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Abstract. In this paper, flows of a viscid fluids on curves are considered.
Symmetry algebras and the corresponding fields of differential invariants are

found. We study their dependence on thermodynamic states of media, and
provide classification of thermodynamic states.

1. Introduction

Consider flow of an viscid medium on an oriented Riemannian manifold (M, g)
in the field of a constant gravitational field. Motion of viscous media are described
by the PDE system consisting of the Navier-Stokes equation, the laws of mass and
energy conservation (see [2], [5] for details):

ρ(ut +∇uu)− div σ − gρ = 0,

∂(ρΩg)

∂t
+ Lu (ρΩg) = 0,

ρT (st +∇us)− Φ+ k(∆gT ) = 0,

(1.1)

where the vector field u is the flow velocity, p, ρ, s, T are the pressure, density,
specific entropy, temperature of the fluid respectively, k is the thermal conductiv-
ity, which is supposed to be constant, and g is the gravitational acceleration. The
stress tensor σ depends on two viscousites, which are alse considered constant.

In this paper, we consider the case, when M is a naturally-parameterized curve
in the three-dimensional Euclidean space

M = {x = f(a), y = g(a), z = h(a)}
In this case, vector g is the restriction of the vector field (0, 0, g) on M , i.e.,

g = gh′∂a.

First of all, we should note that two additional relations involving thermody-
namic quantites are needed to complete the system (1.1). To obtain them, we
apply the method described in the paper [3] in detail. The general idea behind
this method is representation of thermodynamic states with Legendrian, or La-
grangian, manifolds in a contact, or symplectic, space correspondingly.
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So, by the Navier-Stokes system E we mean the equations (1.1) together with
two equations of the thermodynamic state

L = {F (p, ρ, s, T ) = 0, G(p, ρ, s, T ) = 0 } (1.2)

that meet the condition

[F,G] = 0 mod {F = 0, G = 0},

where [F,G] is the Poisson bracket with respect to the symplectic form

Ω = ds ∧ dT + ρ−2dρ ∧ dp.

Moreover, the restriction of the quadratic differential form

κ = d(T−1) · dϵ− ρ−2d(pT−1) · dρ

to the manifold of thermodynamic state is negative definite, here ϵ is the specific
internal energy.

The paper is organized as follows.
In Section 2 we study symmetry Lie algebras of the Navier-Stokes system E and

their dependence on the form of the function h(a). There are six different forms,
besides the general case, of the function h that correspond to different symmetry
algebras.

In Section 3 we consider the case when the thermodynamic state admits a one-
dimensional symmetry algebra and find the corresponding Lie algebras. For such
thermodynamic states, we find an explicit form of Lagrangian surface in terms of
two equations on the thermodynamic quantities p, T , ρ and s.

In Section 4 we recall the notion of differential invariants and introduce Navier-
Stokes and kinematic invariants. For these types we find the field of differential
invariants.

A space curve can be represented as a lift of a plane curve. Connection between
the function h and a way of lifting curve was discussed in [4].

Most of the computations in this paper were done in Maple with the Differential
Geometry package by I. Anderson and his team [1].

2. Symmetry Lie algebra

Using the standard techniques for calculating of symmetries we find dependence
of symmetry algebra of system E on the function h(a).

To this end, we consider a Lie algebra g of point symmetries of the system (1.1).
Let ϑ : g → h be the following Lie algebras homomorphism

ϑ : X 7→ X(ρ)∂ρ +X(s)∂s +X(p)∂p +X(T )∂T ,

where h is a Lie algebra generated by vector fields that act on the thermodynamic
variables p, ρ, s and T .

The kernel of the homomorphism ϑ is an ideal gm ⊂ g, and we call the elements
of gm geometric symmetries.

Let ht be a such Lie subalgebra of the algebra h that preserves thermodynamic
state (1.2).

Then the following theorem is true (see for details [3]).

158



VISCID FLOWS ON A CURVE 3

Theorem 2.1. A Lie algebra gsym of symmetries of the Navier-Stokes system E
coincides with

ϑ−1(ht).

First of all, consider the general case, when h(a) is an arbitrary function. Then
the Lie algebra g0 of point symmetries of the system (1.1) is generated by the
vector fields

X1 = ∂t, X2 = ∂p, X3 = ∂s.

The pure thermodynamic part h0 of the system symmetry algebra in this case
is generated by

Y1 = ∂p, Y2 = ∂s.

The PDE system E has the smallest Lie algebra of point symmetries ϑ−1(h0t ),
when the function h(a) is arbitrary.

The special cases of the function h(a) are listed below.

1. h(a) = const
The symmetry Lie algebra g1 of sthe system (1.1) is generated by X1, X2, X3

and by the following vector fields

X4 = ∂a, X6 = t ∂t + a ∂a − p ∂p − ρ ∂ρ,

X5 = t ∂a + ∂u, X7 = a ∂a + u ∂u − 2ρ ∂ρ + 2T ∂T .

The Lie algebra g1 is solvable and the sequence of derived algebras is the fol-
lowing

g1 = ⟨X1, X2, . . . , X7⟩ ⊃ ⟨X1, X2, X3, X4, X5⟩ ⊃ ⟨X4⟩ .
The pure thermodynamic part h1 of the symmetry algebra is generated by the

vector fields

Y1 = ∂p, Y2 = ∂s, Y3 = p ∂p + ρ ∂ρ, Y4 = ρ ∂ρ − T ∂T .

Hence, the PDE system E admits a Lie algebra of point symmetries ϑ−1(h1t ).

2. h(a) = λa, λ ̸= 0
In this case the Lie algebra g2 of point symmetries of the system (1.1) is gen-

erated by X1, X2, X3 and by the following vector fields

X4 = ∂a, X6 = t ∂t + 2a ∂a + u ∂u − p ∂p − 3ρ ∂ρ + 2T∂T ,

X5 = t ∂a + ∂u, X7 = t ∂t + (
λgt2

2
+ a) ∂a + λgt ∂u − p ∂p − ρ ∂ρ.

The Lie algebra g2 is solvable and its sequence of derived algebras is

g2 = ⟨X1, X2, . . . , X7⟩ ⊃ ⟨X1, X2, X3, X4, X5⟩ ⊃ ⟨X4⟩ .

The pure thermodynamic part h2 of the symmetry algebra is generated by the
vector fields

Y1 = ∂p, Y2 = ∂s, Y3 = p ∂p + ρ ∂ρ, Y4 = ρ ∂ρ − T ∂T .

Hence, the PDE system E admits a Lie algebra of point symmetries ϑ−1(h2t ).

3. h(a) = λa2, λ ̸= 0
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In this case the Lie algebra g3 of point symmetries of the system (1.1) is gen-
erated by the vector fields X1, X2, X3 and, if λ < 0, by the vector fields

X4 = sin(
√

2λg t) ∂a +
√
2λg cos(

√
2λg t) ∂u,

X5 = cos(
√
2λg t) ∂a −

√
2λg sin(

√
2λg t) ∂u,

X6 = a ∂a + u ∂u − 2ρ ∂ρ + 2T∂T

and, if λ > 0, by the vector fields

X4 = exp(
√

−2λg t) ∂a +
√
−2λg exp(

√
−2λg t) ∂u,

X5 = exp(−
√

−2λg t) ∂a −
√
−2λg exp(−

√
−2λg t) ∂u,

X6 = a ∂a + u ∂u − 2ρ ∂ρ + 2T∂T .

The Lie algebra g3 is solvable and its sequence of derived algebras is

g3 = ⟨X1, X2, . . . , X6⟩ ⊃ ⟨X2, X3, X4, X5⟩ .
The pure thermodynamic part h3 of the symmetry algebra is generated by the

vector fields
Y1 = ∂p, Y2 = ∂s, Y3 = ρ ∂ρ − T ∂T .

Hence, the PDE system E admits a Lie algebra of point symmetries ϑ−1(h3t ).

4. h(a) = λ1a
λ2 , λ2 ̸= 0, 1, 2

The Lie algebra g4 of point symmetries of the system (1.1) is generated by the
vector fields X1, X2, X3 and by the vector field

X4 = t ∂t −
2a

λ2 − 2
∂a −

λ2u

λ2 − 2
∂u − p ∂p +

λ2 + 2

λ2 − 2
ρ ∂ρ −

2λ2

λ2 − 2
T ∂T .

The Lie algebra g4 is solvable and the sequence of derived algebras is the fol-
lowing

g4 = ⟨X1, X2, X3, X4⟩ ⊃ ⟨X1, X2, X3⟩ .
The pure thermodynamic part h4 of the symmetry algebra is generated by the

vector fields

Y1 = ∂p, Y2 = ∂s, Y3 = p ∂p − (λ2 + 2)ρ ∂ρ + 2λ2T ∂T .

Hence, the PDE system E admits a Lie algebra of point symmetries ϑ−1(h4t ).

5. h(a) = λ1e
λ2a, λ2 ̸= 0

In this case, the symmetry Lie algebra g5 of the system (1.1) is generated by
the vector fields X1, X2, X3 and by the vector field

X4 = t ∂t −
2

λ2
∂a − u ∂u − p ∂p + ρ ∂ρ − 2T∂T .

The Lie algebra g5 is solvable and the derived algebras are the following

g5 = ⟨X1, X2, X3, X4⟩ ⊃ ⟨X1, X2, X3⟩ .
The pure thermodynamic part h5 of the symmetry algebra is generated by the

vector fields

Y1 = ∂p, Y2 = ∂s, Y3 = p ∂p − ρ ∂ρ + 2T ∂T .

Hence, the PDE system E admits a Lie algebra of point symmetries ϑ−1(h5t ).
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6. h(a) = ln a
The Lie algebra g6 of point symmetries of the system (1.1) is generated by the

vector fields X1, X2, X3 and by the vector field

X4 = t ∂t + a ∂a − p ∂p − ρ ∂ρ.

The Lie algebra g6 is solvable and the sequence of derived algebras is the fol-
lowing

g6 = ⟨X1, X2, X3, X4⟩ ⊃ ⟨X1, X2⟩ .
The pure thermodynamic part h6 of the symmetry algebra is generated by the

vector fields

Y1 = ∂p, Y2 = ∂s, Y3 = p ∂p + ρ ∂ρ.

Hence, the PDE system E admits a Lie algebra of point symmetries ϑ−1(h6t ).

3. Thermodynamic states with a one-dimensional symmetry algebra

In this section we consider the thermodynamic states, or the Lagrangian surfaces
L, admitting a one-dimensional symmetry algebra. The cases, when thermody-
namic states admit a two-dimensional symmetry algebra, can be studied in the
similar way.

Let the thermodynamic state admit a one-dimensional symmetry algebra. De-
note by

Z = γ1Y1 + γ2Y2 + . . .+ γkYk

a basis vector of this algebra, then the Lagrangian surface can be found from the
solution of PDE (see [3] for details){

Ω|L = 0,

(ιZΩ)|L = 0.

This system in terms of specific energy can be written as

ϵ = ϵ(ρ, s), T = ϵs, p = ρ2ϵρ.

Solving it, we find thermodynamic state L, which must also satisfy κ|L < 0.
Straightforward computations show that, for an arbitrary function h(a), there

are no thermodynamic states that admit a one-dimensional symmetry algebra.

1, 2. h(a) = const, h(a) = λa
The pure thermodynamic part of the system symmetry algebra coincides with

the thermodynamic part of the 2d Navier-Stokes case. Thus, the classification of
the thermodynamic states for these two cases can be found in [3]. 3. h(a) = λa2,

λ ̸= 0
Let a basis vector of a one-dimensional symmetry algebra be

γ1∂p + γ2∂s + γ3(ρ ∂ρ − T ∂T ),

then in the general case expressions for the pressure and temperature have the
form

p =
γ2
γ3

F ′ − F − γ1
γ3

(ln ρ− 1), T =
F ′

ρ
, F = F

(
s+

γ2
γ3

ln ρ

)
,

161



6 ANNA DUYUNOVA, VALENTIN LYCHAGIN, AND SERGEY TYCHKOV

where F is an arbitrary function. The condition of negative definiteness of the
differential form κ leads to the relations

F ′ > 0, F ′′ > 0,
(γ2F

′ − γ1)F
′′

γ3
− F ′2 > 0.

4. h(a) = λ1a
λ2 , λ2 ̸= 0, 1, 2

Let a basis vector of a one-dimensional symmetry algebra be

γ1∂p + γ2∂s + γ3(p ∂p − (λ2 + 2)ρ ∂ρ + 2λ2T ∂T ),

then in the general case expressions for the pressure and temperature have the
form

p =
ρ

2−λ2
λ2+2 (γ2F

′ − 2λ2γ3F )

γ3(λ2 + 2)
− γ1

γ3(λ2 − 2)
, T = ρ

−2λ2
λ2+2F ′,

F = F

(
s+

γ2
γ3(λ2 + 2)

ln ρ

)
,

where F is an arbitrary function. The negative definiteness of the differential form
κ leads to the relations

F ′ > 0, F ′′ > 0, 2λ2(λ2 − 2)FF ′′ − 4λ2
2F

′2 +
γ2(λ2 + 2)F ′F ′′

γ3
> 0.

5. h(a) = λ1e
λ2

The pure thermodynamic part of the system symmetry algebra coincides with
the symmetry Lie algebra of the Navier-Stokes system of differential equations on
a two dimensional unit sphere. So, the classification of thermodynamic states can
be found in [3].

6. h(a) = ln a
Let a basis vector of a one-dimensional symmetry algebra be

γ1∂p + γ2∂s + γ3(p ∂p + ρ ∂ρ),

then in the general case expressions for the pressure and temperature have the
form

p =
−(γ2F

′ + C)ρ

γ3
− γ1

γ3
, T = F ′, F = F

(
s− γ2

γ3
ln ρ

)
.

The negative definiteness of the differential form κ leads to the relations

F ′ > 0, F ′′ > 0,
γ2F

′ + C

γ3
< 0

when s ∈ (−∞, s0].

4. Differential invariants

As before in [3], we consider two group actions on the Navier-Stokes system E.
Specifically, the prolonged actions of the Lie algebras gm and gsym.

Recall that a function J on the manifold Ek is a kinematic differential invariant
of order ≤ k if

(1) J is a rational function along fibers of the projection πk,0 : Ek → E0,
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(2) J is invariant with respect to the prolonged action of the Lie algebra gm,
i.e., for all X ∈ gm,

X(k)(J) = 0, (4.1)

where Ek is the prolongation of the system E to k-jets, and X(k) is the k-th pro-
longation of a vector field X ∈ gm.

Note that fibers of the projection Ek → E0 are irreducible algebraic manifolds.
A kinematic invariant is an Navier-Stokes invariant if condition (4.1) holds for

all X ∈ gsym.
We say that a point xk ∈ Ek and the corresponding orbit O(xk) (gm- or gsym-

orbit) are regular, if there are exactly m = codimO(xk) independent invariants
(kinematic or Navier-Stokes) in a neighborhood of this orbit. Otherwise, the point
and the corresponding orbit are singular.

The Navier-Stokes system together with the symmetry algebras gm or gsym
satisfies the conditions of Lie-Tresse theorem (see [6]), and, therefore, the kinematic
and Navier-Stokes differential invariants separate regular gm and gsym orbits on
the Navier-Stokes system E correspondingly.

By a gm or gsym-invariant differentiation we mean a total differentiation

A
d

dt
+B

d

da

that commutes with prolonged action of algebra gm or gsym. Here A, B are rational
functions on the prolonged system Ek for some k ≥ 0.

4.1. Kinematic invariants.

Theorem 4.1. (1) The field of kinematic invariants is generated by first-
order basis differential invariants and by basis invariant differentiations.
This field separates regular orbits.

(2) For the general cases of h(a), as well as for h(a) = λ1a
λ2 , h(a) = λ1e

λ2a

and h(a) = ln a, the basis differential invariants are

a, u, ρ, s, ut, ua, ρa, st, sa,

and the basis invariant differentiations are

d

dt
,

d

da
.

(3) For the cases h(a) = const, h(a) = λa the basis differential invariants are

ρ, s, ua, ut + uua, ρa, sa, st + usa,

and basis invariant differentiations are

d

dt
+ u

d

da
,

d

da
.

(4) For the case h(a) = λa2 the basis differential invariants are

ρ, s, ua, ut + uua − 2λga, ρa, sa, st + usa,

and basis invariant differentiations are

d

dt
+ u

d

da
,

d

da
.
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(5) The number of independent invariants of pure order k equals 5 for k ≥ 1.

4.2. Navier-Stokes invariants.
In this subsection we study the thermodynamic states that admit a one-dimensional

symmetry algebra generated by the vector field A.
Considering the action of the thermodynamic vector field A on the field of

kinematic invariants and finding first integrals of this action we get basis Navier-
Stokes differential invariants of the first order.

Below we list basis Navier-Stokes invariants for the different form of function
h(a).

1. h(a) = const
When the thermodynamic state admits a one-dimensional symmetry algebra

generated by the vector field

ξ1X2 + ξ2X3 + ξ3X6 + ξ4X7 = ξ1∂p + ξ2∂s+

ξ3(t ∂t + a ∂a − p ∂p − ρ ∂ρ) + ξ4(a ∂a + u ∂u − 2ρ ∂ρ + 2T ∂T ),

then the field of Navier-Stokes invariants is generated by the first order differential
invariants

s+
ξ2

ξ3 + 2ξ4
ln ρ, uaρ

− ξ3
ξ3+2ξ4 , ρaρ

ξ4
ξ3+2ξ4

−2,
ρ2(ut + uua)

ρaua
,

ρsa
ρa

,
st + usa

ua

and by the invariant differentiations

ρ−
ξ3

ξ3+2ξ4

(
d

dt
+ u

d

da

)
, ρ−

ξ3+ξ4
ξ3+2ξ4

d

da
.

2. h(a) = λa, λ ̸= 0
When the thermodynamic state admits a one-dimensional symmetry algebra

generated by the vector field

ξ1X2 + ξ2X3 + ξ3X6 + ξ4X7 = ξ1∂p + ξ2∂s + ξ3(t ∂t + 2a ∂a + u ∂u−

p ∂p − 3ρ ∂ρ + 2T∂T ) + ξ4

(
t ∂t +

(
λgt2

2
+ a

)
∂a + λgt ∂u − p ∂p − ρ ∂ρ

)
,

then the field of Navier-Stokes differential invariants is generated by the differential
invariants

s+
ξ2 ln ρ

3ξ3 + ξ4
, uaρ

−ξ3−ξ4
3ξ3+ξ4 , ρaρ

ξ3
3ξ3+ξ4

−2,
ρ2(ut + uua − λg)

ρaua
,

ρsa
ρa

,
st + usa

ua

of the first order and by the invariant differentiations

ρ−
ξ3+ξ4
3ξ3+ξ4

(
d

dt
+ u

d

da

)
, ρ−

2ξ3+ξ4
3ξ3+ξ4

d

da
.

3. h(a) = λa2, λ ̸= 0
If the thermodynamic state admits a one-dimensional symmetry algebra gener-

ated by the vector field

ξ1X2 + ξ2X3 + ξ3X6 = ξ1∂p + ξ2∂s + ξ3(a ∂a + u ∂u − 2ρ ∂ρ + 2T∂T ),
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then the field of Navier-Stokes differential invariants is generated by the first order
differential invariants

s+
ξ2
2ξ3

ln ρ, ua, ρ(ut + uua − 2λga)2,
ρ2a
ρ3

,
s2a
ρ
, st + usa

and by the invariant differentiations

d

dt
+ u

d

da
, ρ−

1
2
d

da
.

4. h(a) = λ1a
λ2 , λ ̸= 0, 1, 2

If the thermodynamic state admits a one-dimensional symmetry algebra gener-
ated by the vector field

ξ1X2 + ξ2X3 + ξ3X4 = ξ1∂p + ξ2∂s+

ξ3

(
t ∂t −

2a

λ2 − 2
∂a −

λ2u

λ2 − 2
∂u − p ∂p +

λ2 + 2

λ2 − 2
ρ ∂ρ −

2λ2

λ2 − 2
T ∂T

)
,

then the field of Navier-Stokes differential invariants is generated by the first order
differential invariants

s+
ξ2(λ2 − 2)

2ξ3
ln a, a−λ2u2, auρ,

aut

u2
,

aua

u
, a2uρa,

ast
u

, asa

and by the invariant differentiations

ρ
λ2−2
λ2+2

d

dt
, ρ

−2
λ2+2

d

da
.

5. h(a) = λ1e
λ2a

If the thermodynamic state admits a one-dimensional symmetry algebra gener-
ated by the vector field

ξ1X2+ξ2X3+ξ3X4 = ξ1∂p+ξ2∂s+ξ3

(
t ∂t −

2

λ2
∂a − u ∂u − p ∂p + ρ ∂ρ − 2T∂T

)
,

then the field of Navier-Stokes differential invariants is generated by the first order
differential invariants

s+
λ2ξ2
2ξ3

a, e−λ2au2, uρ,
ut

u2
,

ua

u
, uρa,

st
u
, sa

and by the differentiations

ρ
d

dt
,

d

da
.

6. h(a) = ln a
If the thermodynamic state admits a one-dimensional symmetry algebra gener-

ated by the vector field

ξ1X2 + ξ2X3 + ξ3X4 = ξ1∂p + ξ2∂s + ξ3 (t ∂t + a ∂a − p ∂p − ρ ∂ρ) ,

then the field of Navier-Stokes differential invariants is generated by the first order
differential invariants

s− ξ2
ξ3

ln a, u, aρ, aut, aua, a2ρa, ast, asa
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and by the invariant differentiations

ρ−1 d

dt
, ρ−1 d

da
.

Appendix

The following table summarizes relations between the function h and the sym-
metry algebra of the system (1.1), see Section 2 for details.

h(a) is arbitrary

X1 = ∂t,

X2 = ∂p,

X3 = ∂s

h(a) = const

X4 = ∂a,

X5 = t ∂a + ∂u,

X6 = t ∂t + a ∂a − p ∂p − ρ ∂ρ,

X7 = a ∂a + u ∂u − 2ρ ∂ρ + 2T ∂T

h(a) = λa, λ ̸= 0

X4 = ∂a,

X5 = t ∂a + ∂u,

X6 = t ∂t + 2a ∂a + u ∂u − p ∂p − 3ρ ∂ρ + 2T ∂T ,

X7 = t ∂t + (
λgt2

2
+ a) ∂a + λgt ∂u − p ∂p − ρ ∂ρ

h(a) = λa2, λ ̸= 0

X4 = exp(
√
2λg t) ∂a +

√
2λg exp(

√
2λg t) ∂u,

X5 = exp(−
√
2λg t) ∂a −

√
2λg exp(−

√
2λg t) ∂u

X6 = a∂a + u ∂u − 2ρ ∂ρ + 2T ∂T ,

h(a) = λ1a
λ2 ,

λ2 ̸= 0, 1, 2

X4 = (λ2 − 2)t ∂t − 2a∂a − λ2u∂u−
p ∂p + (λ2 + 2)ρ ∂ρ − 2λ2T∂T

h(a) = λ1e
λ2a,

λ2 ̸= 0
X4 = t ∂t −

2

λ2
∂a − u ∂u − p ∂p + ρ ∂ρ − 2T ∂T

h(a) = ln a X4 = t ∂t + a ∂a − p ∂p − ρ ∂ρ
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