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Abstract. First we prove that the main theorem for absolutely monotonic

functions on (0,∞) from the book Mitrinović D.S., Pečarić J.E., Fink A.M.
”Classical And New Inequalities In Analysis”, Kluwer Academic Publishers,

1993, is not valid without additional restrictions. After that connected in-

equalities for special functions of hypergeometric type is studied.

1. On the main theorem for absolutely monotonic functions

In this section we correct the main theorem for absolutely monotonic functions
on (0,∞) from the book Mitrinović D.S., Pečarić J.E., Fink A.M. ”Classical And
New Inequalities In Analysis”, Kluwer Academic Publishers, 1993. Also note that
different classes of functions and inequalities for special functions are important
in many areas, also including probability theory and stochastic analysis. For some
references cf. [1].

In the classical book [2], chapter XIII, page 365, there is a definition of abso-
lutely monotonic on (0,∞) functions.

Definition. A function f(x) is said to be absolutely monotonic on (0,∞) if it
has derivatives of all orders and

f (k)(x) ≥ 0, x ∈ (0,∞), k = 0, 1, 2, . . . . (1.1)

For absolutely monotonic functions the next integral representation is essential:

f(x) =

∫ ∞

0

ext dσ(t), (1.2)

where σ(t) is bounded and nondecreasing and the integral converges for all x ∈
(0,∞).

Also the basic set of inequalities is considered.
Let f(x) be an absolutely monotonic function on (0,∞). Then

f (k)(x)f (k+2)(x) ≥
(
f (k+1)(x)

)2

, k = 0, 1, 2, . . . . (1.3)
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After this definition in the book [2] the result which we classify as the main
theorem for absolutely monotonic functions on (0,∞) is formulated (theorem 1,
page 366).

The main theorem for absolutely monotonic functions.
The above definition (1.1), integral representation (1.2) and basic set of inequal-

ities (1.3) are equivalent.
It means:

(1.1) ⇔ (1.2) ⇔ (1.3). (1.4)

In the book [2] for (1.1) ⇔ (1.2) the reference is given to [3], and an equivalence
(1.2) ⇔ (1.3) is proved, it is in fact a consequence of Chebyschev inequality.

In this note we consider a counterexample to the equivalence (1) ⇔ (2) of
Widder. So unfortunately it seems that the main theorem for absolutely monotonic
functions in the book [2] is not valid !!!.

This counterexample is very simple so it is strange enough it was not found
before.

Really, to construct a very simple counterexample, consider a function f(x) =
x2 + 1. Obviously for all x ∈ [0,∞)

f(x) ≥ 0, f ′(x) = 2x ≥ 0, f ′′(x) = 2 ≥ 0, f (k)(x) = 0 ≥ 0, k > 2. (1.5)

So this function f(x) is in the class of absolutely monotonic functions on (0,∞)
due to the definition (1). If (1) ⇒ (3) is valid then the next inequality must be
true as a special case of (3) for all x ∈ (0,∞)

f(x)f ′′(x) ≥ (f ′(x))
2 ⇔ 2(x2 + 1) ≥ 4x2 ⇔ 1 ≥ x2

but this is not valid for all x ∈ (0,∞).
As a conclusion we see that implication (1) ⇒ (3) in [2] is not valid. It also

means that implication (1) ⇒ (2) is also not valid. The implication (2) ⇒ (3) is
obviously valid due to the Chebyschev inequality.

And consequently also the theorem 2 in [2], pages 366–367 on determinant
inequalities is not valid too if based only on definition (1).

In some papers the above implications are used to derive new results for abso-
lutely monotonic functions. It seems not to be a correct way of reasoning. One
way is to change the main theorem on absolutely monotonic functions to a proper
one, otherwise for all special cases an integral representation must be proved in-
dependently.

Comment 1. On the other hand everything is OK with theorems on completely
monotonic functions. An integral representation for them in [4] include the addi-
tional condition

lim
x→∞

f(x) = 0.

This condition is omitted in [3] but mysteriously mentioned in [4] with the reference
again to [3]. May be something like it is needed also for absolutely monotonic
functions.

Different aspects of completely monotonic functions are considered in ([3, 4, 5].
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Comment 2. There are many ways to generalize notions of absolutely and com-
pletely monotonic functions. It seems that a first step was done by Sergei Bernstein
and very important generalizations were investigated by Bulgarian mathematicians
Nikola Obreshkov (also known for two celebrated named formulas: Obreshkov gen-
eralized Taylor expansion formula and the Obreshkov integral transform— the first
integral transform which kernel depends on Meyer G–function and not depends
on any hypergeometric function of any kind) and Jaroslav Tagamlitskii.

Comment 3. With absolute and complete monotonicity different functional
classes are deeply connected: Stieltjes, Pick, Bernstein, Schoenberg, Schur and
others.

So the next problems seem to be rather interesting and important.
Problem 1. Give a correct proof for the theorem under consideration from [2]

and so give justification for equivalences (1.4).
Problem 2. Generalize the theorem under consideration from [2] for fractional

derivatives and give justification for equivalences (1.4) for this case.

2. Ratio monotonicity for some classes of special functions

In the preprint [6] one of the authors formulated some conjectures on mono-
tonicity of ratios for exponential series sections. They lead to more general conjec-
ture on monotonicity of ratios of Kummer hypergeometric functions and was not
proved from 1993. In this paper we prove some conjectures from [6] for Kummer
hypergeometric functions and its further generalizations for Gauss and generalized
hypergeometric functions. The results are also closely connected with Turán–type
inequalities.

2.1. Introduction and statement of problems. Let us consider the series for
the exponential function

exp(x) = ex =

∞∑
k=0

xk

k!
, x ≥ 0,

its section Sn(x) and series remainder Rn(x) in the form

Sn(x) =

n∑
k=0

xk

k!
, Rn(x) = exp(x)− Sn(x) =

∞∑
k=n+1

xk

k!
, x ≥ 0. (2.1)

Besides simplicity and elementary nature of these functions many mathemati-
cians studied problems for them. G. Szegő proved a remarkable limit distribution
for zeroes of sections, accumulated along so–called the Szegő curve. S. Ramanujan
seems was the first who proved the non–trivial inequality for exponential sections
in the form: if

en

2
= Rn−1(n) +

nn

n!
θ(n)

then

1

3
< θ(n) =

n!
(
en

2 −Rn−1(n)
)

nn
<

1

2
.
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This result is important as it also evaluates en in rational bounds

2nn

3n!
+ 2Rn−1(n) < en <

nn

n!
+ 2Rn−1(n)

as it was specially pointed out in ([?], pp. 323–324).
In the preprint [6] were thoroughly studied inequalities of the form

m(n) ≤ fn(x) =
Rn−1(x)Rn+1(x)

[Rn(x)]
2 ≤ M(n), x ≥ 0. (2.2)

The search for the best constants m(n) = mbest(n), M(n) = Mbest(n) has some
history. The left–hand side of (2.2) was first proved by Kesava Menon withm(n) =
1
2 (not best) and by Horst Alzer with

mbest(n) =
n+ 1

n+ 2
= fn(0), (2.3)

cf. [6] for the more detailed history. In [6] it was also shown that in fact the
inequality (2.2) with the sharp lower constant (2.3) is a special case of the stronger
inequality proved earlier in 1982 by Walter Gautschi.

It seems that the right–hand side of (2.2) was first proved by the author in [6]
with Mbest = 1 = fn(∞). In [6] dozens of generalizations of inequality (2.2) and
related results were proved. May be in fact it was the first example of so called
Turan–type inequality for special case of the Kummer hypergeometric functions.

Obviously the above inequalities are consequences of the next conjecture origi-
nally formulated in [6] .

Conjecture 1. The function fn(x) in (2.2) is monotone increasing
for x ∈ [0;∞), n ∈ N. So the next inequality is valid

n+ 1

n+ 2
= fn(0) ≤ fn(x) < 1 = fn(∞). (2.4)

In 1990’s we tried to prove this conjecture in the straightforward manner by
expanding an inequality (fn(x))

′ ≥ 0 in series and multiplying triple products of
hypergeometric functions but failed.

Consider a representation via Kummer hypergeometric functions

fn(x) =
n+ 1

n+ 2
gn(x), gn(x) =

1F1(1;n+ 1;x)1F1(1;n+ 3;x)

[1F1(1;n+ 2;x)]
2 . (2.5)

So the conjecture 1 may be reformulated in terms of this function gn(x) as con-
jecture 2.

Conjecture 2. The function gn(x) in (2.5) is monotone increasing
for x ∈ [0;∞), n ∈ N.

This leads us to the next more general
Problem 1. Find monotonicity in x conditions for x ∈ [0;∞)

for all parameters a,b,c for the function

h(a, b, c, x) =
1F1(a; b− c;x)1F1(a; b+ c;x)

[1F1(a; b;x)]
2 . (2.6)
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We may also call (2.6) mockingly (in Ramanujan way, remember his mock
theta–functions!) ”The abc–problem” for Kummer hypergeometric functions, why
not?

Another generalization is to change Kummer hypergeometric functions to higher
ones.

Problem 2. Find monotonicity in x conditions for x ∈ [0;∞) for all
vector–valued parameters a,b,c for the function

hp,q(a, b, c, x) =
pFq(a; b− c;x)pFq(a; b+ c;x)

[pFq(a; b;x)]
2 , (2.7)

a = (a1, . . . , ap), b = (b1, . . . , bq), c = (c1, . . . , cq).

This is ”The abc–problem” for generalized hypergeometric functions. The more
complicated problems are obvious and may be considered for pairs or triplets of
parameters and also for multivariable hypergeometric functions.

In 1941 while studying the zeros of Legendre polynomials, the Hungarian math-
ematician Paul Turán discovered the following inequality

Pn−1(x)Pn+1(x) < [Pn(x)]
2
,

where |x| < 1, n ∈ N = 1, 2, ... and Pn stands for the classical Legendre polyno-
mial. This inequality was published by P. Turán only in 1950. However, since the
publication in 1948 by G. Szegö of the above famous Turán inequality for Legendre
polynomials, many authors have deduced analogous results for classical (orthog-
onal) polynomials and special functions. In the last 62 years it has been shown
by several researchers that the most important (orthogonal) polynomials (e.g.
Laguerre, Hermite, Appell, Bernoulli, Jacobi, Jensen, Pollaczek, Lommel, Askey-
Wilson, ultraspherical polynomials) and special functions (e.g. Bessel, modified
Bessel, gamma, polygamma, Riemann zeta functions) satisfy a Turán inequality.
In 1981 one of the PhD students of P. Turán, L. Alpár in Turán’s biography men-
tioned that the above Turán inequality had a wide-ranging effect, this inequality
was dealt with in more than 60 papers. Since Turán’s inequality was investigated
for the orthogonal polynomials having hypergeometric representation, it is worth
studying the validity of such inequality for various hypergeometric functions as
well. Recently Turán type inequalities for the q-Kummer’s and q-hypergeometric
functions were prooved and discussed and using the monotonicity property of ratios
of Kummer, Gauss and generalized hypergeometric functions the author presented
some Turán type inequalities for this functions.

The aim of this paper is to prove conjectures 1 and 2, and to find conditions
for validity of problems 1 and 2 and so completely solve them.

3. Two lemmas

We formulate two useful lemmas which will be used below. These lemmas
were first proved in ([7]), cf. also ([8])–([9]) for the detailed proof and further
applications. The lemmas are modern variants of a classical Bernoulli rule from
calculus.
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Lemma 3.1. Let (an) and (bn) (n = 0, 1, 2...) be real numbers, such that bn >

0, n = 0, 1, 2, ... and
(

an

bn

)
n≥0

is increasing (decreasing), then
(

a0+...+an

b0+...+bn

)
n

is

increasing (decreasing).

Lemma 3.2. . Let (an) and (bn) (n = 0, 1, 2...) be real numbers and let the power
series A(x) =

∑∞
n=0 anx

n and B(x) =
∑∞

n=0 bnx
n be convergent if |x| < r. If bn >

0, n = 0, 1, 2, ... and if the sequence
(

an

bn

)
n≥0

is (strictly) increasing (decreasing) ,

then the function A(x)
B(x) is also (strictly) increasing on [0, r[.

4. Monotonicity for the Kummer hypergeometric function and
associated Turán type inequality

Theorem 4.1. Let a, b, c be real numbers such that 0 < a < b− c and b > 1 and
the function x 7−→ h(a, b, c, x) is defined by

h(a, b, c, x) =
1F1(a; b− c;x)1F1(a; b+ c;x)

[1F1(a; b;x)]
2 . (4.1)

Then this function is increasing on [0,∞[. Consequently, for n ∈ N, the functions
x 7−→ fn(x) in (2.2) and x 7−→ gn(x) in (2.5) are also increasing on [0,∞[.

Proof For all a, b, c be real numbers such that 0 < a < b − c and b > 1 we
evaluate

h(a, b, c, x) =
1F1(a; b− c;x)1F1(a; b+ c;x)

[1F1(a; b;x)]
2 =

=

(∑∞
n=0

(a)n
(b−c)nn!

xn
)(∑∞

n=0
(a)n

(b+c)nn!
xn

)
[∑∞

n=0
(a)n
(b)nn!

xn
]2 =

=

∑∞
n=0 Anx

n∑∞
n=0 Bnxn

,

where

An =

n∑
k=0

(a)k(a)n−k

(b− c)k(b+ c)n−kk!(n− k)!
and Bn =

n∑
k=0

(a)k(a)n−k

(b)k(b)n−kk!(n− k)!
.

Let define sequences (un,k)k≥0, (vn,k)k≥0 and (wn,k)k≥0 by

un,k =
(a)k(a)n−k

(b− c)k(b+ c)n−kk!(n− k)!
, vn,k =

(a)k(a)n−k

(b)k(b)n−kk!(n− k)!
,

and

wn,k =
un,k

vn,k
=

(b)k(b)n−k

(b− c)k(b+ c)n−k
, k ≥ 0.
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It follows that

wn,k+1

wn,k
=

un,k+1vn,k
vn,k+1un,k

=

=
(b)k+1(b)n−k−1(b− c)k(b+ c)n−k

(b− c)k+1(b+ c)n−k−1(b)k(b)n−k
=

=
Γ(b+ k + 1)

Γ(b+ k)
.
Γ(b+ n− k − 1)

Γ(b+ n− k)
.

Γ(b− c+ k)

Γ(b− c+ k + 1)
.

Γ(b+ c+ n− k)

Γ(b+ c+ n− k − 1)
=

=
(b+ k)

(b− c+ k)
.
(b+ c+ n− k − 1)

(b+ n− k − 1)
≥ 1.

We conclude that the sequence (wn,k)k≥0 is increasing and consequently the

sequence (Cn = An

Bn
)n≥0 is also increasing by lemma 3.1. Thus the function

h(a, b, c, x) is increasing on [0,∞[ by lemma 3.2. Finally, replacing a and c by
1 and b by n + 1 for all n ∈ N, we obtain that the functions x 7−→ gn(x) and
x 7−→ fn(x) are also increasing on [0,∞[. So both conjectures 1 and 2 from in-
troduction are proved. And also we found the solution to the Problem 1 from
introduction if restrictions of the theorem 1 are valid.

Corollary 4.2. For all a, b, c be real numbers such that 0 < a < b− c and b > 1,
the following Turán type inequality

[1F1(a, b, x)]
2 ≤ 1F1(a, b− c, x).1F1(a, b+ c, x) (4.2)

holds for all x ∈ [0,∞[.

Proof Since the function x 7−→ h(a, b, c, x) is increasing on [0,∞[, we have

h(a, b, c, x) ≥ h(a, b, c, 0) = 1.

This result is interesting as a corollary of monotonicity property we consider,
this inequality itself is not new is known. And in general Turán type inequalities
always can be generalized to stronger results on monotonicity of function ratios
with unit upper or lower constants.

5. Monotonicity for the hypergeometric function and associated
Turán type inequality

Now we also solve the Problem 2 for general hypergeometric–type functions
under some natural conditions.

Theorem 5.1. Let p, q ∈ N be such that p ≤ q+1, a = (a1, ..., ap), b = (b1, ..., bq),
c = (c1, ..., cq), bi > 0, bi − ci > 0 for i = 1, 2, ..., q and ai > bi for i = 2, ..., p. If
bi > 1 for i = 1, 2, ..., q, then the function x 7−→ hp,q(a, b, c, x) in (2.7) is strictly
increasing on [0, 1[.

Proof
By using the power–series representations of the function pFq(a; b;x) we have
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hp,q(a; b; c;x) =
pFq(a; b− c;x). pFq(a; b+ c;x)

(pFq(a; b;x))
2 =

=

[∑∞
n=0

(a1)n(a2)n...(ap)nx
n

(b1−c1)n(b2−c2)n...(bq−cq)nn!

]
[∑∞

n=0
(a1)n(a2)n...(ap)nxn

(b1)n(b2)n...(bq)nn!

]2 ·

·

[ ∞∑
n=0

(a1)n(a2)n...(ap)nx
n

(b1 + c1)n(b2 + c2)n...(bq + cq)nn!

]
=

∑∞
n=0 An(a, b, c)x

n∑∞
n=0 Bn(a, b)xn

where

An(a, b, c) =

n∑
k=0

Uk(a, b, c) =

=

n∑
k=0

[(a1)k(a1)n−k] [(a1)k(a1)n−k] ... [(ap)k(ap)n−k]

[(b1 − c1)k...(bq − cq)k] [(b1 + c1)n−k...(bq + cq)n−k] k!(n− k)!
,

and

Bn(a, b) =

n∑
k=0

Vk(a, b) =

=

n∑
k=0

[(a1)k(a1)n−k] [(a2)k(a2)n−k] ... [(ap)k(ap)n−k]

[(b1)k(b1)n−k] [(b2)k(b2)n−k] ... [(bq)k(bq)n−k] k!(n− k)!
.

Now, for fixed n ∈ N we define sequences (Wn,k(a, b, c))k≥0 by

Wn,k(a, b, c) =
Uk(a, b, c)

Vk(a, b)
=

[(b1)k(b1)n−k] [(b2)k(b2)n−k] ... [(bq)k(bq)n−k]

[(b1 − c1)k...(bq − cq)k] [(b1 + c1)n−k...(bq + cq)n−k]
.

For n, k ∈ N we evaluate

Wn,k+1(a, b, c)

Wn,k(a, b, c)
=

q∏
j=1

[
(bj)k+1(bj)n−k−1(bj − cj)k(bj + cj)n−k

(bj)k(bj)n−k(bj − cj)k+1(bj + cj)n−k−1

]
=

=

q∏
j=1

[(
Γ(bj + k + 1)

Γ(bj + k)

)(
Γ(bj + n− k − 1)

Γ(bj + n− k)

)
·

·
(

Γ(bj − cj + k)

Γ(bj − cj + k + 1)

)(
Γ(bj + cj + n− k − 1)

Γ(bj + cj + n− k)

)]
=

=

q∏
j=1

[
bj + k

bj − cj + k

] [
bj + cj + n− k − 1

bj + n− k − 1

]
> 1.

And now we conclude that (Wn,k)k≥0 is increasing and consequently
(
Cn = An

Bn

)
n≥0

is increasing too by the Lemma 3.1. Thus the function x 7−→ hp,q(a; b; c;x) is in-
creasing on [0, 1[ by the Lemma 3.2. It completes the proof of the theorem 2.
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Corollary 5.2. Let p, q ∈ N be such that p ≤ q+1, a = (a1, ..., ap), b = (b1, ..., bq),
c = (c1, ..., cq), bi > 0, bi − ci > 0 for i = 1, 2, ..., q and ai > bi for i = 2, ..., p. If
bi > 1 for i = 1, 2, ..., q, then the following Turán type inequality

pFq(a; b− c;x)pFq(a; b+ c;x) > (pFq(a; b;x))
2

(5.1)

holds for all x ∈ [0, 1[.

Proof Follows immediately from the monotonicity of the function hp,q(a; b; c;x).

6. Conclusion

In this paper first we prove that the main theorem for absolutely monotonic
functions on (0,∞) from the book Mitrinović D.S., Pečarić J.E., Fink A.M. ”Clas-
sical And New Inequalities In Analysis”, Kluwer Academic Publishers, 1993, is not
valid without additional restrictions. After that connected inequalities for special
functions of hypergeometric type is studied. We prove monotonicity of ratios for
some special functions of hypergeometric type. Our technique use a kind of a
modern Bernoulli-type rule proved by M. Biernacki and J. Krzyz in 1995 [7].
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