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GEOMETRICAL APPROACH TO OPTIMIZATION PROBLEMS

IN EQUILIBRIUM THERMODYNAMICS

ALEXEI KUSHNER, VALENTIN LYCHAGIN, AND MIKHAIL ROOP

Abstract. Using a geometrical formalism of equilibrium thermodynamics

we formulate and solve an optimal control problem for ideal gases. Thermo-
dynamic state is given by a Legendrian manifold equipped with Riemannian
structures. A problem of finding an optimal thermodynamic process maximiz-

ing the work functional leads to the integrable in Liouville’s sense Hamiltonian
system. We provide its exact solution by means of angle-action variables and
prove a controllability of the dynamical system.

1. Introduction

Optimization problems in thermodynamics are of both theoretical and practical
interest, since in many gas motions, such as filtration in porous media (see [1, 2, 3]),
Euler flows (see [4]), the medium can be involved in some thermodynamic process,
say, isenthalpic or isentropic, and it is natural to investigate processes along which
the work of the gas reaches its maximum value. One of the first works originated
the investigation in this direction is [5]. Later, in [6] methods of constructing
optimal heat engines with linear heat transfer laws were developed, and in [7],
methods of optimal control theory, in particular, Pontryagin’s maximum principle
[8, 9], were applied. In a series of works [10], the optimization problem in non-
equilibrium thermodynamics was studied.

In the present work we use a geometrical formulation of thermodynamics to
solve the problem of optimal control for ideal gases. The geometrical approach
goes back to classical works [11, 12, 13] and in modern terms of contact and sym-
plectic geometry is presented in [14], where, above all, a remarkable link between
thermodynamics and measurement theory was observed, which is of special im-
portance in this work. This work is a continuation of [15]. Here, we also address
the controllability problem.

The paper is organized in the following way. First of all, we briefly remind all
necessary geometrical constructions and their connection with measurement (see
[14] for more details). Then, we formulate the optimization problem for any gas
and solve it in case of ideal gases. In this case the Hamiltonian system turns
out to be integrable, and using Liouville’s theorem (see, for example, [16]) we
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give its exact solution in terms of angle-action variables. The trajectories of the
dynamical system in the question lie on an invariant manifold that may have two
or three connected components. This brings us to the question of controllability
of the dynamical system, since for the existence of the optimal trajectory, for a
given pair of initial and final states one has to find such an invariant manifold that
initial and final states belong to the same connected component of the last. We
prove that the system is controllable.

2. Geometry and thermodynamics

In this section, we briefly describe thermodynamics from measurement view-
point and give necessary geometrical constructions following [14].

Let us assume that we have a random vector X : (Ω,A, q) → W , where Ω is a
set of elementary events, A is a σ-algebra on Ω, q is a probability measure, i.e.
a map from the probability space (Ω,A, q) to some vector space W of dimension
n < ∞. Then, if x ∈ W is assumed to be a result of the measurement of the
random vector X, then one should choose such a probability density ρ, that∫

Ω

ρdq = 1,

∫
Ω

Xρdq = x.

Using the principle of minimal information gain I =
∫
Ω

ρ ln ρdq (see [14] for details)

we get the following result.

Theorem 2.1. Measurements of a random vector X are given by the Legendrian
manifold L ⊂ R×W ×W ∗ of the contact form

θ = du−
n∑

i=1

λidxi,

where u is a coordinate on R, λ ∈ W ∗, i.e. θ|L = 0 and u|L = I.

Thus, given a Legendrian manifold L ⊂ R×W ×W ∗ one gets measurements of
a random vector X, and the value of the information gain I.

If one computes the variance σ2(X) of the random vector X, one observes that
it coincides with the restriction of the universal quadratic form

κ = dλ · dx =

n∑
i=1

dλi · dxi (2.1)

to the manifold L, i.e. κ|L = σ2(X). Here · means a symmetric product. This
implies that the Legendrian manifold L has to be Riemannian with respect to
metric κ|L. More precisely, the Legendrian manifold L consists of phases, where the
form κ|L is either positive or negative, separated from each other by a degeneration
set of κ|L.

Let us now turn to thermodynamics. It is well known that contact geometry
is a natural framework for equilibrium thermodynamics (see [11, 12, 13]). Indeed,
any thermodynamic system in equilibrium is described by two types of variables,
extensive W (e, v), where e and v are specific inner energy and volume respectively,
and intensive W ∗(p, T ) standing for pressure and temperature, and additionally
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specific entropy s ∈ R. The corresponding contact structure θ in thermodynamic
case is given by the first law of thermodynamics

θ = −ds+ T−1de+ pT−1dv.

A thermodynamic state is therefore a Legendrian manifold L ⊂ R×W ×W ∗, on
which θ|L = 0. This brings us to a conclusion that thermodynamics can be viewed
as a theory of measurement of extensive variables (e, v). The differential quadratic
form κ in thermodynamics is

κ = d(T−1) · de+ d(pT−1) · dv, (2.2)

and the negativity of κ|L gives us applicable states. To see how positivity of
(2.1) corresponds to negativity of (2.2) we refer to [15]. If one takes some vector
field Y ∈ D(L), then −κ|L(Y, Y ) is a function on L that gives us the variance of
measurement of energy e and volume v at the point (e, v) ∈ L.

Let us now choose (e, v) as coordinates on L, then for a given function σ(e, v)
the condition θ|L forces

L =

{
f1 = p− σv

σe
= 0, f2 = T − 1

σe
= 0, f3 = s− σ(e, v) = 0

}
. (2.3)

Thermodynamic processes can be understood as contact transformations ϕ : R×
W × W ∗ → R × W × W ∗, preserving the Legendrian manifold L. Infinitesimal
version of such transformations is given by contact vector fields X. They are
defined by generating functions (see, for example, [17]):

Xf = T (pfp + TfT ) ∂e−Tfp∂v+(f + TfT ) ∂s+T (fv − pfe) ∂p−T (fs + Tfe) ∂T ,

where f ∈ C∞(R×W ×W ∗) is a generating function of the vector field Xf . One
can easily show that Xf is tangent to a surface {f = 0}. Let us choose restrictions
Y1 and Y2 of vector fields Xf1 and Xf2 , where f1 and f2 are given by (2.3), to L
as a basis in the module of vector fields on L. They are of the form

Y1 =
σv

σ2
e

∂

∂e
− 1

σe

∂

∂v
, Y2 =

1

σ2
e

∂

∂e
. (2.4)

Note that Y3 = Xf3 |L = 0.

3. Optimal control

In this section, we formulate and solve an optimal problem on an ideal gas state
Legendrian manifold and discuss the controllability of our dynamical system.

3.1. Problem. Let us look for a thermodynamic process l ∈ L as an integral
curve of some vector field Y = u1Y1+u2Y2, where Y1 and Y2 are base vector fields
(2.4). We will interpret coefficients u1 and u2, which are the functions on L, as
control parameters. The admissible domain U for control parameters u = (u1, u2)
will be defined as follows

U =

{
u ∈ R2 | −κ|L(Y, Y )

e2
≤ δ

}
, (3.1)
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where δ > 0 is a constant. From the physical viewpoint condition (3.1) means
that the variance of e and v is limited by a constant, depending on the square of
energy.

If one introduces the work 1-form ω = pdv, then one can define the quality
functional by the following way:

J =

t0∫
0

ω(Y )dt → max
u∈U

. (3.2)

Condition (3.2) means that the work of the gas reaches its maximum along the
process l ⊂ L.

Using the notation x = (e, v) and assuming that both initial state x(1) =
(e(1), v(1)) and final state x(2) = (e(2), v(2)) are fixed, as well as t0, one gets an
extremal problem in the form

ẋ = (Y (1)(x, u), Y (2)(x, u)), x ∈ R2, u ∈ U,

x(0) = x(1), x(t0) = x(2), (3.3)

J =

t0∫
0

ω(Y )dt → max
u∈U

,

where the Y (1)(x, u) and Y (2)(x, u) are the coefficients of the unknown vector field

Y = Y (1)(x, u)
∂

∂e
+ Y (2)(x, u)

∂

∂v
,

and they are defined by means of (2.4). Optimal problem (3.3) can be formulated
for any thermodynamic state model.

3.2. Solution for ideal gases. The Legendrian manifold L for ideal gases is
given by {f1 = f2 = f3 = 0}, where

f1 = pv −RT, f2 = e− nRT

2
, f3 = s−R ln

(
en/2v

)
,

where R is the universal gas constant, n is the degree of freedom of the molecule.
Therefore, vector fields Y1 and Y2 are

Y1 = −2ev

nR
∂v, Y2 = −2e2

nR
∂e. (3.4)

The differential quadratic form κ|L is

κ|L = −nR

2e2
de · de− R

v2
dv · dv. (3.5)

Using (3.4), (3.5) and (3.1) we obtain the admissible domain U for control param-
eters as

U =

{
(u1, u2) ∈ R2 | 4

n2R
u2
1 +

2

nR
u2
2 ≤ δ

}
.

Let us introduce new coordinates (q1, q2) on L by the following way:

e =
nR

2q1
, v = exp

(
−q2
q1

)
.
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In these coordinates vector fields (3.4) will take a simpler form

Y1 = ∂q2 , Y2 = ∂q1 +
q2
q1

∂q2 .

The Pontryagin’s function of problem (3.3) in coordinates q = (q1, q2) will be

P (q, λ, u) = −Ru1

q21
+ λ1u2 + λ2

(
q2u2

q1
+ u1

)
, (3.6)

where λ = (λ1, λ2) are Lagrangian multipliers.
Due to Pontryagin’s maximum principle [8, 9] the function P (q, λ, u) has to

reach its maximum value on U . Since P (q, λ, u) is linear with respect to (u1, u2),
the maximum value is reached on the boundary ∂U .

Theorem 3.1 ([15]). The controls (u1, u2) obey the following law on the extremal
trajectory

u∗
1 =

n
√
Rδ

2
cos τ∗, u∗

2 =

√
nRδ

2
sin τ∗, (3.7)

where

τ∗(q, λ) = π(2k + 1)− arctan

(√
2q1(q1λ1 + q2λ2)√
n (R− q21λ2)

)
, k ∈ Z.

Substituting control parameters (3.7) to the Pontryagin’s function (3.6), we get
the Hamiltonian H(q, λ) = P (q, λ, u∗(q, λ)):

H(q, λ) =
1

2q21

√
nRδ (nq41λ

2
2 + 2q41λ

2
1 + 4q31q2λ1λ2 + 2q21q

2
2λ

2
2 − 2Rnq21λ2 +R2n).

(3.8)
Optimal trajectories are found from the canonical equations

q̇ =
∂H

∂λ
, λ̇ = −∂H

∂q
, (3.9)

with Hamiltonian (3.8).

Theorem 3.2 ([15]). The function G(q, λ) = q1λ2 is the integral of Hamiltonian
system (3.9), which commutes with Hamiltonian (3.8) with respect to the Poisson
bracket [G,H], where the bracket is uniquely determined by the equality

[G,H]Ω ∧ Ω = dG ∧ dH ∧ Ω, Ω = dq ∧ dλ.

Thus system (3.9) is integrable in Liouville’s sense. Invariant manifold M of
canonical system (3.9) is given by levels of its integrals

M =
{
(q, λ) ∈ R4 | H(q, λ) = H1, G(q, λ) = H2

}
,

where H1 and H2 are constants. In coordinates (q1, q2) it is given by

λ1 =
−2H2Rδnq2 ±

√
D

2Rnδq21
, λ2 =

H2

q1
,

where D = 2Rδn
(
4H2

1q
4
1 − δRn2(R−H2q1)

2
)
.

One can see that the manifold M only exists if D ≥ 0. Therefore, considering D
as a polynomial in q1, we drive to a conclusion that M may have various numbers
of connected components.

143



6 ALEXEI KUSHNER, VALENTIN LYCHAGIN, AND MIKHAIL ROOP

Theorem 3.3. The manifold M has three connected components if levels of inte-
grals H1 and H2 satisfy the inequality

n
√
δH2

2 − 8H1

√
R ≥ 0. (3.10)

In other cases, the manifold M has two connected components.

Proof. Due to (3.8) one concludes that H1 > 0. By means of scale transformation

H1 7→ R3/2n
√
δH1, H2 7→ H2R, q1 7→ q1√

2H1

. (3.11)

we reduce all the dimensional constants in D. Then, the condition D = 0 is
equivalent to

q41 − (1− µq1)
2 = 0, (3.12)

where µ = H2/
√
2H1.

From (3.12), one gets the expression for roots of the polynomial D:

q∗1,2 = −µ

2
± 1

2

√
µ2 + 4, q∗3,4 =

µ

2
± 1

2

√
µ2 − 4. (3.13)

One can see that two real roots q∗1,2 always exist, while the other two q∗3,4 are real

only if µ2 ≥ 4. Therefore, if µ2 ≥ 4, then the number of connected components is
three, otherwise two.

By means of inverse scale transformation we get (3.10). �

To construct solution to (3.9), we introduce the so-called action-angle variables,
in terms of which (3.9) takes its simplest form.

Theorem 3.4 ([15]). Angle variables Ω1 and Ω2 are of the form

Ω1 = ±
∫

4H1q
2
1dq1√
D

, Ω2 =
q2
q1

±
∫

n2Rδ(R−H2q1)dq1

q1
√
D

.

Hamiltonian system (3.9) is equivalent to

Ω̇1 = 1, Ω̇2 = 0,

and its solution is

Ω1 = t+ α1, Ω2 = α2, (3.14)

where constants α1, α2 are found by means of conditions at the ends.

Thus we have got a solution to (3.9) in quadratures.

3.3. Controllability. Let x(1) = (x1, x2) be an initial state, and x(2) = (y1, y2)
be a final state. Let us apply scale transformation (3.11) to quadratures (3.14).
We obtain

t0 =

√
2H1y1∫

√
2H1x1

q21dq1√
q41 − (1− µq1)2

, (3.15)

0 =
y2√
2H1y1

− x2√
2H1x1

+

√
2H1y1∫

√
2H1x1

1− µq1

q1
√
q41 − (1− µq1)2

dq1, (3.16)

144



GEOMETRICAL APPROACH TO OPTIMIZATION PROBLEMS 7

where t0 is given.

Note that expressions (3.15) are valid only if D̂ = q41 − (1 − µq1)
2 > 0 every-

where on [
√
2H1x1,

√
2H1y1], or, in other words, if x1 and y1 belong to the same

connected component of the invariant manifold M . One may expect that for some
pairs (x1, y1) of initial and final states we will not be able to construct such a
manifold M by means of constants µ, H1, that there exists a trajectory from x1

to y1, and our system is not controllable. But the following theorem claims the
opposite.

Theorem 3.5. For any initial state (x1, x2), where x1 > 0, and any final state
(y1, y2), where y1 > 0, there exist constants µ and H1 > 0, such that the state
(y1, y2) is reachable from the state (x1, x2) in a finite time t0, i.e. dynamical
system (3.3) is controllable.

Proof. It is easy to show that under condition q1 > 0 (only such have physical

sense) the roots of the polynomial D̂(q1) = q41 − (1− µq1)
2 satisfy inequalities

0 < q∗1(µ) < q∗4(µ) ≤ q∗3(µ),

while q∗2(µ) < 0 for any µ ∈ R, and roots q∗3 , q
∗
4 only exist if µ ≥ 2. For certainty

and without loss of generality, we will assume that y1 > x1. For the existence of

the trajectory from x1 to y1 one needs D̂(q1) to be positive in [
√
2H1x1,

√
2H1y1].

Therefore the following inequalities must be satisfied√
2H1z1 > q∗1(µ), µ ∈ (−∞, 2),√

2H1z1 > q∗3(µ), or q∗1(µ) <
√

2H1z1 < q∗4(µ), µ ∈ [2,+∞),

where z1 is either x1, or y1. The corresponding domains for z1 are shown in Fig. 1.

Figure 1. Admissible x1 and y1 belong to white domain

Let arbitrary x1 > 0 and y1 > 0 be given. One needs to choose the constant
H1 > 0 in such a way that solutions µ∗

2 and µ∗
3 of equations

√
2H1y1 = q∗4(µ) and

145



8 ALEXEI KUSHNER, VALENTIN LYCHAGIN, AND MIKHAIL ROOP

√
2H1x1 = q∗1(µ) are related as µ∗

2 ≥ µ∗
3. Then, one can find such a µ∗ ∈ [µ∗

3, µ
∗
2],

that the interval [
√
2H1x1,

√
2H1y1] does not contain singularities of the integrand

in (3.15). This is shown in Fig. 2.

Figure 2. Relations between µ∗
2 and µ∗

3. For given x1, y1 and
H1 there is no common µ since µ∗

2 < µ∗
3

Let us find µ∗
2 and µ∗

3.√
2H1x1 = q∗1(µ) =⇒ µ∗

3 =
1− 2H1x

2
1

x1

√
2H1

,

√
2H1y1 = q∗4(µ) =⇒ µ∗

2 =
1 + 2H1y

2
1

y1
√
2H1

,

from what it follows that for µ∗
3 ≤ µ∗

2 one needs to choose H1 satisfying the
condition

H1 ≥ y1 − x1

2x1y1(x1 + y1)
> 0.

One can see that for given 0 < x1 < y1 such H1 can always be found.
For the pair (x2, y2) the analysis is trivial.
Thus, the system is controllable. �
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Cham (2019) 3–52.

15. Kushner A., Lychagin V. and Roop M.: Optimal Thermodynamic Processes for Gases,

Entropy 22(4) (2020) 448.
16. Arnold V.I.: Mathematical Methods of Classical Mechanics, Springer-Verlag, New York,

1989.
17. Kushner A., Lychagin V. and Rubtsov V., Contact Geometry and Nonlinear Differential

Equations, Cambridge University Press, Cambridge, 2007.

Alexei Kushner: Faculty of Physics, Lomonosov Moscow State University, Lenin-
skie Gory, 119991 Moscow, Russia; V.A. Trapeznikov Institute of Control Sciences,
Russian Academy of Sciences, 65 Profsoyuznaya Str., 117997 Moscow, Russia; Depart-
ment of Mathematics and Informatics, Moscow Pedagogical State University, 1/1 M.

Pirogovskaya Str., Moscow, Russia
E-mail address: kushner@physics.msu.ru

Valentin Lychagin: V.A. Trapeznikov Institute of Control Sciences, Russian Acad-
emy of Sciences, 65 Profsoyuznaya Str., 117997 Moscow, Russia

E-mail address: valentin.lychagin@uit.no

Mikhail Roop: V.A. Trapeznikov Institute of Control Sciences, Russian Academy
of Sciences, 65 Profsoyuznaya Str., 117997 Moscow, Russia

E-mail address: mihail roop@mail.ru

147


