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Abstract. We introduce a novel topological index for graphs called elliptic
Sombor stress index using stresses of nodes. Some inequalities have been
established, some results have been proved and elliptic Sombor stress index
of some standard graphs have been computed. This study examines the
chemical significance of the elliptic Sombor stress index through regression
analysis applied to 22 benzenoid hydrocarbons. Using power regression mod-
els, we investigate how the elliptic Sombor stress index correlates with several
physicochemical properties of these hydrocarbons.

1. Introduction

We refer to the textbook of Harary [6] for standard terminology and concepts
in graph theory. This article will provide non-standard information when needed.

Let G = (V,E) be a graph (finite, simple, connected and undirected). The
degree of a node v in G is denoted by deg(v). A shortest path (graph geodesic)
between two nodes u and v in G is a path between u and v with the minimum
number of edges. We say that a graph geodesic P is passing through a node v in
G if v is an internal node of P (i.e., v is a node in P , but not an end node of P ).

The concept of stress of a node (node) in a network (graph) has been intro-
duced by Shimbel as centrality measure in 1953 [40]. This centrality measure has
applications in biology, sociology, psychology, etc., (See [9, 38]). The stress of a
node v in a graph G, denoted by strG(v) or str(v), is the number of geodesics
passing through it. We denote the maximum stress among all the nodes of G by
ΘG and minimum stress among all the nodes of G by θG. Further, the concepts of
stress number of a graph and stress regular graphs have been studied by Bhargava
et al. in their paper [3]. A graph G is called k-stress regular if str(v) = k for all
v ∈ V (G). Many stress related concepts in graphs and topological indices have
been defined and studied by several authors [1–4,7, 8, 10–20,22–37,39,41–45].
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Gutman et al. [5] introduced the concept of elliptic Sombor index. The elliptic
Sombor index EI of a graph G is defined as

EI(G) =
∑

uv∈E(G)

(deg(u) + deg(v))
√
deg(u)2 + deg(v)2. (1.1)

In this work, a finite simple connected graph is referred to as a graph, G denotes
a graph and N denotes the number of geodesics of length ≥ 2 in G. Motivated
by the elliptic Sombor index discussed above, we introduce a topological index for
graphs using stress on nodes, in section 2. This new index is called the elliptic Som-
bor stress index. Further, some inequalities have been established, some results
have been proved and elliptic Sombor stress index of some standard graphs have
been computed. In section 3, we examine the chemical significance of the elliptic
Sombor stress index through regression analysis applied to 22 benzenoid hydrocar-
bons. Using power regression models, we investigate how the elliptic Sombor stress
index correlates with several physicochemical properties of these hydrocarbons.

2. Elliptic Sombor Stress Index

Definition 2.1. The elliptic Sombor stress index ESI(G) of a graph G is defined
as

ESI(G) =
∑

uv∈E(G)

(str(u) + str(v))
√

str(u)2 + str(v)2. (2.1)

Observation: From the Definition 2.1, it follows that, for any graph G,
2
√
2m2θG ≤ ESI(G) ≤ 2

√
2m2ΘG

where m is the number of edges in G.

Example 2.2. Consider the graph G given in Figure 1.
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Figure 1. A graph G

The stresses of the nodes of G are as follows:
str(v1) = str(v3) = str(v7) = str(v8) = str(v4) = str(v6) = 0,
str(v2) = 19, str(v5) = 1.

The elliptic Sombor stress index of G is:

ESI(G) = 19
√

192 + 02 + 19
√
192 + 02 + 19

√
192 + 02 + 19

√
192 + 02
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+ 19
√
192 + 02 + 20

√
192 + 12 + 19

√
192 + 02 +

√
02 + 12

+
√
12 + 02

=2548.526.

Proposition 2.3. For any graph G,

0 ≤ ESI(G) ≤ 2
√
2N2|E|. (2.2)

Proof. For any node v in G, we have 0 ≤ str(v) ≤ N . Hence by Definition 2.1, it
follows that 0 ≤ ESI ≤ 2

√
2N2|E|. �

Corollary 2.4. If there is no geodesic of length ≥ 2 in a graph G, then ESI(G) =
0. Moreover, for a complete graph Kn, ESI(Kn) = 0.

Proof. If there is no geodesic of length ≥ 2 in a graph G, then N = 0. Hence, by
the Proposition 2.3, we have ESI(G) = 0.

In Kn, there is no geodesic of length ≥ 2 and so ESI(Kn) = 0. �

Theorem 2.5. For a graph G, ESI(G) = 0 iff G is complete.

Proof. Suppose that ESI(G) = 0. Then by the Definition 2.1,
(str(u) + str(v))

√
str(u)2 + str(v)2 = 0, ∀uv ∈ E(G). Hence str(v) = 0, ∀v ∈

V (G). If |V (G)| = 1 or 2, then G is a complete graph as G ∼= K1 or K2. Assume
that |V (G)| > 2. Let u, v be any two distinct nodes in G. We claim that u, v
are adjacent in G. For, if u, v are not adjacent in G, then there is a geodesic in
G between u and v passing through at least one node, say w making str(w) ≥ 1,
which a contradiction. Hence, u, v are adjacent in G. Therefore, G is complete.

Conversely, suppose that the graph G is complete. Then by Corollary 2.4, it
follows that ESI(G) = 0. �

Proposition 2.6. For the complete bipartite Km,n,

ESI(Km,n) =
mn

4
(n(n− 1) +m(m− 1))

√
n2(n− 1)2 +m2(m− 1)2.

Proof. Let V1 = {v1, . . . , vm} and V2 = {u1, . . . , un} be the partite sets of Km,n.
We have,

str(vi) =
n(n− 1)

2
for 1 ≤ i ≤ m (2.3)

and

str(uj) =
m(m− 1)

2
for 1 ≤ j ≤ n. (2.4)

Using (2.3) and (2.4) in the Definition 2.1, we have

ESI(Km,n) =
∑

uv∈E(G)

(str(u) + str(v))
√

str(u)2 + str(v)2

=
∑

1≤i≤m, 1≤j≤m

(str(vi) + str(uj))
√

str(vi)2 + str(uj)2
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=
∑

1≤i≤m, 1≤j≤n

n(n− 1) +m(m− 1)

2

√(
n(n− 1)

2

)2

+

(
m(m− 1)

2

)2

=
mn

4
(n(n− 1) +m(m− 1))

√
n2(n− 1)2 +m2(m− 1)2.

�

Proposition 2.7. If G = (V,E) is a k-stress regular graph, then

ESI(G) = 2
√
2k2|E|.

Proof. Suppose that G is a k-stress regular graph. Then
str(v) = k for all v ∈ V (G).

By the Definition 2.1, we have

ESI(G) =
∑

uv∈E(G)

(str(u) + str(v))
√

str(u)2 + str(v)2

=
∑

uv∈E(G)

2k
√
k2 + k2

= 2
√
2k2|E|. �

Corollary 2.8. For a cycle Cn,

ESI(Cn) =


n(n− 1)2(n− 3)2

16
√
2

, if n is odd;

n3(n− 2)2

16
√
2

, if n is even.

Proof. For any node v in Cn, we have,

str(v) =


(n− 1)(n− 3)

8
, if n is odd;

n(n− 2)

8
, if n is even.

Hence Cn is 
(n− 1)(n− 3)

8
-stress regular, if n is odd;

n(n− 2)

8
-stress regular, if n is even.

Since Cn has n nodes and n edges, by Proposition 2.7, we have

ESI(Cn) = 2
√
2n×


(n− 1)2(n− 3)2

64
, if n is odd;

n2(n− 2)2

64
, if n is even.

=


n(n− 1)2(n− 3)2

16
√
2

, if n is odd;

n3(n− 2)2

16
√
2

, if n is even.
�
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Proposition 2.9. Let T be a tree on n nodes. Then

ESI(T ) =
∑
uv∈J

 ∑
1≤i<j≤m(u)

|Cu
i ||Cu

j |+
∑

1≤i<j≤m(v)

|Cv
i ||Cv

j |


√√√√√ ∑

1≤i<j≤m(u)

|Cu
i ||Cu

j |

2

+

 ∑
1≤i<j≤m(v)

|Cv
i ||Cv

j |

2


+
∑
w∈Q

 ∑
1≤i<j≤m(w)

|Cw
i ||Cw

j |

2

.

where J is the set of internal(non-pendant) edges in T , Q denotes the set of all
nodes adjacent to pendent nodes in T , and the sets Cv

1 , . . . , C
v
m denotes the node

sets of the components of T − v for an internal node v of degree m = m(v).

Proof. We know that a pendant node in T has zero stress. Let v be an internal
node of T of degree m = m(v). Let Cv

1 , . . . , C
v
m be the components of T −v. Since

there is only one path between any two nodes in a tree, it follows that,

str(v) =
∑

1≤i<j≤m

|Cv
i ||Cv

j | (2.5)

Let J denotes the set of internal(non-pendant) edges, and P denotes pendant edges
and Q denotes the set of all nodes adjacent to pendent nodes in T . Then using
(2.5) in the Definition 2.1 ((2.1)), we have

ESI(T ) =
∑
uv∈J

(str(u) + str(v))
√

str(u)2 + str(v)2

+
∑
uv∈P

(str(u) + str(v))
√

str(u)2 + str(v)2

=
∑
uv∈J

(str(u) + str(v))
√

str(u)2 + str(v)2 +
∑
w∈Q

str(w)2

=
∑
uv∈J

 ∑
1≤i<j≤m(u)

|Cu
i ||Cu

j |+
∑

1≤i<j≤m(v)

|Cv
i ||Cv

j |


√√√√√ ∑

1≤i<j≤m(u)

|Cu
i ||Cu

j |

2

+

 ∑
1≤i<j≤m(v)

|Cv
i ||Cv

j |

2


+
∑
w∈Q

 ∑
1≤i<j≤m(w)

|Cw
i ||Cw

j |

2

.

�
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Corollary 2.10. For the path Pn on n nodes

ESI(Pn) =

n−1∑
i=1

((i− 1)(n− i) + i(n− i− 1))
√

(i− 1)2(n− i)2 + i2(n− i− 1)2.

Proof. The proof of this corollary follows by above Proposition 2.9. We follow the
proof of the Proposition 2.9 to compute the index. Let Pn be the path with node
sequence v1, v2, . . . , vn (shown in Figure 2).

u u u u u u. . . . .
v1 v2 v3 v4 vn−1 vn

Pn

Figure 2. The path Pn on n nodes.

We have,
str(vi) = (i− 1)(n− i), 1 ≤ i ≤ n.

Then
ESI(Pn) =

∑
uv∈E(Pn)

(str(u) + str(v))
√

str(u)2 + str(v)2

=
n−1∑
i=1

(str(vi) + str(vi+1))
√

str(vi)2 + str(vi+1)2

=

n−1∑
i=1

((i− 1)(n− i) + i(n− i− 1))
√

(i− 1)2(n− i)2 + i2(n− i− 1)2.

�

Proposition 2.11. Let Wd(n,m) denotes the windmill graph constructed for
n ≥ 2 and m ≥ 2 by joining m copies of the complete graph Kn at a shared
universal node v. Then

ESI(Wd(n,m)) =
m3(m− 1)2(n− 1)

5

4
.

Hence, for the friendship graph Fk on 2k + 1 nodes,
ESI(Fk) = 8k3(k − 1)2.

Proof. Clearly the stress of any node other than universal node is zero in Wd(n,m),
because neighbors of that node induces a complete subgraph of Wd(n,m). Also,
since there are m copies of Kn in Wd(n,m) and their nodes are adjacent to v,
it follows that, the only geodesics passing through v are of length 2 only. So,

str(v) = m(m− 1)(n− 1)
2

2
. Note that there are m(n− 1) edges incident on v and

the edges that are not incident on v have end nodes of stress zero. Hence by the
Definition 2.1, we have

ESI(Wd(n,m)) = m(n− 1) str(v)2
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= m(n− 1)

[
m2(m− 1)2(n− 1)

4

4

]

=
m3(m− 1)2(n− 1)

5

4
.

Since the friendship graph Fk on 2k + 1 nodes is nothing but Wd(3, k), it follows
that

ESI(Fk) =
k3(k − 1)2(3− 1)

5

4
= 8k3(k − 1)2.

�

3. A QSPR Analysis

We carry a QSPR analysis for some physical properties of 22 benzenoid hydro-
carbons with elliptic Sombor stress index of molecular graphs. Table 1 gives the
elliptic Sombor stress index ESI(G) of molecular graphs and the experimental
values for the physical properties - boiling point (BP), π-electron energy (π-ele),
molecular weight (MW), polarizability (PO), molar volume (MV), and molar re-
fractivity (MR) of benzenoid hydrocarbons

Table 1. Elliptic Sombor stress index, boiling point (BP), π-
electron energy (π-ele), molecular weight (MW), polarizability
(PO), molar volume (MV), and molar refractivity (MR) of ben-
zenoid hydrocarbons

Derivatives of benzene ESI BP π-ele MW PO MV MR
Benzene 152.73 78.8 8 78.11 10.4 89.4 26.3
Naphthalene 5274.46 221.5 13.683 128.17 17.5 123.5 44.1
Phenanthrene 41132.79 337.4 19.448 178.23 24.6 157.7 61.9
Anthracene 42352.30 337.4 19.314 178.23 24.6 157.7 61.9
Chrysene 220644.78 448 25.192 228.3 31.6 191.8 79.8
Benzo[a]anthracene 203083.27 436.7 25.101 228.3 31.6 191.8 79.8
Triphenylene 147906.95 425 25.275 228.3 31.6 191.8 79.8
Tetracene 202256.62 436.7 25.188 228.3 31.6 191.8 79.8
Benzo[a]pyrene 339777.16 495 28.222 252.3 35.8 196.1 90.3
Benzo[e]pyrene 251772.52 467.5 28.336 252.3 35.8 196.1 90.3
Perylene 251145.97 467.5 28.245 252.3 35.8 196.1 90.3
Anthanthrene 527254.88 497.1 31.253 276.3 40 200.4 100.8
Benzo[ghi]perylene 418822.73 501 31.425 276.3 40 200.4 100.8
Dibenz[a,c]anthracene 527032.29 518 30.942 278.3 38.7 225.9 97.6
Dibenz[a,h]anthracene 913843.88 524.7 30.881 278.3 38.7 225.9 97.6
Dibenz[a,j]anthracene 583385.30 524.7 30.88 278.3 38.7 225.9 97.6
Picene 1020139.13 519 30.943 278.3 38.7 225.9 97.6
Coronene 682838.95 525.6 34.572 300.4 44.1 204.7 111.4
Dibenzo[a,h]pyrene 1251375.98 552.3 33.928 302.4 42.9 230.2 108.1
Dibenzo[a,i]pyrene 1345921.18 552.3 33.954 302.4 42.9 230.2 108.1
Dibenzo[a,l]pyrene 728731.37 552.3 34.031 302.4 42.9 230.2 108.1
Pyrene 77194.74 404 22.506 202.25 28.7 162 72.5
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Regression Models. Using Table 1, a study was carried out with a power re-
gression model

P = A · (ESI(G))B ,

where P = Physical property and ESI(G) = Sombor stress index.

Table 2. The correlation coefficient r from power regression
model between elliptic Sombor stress index and physicochemical
properties (BP, π-ele,MW, PO, MV, MR) of benzenoid hydrocar-
bons.

BP π − ele MW PO MV MR

0.968 0.977 0.983 0.973 0.981 0.973

The power regression models for boiling point , π-electron energy , molecular
weight , polarizability , molar volume , and molar refractivity of benzenoid hydro-
carbons are as follows:

BP = 35.26 · (ESI(G))0.2037 (3.1)
π − ele = 3.4338 · (ESI(G))0.1654 (3.2)
MW = 35.159 · (ESI(G))0.155 (3.3)
PO = 4.5155 · (ESI(G))0.1622 (3.4)
MV = 50.116 · (ESI(G))0.1091 (3.5)
MR = 11.412 · (ESI(G))0.1621 (3.6)

From Table 2, it follows that the power regression models:
(3.1)-(3.2)-(3.3)-(3.4)-(3.5)-(3.6) can be used as predictive tools.

4. Conclusion

Table 2, reveals that the power regression models (3.1)-(3.2)-(3.3)-(3.4)-(3.5)-(3.6)
are useful tools in predicting the physical properties of benzenoid hydrocarbons. It
shows that elliptic Sombor stress index can be used as predictive means in QSPR
researches.
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