energy h is a function of SO (3)×SO (3)-invariants (see [6],
for more details).

Here we consider the Euler case ([6]), when

h (T, ρ,∆) = p1 (T, ρ) Tr (∆) + p2Tr (∆ΠV ) ,

where ΠV is the projector on the vertical part of TΦ.
In this case the stress tensor σ equals

σ = p1 (T, ρ) + p2 (T, ρ)ΠV ,

or

σ =(p1 (T, ρ) + p2 (T, ρ)) (E1 ⊗ Ω1 + E2 ⊗ Ω2 + E3 ⊗ Ω3)+ (4.4)

p2 (T, ρ) (∂1 ⊗ d1 + ∂2 ⊗ d2 + ∂3 ⊗ d3) + p2

3∑
i,j=1

ωijEi ⊗ dj ,

and energy density equals

ε = (p1 − Tp1,T )Tr (∆) + (p2 − Tp2,T )Tr (∆ΠV )

5. Euler equations for Cosserat media

The general form of the Navier-Stocks equations and Euler equations as well,
for media with inner structures have the form ([6]):

(1) Moment conservation, or Navier-Stocks equation:

ρ

(
∂U

∂t
+∇c

U (U)

)
= div♭σ, (5.1)

where ∇c is the Levi-Civita connection, div♭σ is a vector field dual to the
differential form divσ ∈ Ω1 (Φ), with respect to the canonical metric g.

(2) Conservation of mass:

∂ρ

∂t
+ U (ρ) + div (U) ρ = 0. (5.2)

(3) Conservation of energy:

∂ε

∂t
+ εdiv (U)− div (ζ grad (T )) + Tr (σ′ DU) = 0,

where ζ is the thermal conductivity.
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10 VALENTIN LYCHAGIN

(4) State equations:

σ = h∆, ε = h− T hT .

(5) In addition, we require that vector field U preserves the bundle π : Φ → D,
or that U is a π-projectable vector field.

In the case of Euler equations we have relation (4.4), and using the property
(see [6])

div (X ⊗ ω) = div (X)ω +∇X (ω) ,

where X is a vector field and ω is a differential 1-form, we get, due to (3.3),

div (Ei ⊗ Ωi) = ∇Ei (Ωi) = 0,

div (∂i ⊗ di) = ∇∂i (di) = 0,

and

div σ =
3∑

i=1

Ei (p1 + p2) Ωi + (∂i −
3∑

j=1

ωjiEj) (p2) di

 .

Therefore,

div♭ σ =
3∑

i=1

λ−1
i Ei (p1 + p2)Ei + (∂i −

3∑
j=1

ωjiEj) (p2) ∂i

 .

Assume now that vector field U has the form

U =
3∑

i=1

(Xi (x) ∂i + Yi (x, y)Ei) .

Then,

∇∂1 (U) =

3∑
i=1

(∂1 (Xi) ∂i + ∂1 (Yi)Ei) ,

∇∂2 (U) =

3∑
i=1

(∂2 (Xi) ∂i + ∂2 (Yi)Ei) ,

∇∂3 (U) =

3∑
i=1

(∂3 (Xi) ∂i + ∂3 (Yi)Ei) ,

∇E1 (U) =

3∑
i=1

(E1 (Yi)Ei + λ1iYi[E1, Ei]) =

3∑
i=1

E1 (Yi)Ei + λ12Y2E3 − λ13Y3E2,

∇E2 (U) =

3∑
i=1

(E2 (Yi)Ei + λ2iYi[E2, Ei]) =

3∑
i=1

E2 (Yi)Ei − λ21Y1E3 + λ23Y3E1,

∇E3 (U) =

3∑
i=1

(E3 (Yi)Ei + λ3iYi[E3, Ei]) =

3∑
i=1

E3 (Yi)Ei + λ31Y1E2 − λ32Y2E1,
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EULER EQUATIONS FOR COSSERAT MEDIA 11

where

λ12 =
λ− λ1
λ3

, λ13 =
λ− λ1
λ2

, λ21 =
λ− λ2
λ3

,

λ23 =
λ− λ2
λ1

, λ31 =
λ− λ3
λ2

, λ32 =
λ− λ3
λ1

.

Therefore,

∇U (U) =
3∑

j,i=1

Xj∂j (Xi) ∂i +
3∑

j,i=1

Xj∂j (Yi)Ei +
3∑

j,i=1

YjEj (Yi)Ei +

(λ23 − λ32)Y2Y3E1 + (λ31 − λ13)Y1Y3E2 + (λ12 − λ21)Y1Y2E3.

Summarizing, we get the following system of Euler equations:

ρ

∂tXi +
3∑

j=1

Xj∂j (Xi)

 = (∂i −
3∑

j=1

ωjiEj) (p2) , i = 1, 2, 3, (5.3)

ρ

∂tY1 + 3∑
j=1

Xj∂j (Y1) +
3∑

j=1

YjEj (Y1)

+ (λ23 − λ32)Y2Y3 = λ−1
1 E1 (p1 + p2) ,

ρ

∂tY2 + 3∑
j=1

Xj∂j (Y2) +

3∑
j=1

YjEj (Y2)

+ (λ31 − λ13)Y1Y3 = λ−1
2 E2 (p1 + p2) ,

ρ

∂tY3 + 3∑
j=1

Xj∂j (Y3) +

3∑
j=1

YjEj (Y3)

+ (λ12 − λ21)Y1Y2 = λ−1
3 E3 (p1 + p2) .

Remark that the first three equations in (5.3) are very close to the classical Euler
equations and the second three equations are the Euler type equations on the Lie
group SO (3).

The mass conservation equation takes the form

∂tρ+
3∑

i=1

(Xi∂iρ+ YiEiρ) +
3∑

i=1

(∂iXi + EiYi) ρ = 0. (5.4)

Finally, the energy conservation equation takes the form

∂ε

∂t
+

3∑
i=1

(∂iXi + EiYi) ε+
3∑

i=1

Ei (Yi) = div (ζ grad (T )) , (5.5)

because

Tr (σ∗ DU) =
3∑

i=1

Ei (Yi) ,

and here

ε = (p2 − T p2,T ) (E1 (Y1) + E2 (Y2) + E3 (Y3)) + (p1 − T p1,T ) divU.
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