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INVARIANT MANIFOLDS FOR NONLINEAR FLOWS WITH
UNCERTAINTY-AWARE CONE CONDITIONS
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Abstract. We develop an uncertainty-aware cone framework for invariant manifolds of nonlinear flows x =
F(x,a) on Banach spaces, where the parameter @ ranges over a compact uncertainty set A. Assuming a
uniform exponential dichotomy/dominated splitting for the linearized cocycle and Carathéodory-type
regularity of the nonlinearity, we introduce cone fields with explicit margins that absorb bounded model
perturbations and establish forward/backward cone invariance uniformly in a. Via a uniform graph-
transform (stable/unstable) and a Lyapunov-Perron construction (center/center-stable/center-unstable), we
prove existence, uniqueness, and C¥ (or Lipschitz) regularity of local invariant manifolds WfO{ ?l/ C(a) with radii
and contraction constants independent of a, and we quantify Lipschitz /C? dependence of these manifolds
on the uncertainty parameter. We verify the hypotheses for sectorial (parabolic) semiflows and provide a
detailed reaction-diffusion case where a uniform spectral gap across parameter bands yields the required cone
margins. A finite-difference Newton continuation, benchmarked against a one-mode Galerkin reduction, is
upgraded to a proof-producing pipeline using a Neumann/Krawczyk a-posteriori test with a radii-polynomial,
thereby delivering validated steady-state branches with certified error radii and numerically corroborating the
uniform cone mechanism.

Keywords: invariant manifolds; uncertainty-aware cone conditions; exponential dichotomy; dominated
splitting; Lyapunov-Perron method; sectorial operators; reaction-diffusion equations; Galerkin reduction;
Krawczyk operator; radii polynomial; parameter-robust stability.

1 Introduction

Let X be a Banach space with norm || ||y, and let A € R™ be a compact
uncertainty set. We study (semi)flows generated by

Xx=F(x,a),x(0) =x, € X,a €A, -—-—(11

where F:X X A — X is C¥ in x (typically k = 1) and continuous in a. Write
¢a(t,xy) for the corresponding local flow (or semiflow). Classical invariant
manifold theory (Hadamard-Perron for hyperbolic equilibria; Fenichel's
persistence; normally hyperbolic invariant manifolds; graph transform methods)
provides existence, uniqueness, and regularity of stable/unstable/center manifolds
under hyperbolicity and cone conditions that encode invariant splittings and
dominated growth/decay rates [1]-[6]. However, many applications require
robustness with respect to parametric uncertainty e.g., data-driven ranges of
parameters, interval models, or bounded perturbations-where classical pointwise

cone conditions do not immediately yield uniform manifold statements across a €

A.

This work develops a uniform, uncertainty-aware cone framework implying the
existence, uniqueness, and regularity of invariant manifolds simultaneously for all
a € A, together with Lipschitz/Ho6lder dependence on a. We formulate cone fields
with margins and gap conditions that survive small model misspecification and

quantify graph-transform contractions uniformly in a.
Our approach blends:

(i) adapted metrics and quadratic forms defining cones,
(ii) exponential dichotomies/dominated splittings for the linearized cocycle

D¢, (t, x) with constants independent of a, and
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(iii) a uniform fixed-point argument in spaces of Lipschitz graphs over the stable

(or unstable) directions; cf. [4], [7]-{10].

The payoff is a family of C™ (or Lipschitz) invariant manifolds W/%/¢(a) with
uniform radii and contraction constants, and moduli of continuity @ = W/%/¢(a)

measured in Hausdorff or C™ graph norms.

Visual intuition

We depict uncertainty bands for cone apertures and a nominal invariant graph in

figure 1.
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Figure 1 - Uncertainty-aware cone fields and invariant manifold sketch.

A planar saddle-type flow with a nominal invariant curve (thick line). At a reference
state, unstable and stable cones are shown with a band around each aperture
encoding model uncertainty. The uncertainty-aware cone condition requires that
the flow map pushes the outer unstable cone strictly inside itself forward in time

(and dually, the stable cone backward), uniformly across all a € A

Contributions.

(i)  Asetof uniform cone conditions with margins ensuring forward,/backward
invariance and contraction of graph transforms for all a € A.

(i)  Existence-uniqueness-regularity of local WS/%/¢(a) with radii and Lipschitz
constants independent of a, plus Hélder/Lipschitz dependence on a.

(iii) Extensions to flows with exponential dichotomies (nonautonomous case)

and semiflows generated by sectorial operators in Banach spaces (parabolic

PDE), compatible with classical frameworks in (2], [5], (6], [8]-[10].

2 Notation and functional setting

2.1 Splitting, adapted norms, and flows

Let x, € X be an equilibrium foralla € A4, i.e. F(x,,a) = 0. Assume a continuous
splitting
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X=ES@®E PE" ———(21)

with bounded projections []" : X = E’ - ~ € {s, ¢, u}. Denote x = (x°,x¢,x%*). We

use an adapted norm || - ||4 equivalent to || + ||x such that
11l = max{as [1x* ||, acllx€ ], @ lIx*11}, -—=(22)

with weights @. > 0 chosen to magnify the spectral gap in Section 2.3. The
(semi)flow ¢, (t,) is assumed to exist on a radius R > 0 ball By (R) € X uniformly
inafor [t| <T,and F € C¥ in x with locally Lipschitz D, F, uniformly in a € A.

For the linearized cocycle Uy (t): = D, ¢, (t, x,) we assume block structure in the
splitting (in the autonomous case, U, (t) = etD"F(x*'a)).

2.2 Uncertainty-aware cone fields

Let Q%,Q": X — R be continuous quadratic forms defining cones

Cs:= {a: Q5 (x) + 8])x||2 < 0}, C¥:
={x:Qu() = 8xlIF =0}, —--(23)

with a margin & > 0. Think of Q%(x) = [|x%[|> — n2(||x¢||> + ||x*||?) and
Q*(x) = |Ix*|I2 = n2(lIxS|I? + ||x€]|?), where . > 0 encode apertures. The
uncertainty set A modifies both the cocycle U, (t) and the nonlinear remainder;
we demand uniform cone invariance with margin:
(C1) Forward invariance of unstable cones. There exist t, > 0,8,, € (0,1) such
that for all @ € A, x € Bx(R) N C¥,

Pa(to,x) — x, € Cg, T (g (£0, X) — x|
> ;I (x — x )l i O

(C2) Backward invariance of stable cones. There exist t, > 0,0 € (0,1) such that
foralla € A,x € By(R) n C3,

Pa(—to, x) — x, € C3, ¥ (g (—to, %) — x|
> 0|1 (x — x| -—=(25)

(C3) Center tempering (optional). For x € E€, || (£to, x) — x. || < Acllx — x,]|
with A, uniform in a.

Conditions (C1)-(C3) express that cones are mapped strictly into themselves with

uniform expansion/contraction and that center dynamics are dominated; see, e.g.,

(3], [4], [6HO].

2.3 Linear dichotomy / dominated splitting

Let U, (t) admit an exponential dichotomy on Rsq (or R) with projections P5/*(a)

compatible with IT¥/* and uniform rates
UL (OS] < Me s, ||U, (—)[T%|| < Me b, ¢t >0, ———(26)
foralla € A, with A5, > 0 and M = 1. The spectral gap

y:=min{A;, A, } — L, >0, -——(2.7)
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dominates the Lipschitz constant Ly, of the nonlinear remainder (see below). This

yields a dominated splitting and underpins contraction of the graph transform; cf.

(21, (4], (6], [10].

2.4 Nonlinear remainder and Lipschitz envelopes

Write
F(x,a) =Lyx + N(x,a),L,:=D,F(x,,a), -——(238)

with N(x,,a) = 0,D,N(x,,a) = 0. Assume on By(R) :

INCx, @) = Ny, &)lly < Lullx = ylls, [INCe, @) s
< cullx — %17, -—=(29)

uniformly in a € A. Additionally, assume a = L, and a = N(:,a) are Lipschitz
L(l) L(Z)

with constants L; %, L, .

2.5 Graph transform phase space

Let G* be the space of Lipschitz maps h: E¥(9) = E*¢:= E®* @ E° with h(0) =
0, Lip(h) < x, where E*(0): = {u € E™:||u|| < 0}. The unstable graph W*(h) =
{(h(w),u):u € E*(0)} is contained in the unstable cone if x is small relative to
7. Define the one-step graph transform T, by

W (Tah): = ¢q(to, W*(h)) N By (R), -——(210)

expressed as a new graph over E* (well-posed by cone invariance). The metric on

G* is dist(hy, hy): = IISlﬁp IRy (W) — ho (W
ull<eo

Lemma 2.1 (Uniform contraction of T, )

Under (C1)-(C3), (2.6)2.9), there exists ¢ > 0,x > 0, and q € (0,1) such that for
all a€A T, :
G* - G" is well-defined and

dist(T,h,, T,h,) < qdist(hy, h,). - ——(211

Sketch. Decompose trajectories by variation of constants, use (2.6)-(2.7) to control
linear parts, (2.9) for the nonlinear remainder, and cone invariance to keep graphs
within C¥. Bounds are uniform in a € A. See, e.g., [3], [4], [6], [8].

By Banach's contraction principle, each T, admits a unique fixed point h, € G%,

giving a local unstable manifold

Wige(@) = {(he (W), w): [|lull < o} -—-(212)

Analogous constructions yield W3 (a) (backward transform) and, under

additional center tempering, Wi, (@) by Lyapunov-Perron methods; see [2], [5], [6],
[10].

2.6 Uniform dependence on the uncertainty parameter

Let A(a, b) denote the sup-norm of differences between Lg, Lj, and the Lipschitz
envelopes of N(:,a), N(-,b) on By4(R). A standard perturbation of contractions

gives:



ASOKAN VASUDEVAN et. al.

Lemma 2.2 (Lipschitz dependence on L)

If supA(a,b) <¢ and ¢ is sufficiently small with respect to the contraction
a,beA

margin 1 — g, then

c
”ha - hb”CO(E“(g)) S EA(Q, b), - - - (213)

so a = WY (a) is Lipschitz (or Holder, as dictated by a-regularity of F ) in the
graph norm, uniformly on A. Similar bounds hold for W5, and, with tempered

center, for W, .

Table 1 - Core symbols and constants

Symbol Meaning

X Banach phase space; norm || - ||# adapted to the splitting
EScu Stable/center/unstable subspaces; projections []¥¢*

Cg/ u Stable/unstable cone fields with margin &

Uy (t) Linearized cocycle D, ¢, (¢, x.)

Asu Exponential rates of dichotomy; M bound constant

y Spectral gap (2.7) dominating the nonlinear Lipschitz envelope
G* Space of Lipschitz graphs over E* with Lip < »

T, Graph transform at step t, (2.10); contraction factor q

W/ve (a) | Local invariant manifolds as graphs; radius @

loc

3 Flow model and uncertainty-aware cone conditions (assumptions)

Let X be a Banach space with norm || - ||x. Fix an equilibrium x, € X and a
nonempty compact set of parameters A € R™. Consider the nonautonomous ODE

(autonomous in X, parametric in a )
X =F(x,a),F(,a) € C¥(X,X),k =1,a € A, -——(3.1)
generating local flows ¢, (t,"),t € [=T,T], on a ball By (R) independent of a.

3.1 Splitting and adapted norm

Assume there is a continuous splitting
X=E*@®E‘DE“N:X > E(€e{s,cu}) -—-——-(3.2)
with bounded projections ||IT*]| < €y and an adapted equivalent norm
ll1] 2 = max{a [lx*]], e x|l @ 1™ |13, x = (¥, x%,x), -——(33)
for some weights a. > 0. All constants below are independent of a € A.

Write Lg:= D,F(x,,a) and N(x,a):=F(x,a)—L,x, so N(x,a)=
0,D,N(x,,a) = 0.

3.2 Linear dichotomy / domination and nonlinear envelopes

(H1) Uniform exponential dichotomy /' domination: There are M = 1, A, 4, >
0 such that, for the linearized cocycle U, (t): = D¢, (t, x,),

1Ua(® Nl < Me™E, U, (DT < Me~Mt,t 2 0. ——— (3.4)

5
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Equivalently (autonomous case): the spectrum of L, satisfies Ro(Lgy|gs) <
-, Ro(Ly|gu) = Ay, and Ro(Ly|ge) € [—As A ] with A4, = 0.

(H2) Uniform local Lipschitz / quadratic remainder: There exist R > 0, L, ¢y =
0 such that for all x, ¥ € Bg(R) and a € 4,

INCx,a) =N, @)lls < Lullx = Ylla, [N (x, @) s
< cullx — %17 —-—=(@5)

W ;@

(H3) Lipschitz dependence on a: There are L;;”, L;;” with

ILe = Lylluexy < L la = bll, sup [IN(x,@) — N(x, b)|l4
x€By4(R)
<I1®|la-b|. ———(36)
(H4) Spectral gap domination: Put
y:= min{A;, A1, } — L, > 0. -—-——=3.7

This ensures linear contraction/expansion dominates the nonlinear Lipschitz

envelope.

3.3 Uncertainty-aware cone fields with margin

Letns,1y € (0,1),6 € (0,1), and define quadratic forms

Q* (= llx*II* = ng (llx Il + llx*11%), @*(x):
= I = nZ Al + 1x1),  ———(38)

and cone fields with margin

C3:= {x: Q5 (x) + 8|)xI2 < 0}, Ci:
= {x: Q¥ () — SlIx|I7 = 03. -——39

Intuitively, § > 0 thickens the cone aperture to tolerate bounded model
uncertainty (all € A ).

(C1) Forward invariance of unstable cones. There exist t, > 0,0, € (0,1) such
that, for alla € A and all x € B4(R) n C¥,

d)a(tO'x) —X. € Cg! ||Hu(¢)a(t0'x) - x*)”
> 01 (x — x.) || -—==(3.10)

(C2) Backward invariance of stable cones: There exist t, > 0,05 € (0,1) such
that, foralla € A and all x € B4(R) N C,

$a(—to, %) — x, € C§, [IT° (g (—to, %) — x|
= 67T (x — x| - ——(3.11)

(C3) Center tempering (optional): If E¢ = {0}, assume ||[TI¢¢, (£t x) — x.|| <

AT (x — x|l

Remarks.

(a) For C?! flows, (C1)(C2) follow from (H1){(H2) for t, small and § >0

small by standard cone calculus; see Lemma 4.1.
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(b) In finite dimension, one can construct Q%/* from the quadratic Lyapunov
functions associated with the dichotomy [11], [12].

4 Main results on invariant manifolds (existence, uniqueness, regularity)

We now derive uniform existence/uniqueness/regularity of local invariant
manifolds I/Vlosc/ ufe (a) via a graph transform over E* and E®, with constants

independent of a € A.
4.1 Cone invariance from the dichotomy

Lemma 4.1 (Linear cone invariance with margin)

Under (H1)(H2), there exist 71, €(0,1),8 € (0,1), and ¢, >0 (all
independent of a ) such that (3.10)-(3.11) hold for the linear flow e**2, and hence
for ¢, (t,”) on By (R) provided R is small enough.

Proof. For the linear system x = Ly, decompose x = (x*,x¢,x%*). Using (3.4),
(@)1l = M~ e lx* (O, 1| Ge* (), X6 () < Me*et || (x°(0), x° ()|
with A, € [0, A;). Choosing ,, € (0,1) so that
etufo > p M2eActo

implies Q¥ (x(1)) = e* o M~?||x*(0)||* — niM?e*<fo]|(x° (0), x“ (0N %,
hence x(t,) € C¥. A small positive § and small R absorb the nonlinear remainder
by Gronwall, using (3.5), yielding (3.10). The stable case is symmetric backward in
time.

4.2 Graph transform and unstable manifold

Let ES¢:= ES @ E°. Fix ¢ € (0, R) and define the graph space
G*:= {h: E¥(0) — E*¢ Lipschitz : h(0) = 0, Lip(h) < x}, -—-—(“41

with metric d(hq, hy):= sup ||hy (W) — h,(w)||. Here E*(0):= {u € E¥: ||u|| <

lluli<e

0}. For h € G* define the graph W*(h): = {(h(w),uw): |lu|| < o}

Given a € A, define the graph transform T,: G* = G* as follows: for each u €
E*(0), find @i € E* and h(i) € E*¢ such that

alto, h(w), ) = (@, ), [R@, 0| <o ———(42)

Cone invariance (3.10) and smallness of #, ¢ ensure well-definedness and that h:=
T,h € G*.

Lemma 4.2 (One-step transform estimates)

Under (H1)-(H4) and (C1){C3), there are ¢, X > 0, and q € (0,1) such that, for
alla € 4,

Lip(T,h) < #,d( T,hy, Tyhy) < qd(hy, hy), VR hy,hy € GE —— — (4.3)

Proof. Write the variation-of-constants formula on [0, t,] :
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(is:((g) = (Uég(t) U};O(t)> (hiu)) " fot <l{]§((tt:ss))) N(x(s),a)ds
—— —(44)

Using (3.4) and (3.5), for ||u|| < ¢ and Lip(h) < x,

to
ll° (to) Il < Me st X |[ul| +f Me %o (Lo ||x(s) || + cullX($)]|*)ds
0

———(45)

Similarly,
to

[l (o)l = M~ e ol fu]] —f Me* o= (Lo [|x ()] + carlIX ()11 ds
0

—— —(46)

Choose @ so small that the quadratic terms are dominated, and choose # so that
the cone is invariant (Lemma 4.1). Then the map u = #i: = x*(t;) is a bi-Lipschitz
selfmap of E*(0) with Lipschitz constant bounded below by M~tetufo — O(L,)).
Solving u = u(#) by the inverse function theorem in Banach spaces yields a

Lipschitz inverse with constant

. 1
W) Sietm g, @7

Hence h(ii): = x°¢(t,) satisfies
Me *stoy + C,L,,

Lip(h) < m

- ——(48)
Pick t, and then 3, 0 so small that the righthand side < » and the contraction

ratio ¢ < 1. The Lipschitz contraction for hy, h, follows by linearization of (4.4)
along two solutions and (3.7).

Theorem 4.3 (Unstable manifold: existence, uniqueness, regularity, uniform in
a)

Assume (H1)-(H4) and (C1). Then there exist ¢ > 0, € (0,1) and a family of
Lipschitz graphs h, € G%, a € A, such that:

(i)  (Existence & uniqueness) h, is the unique fixed point of T,. The set
Wige(@): = {(hq(w),w) € X:|lull < ¢} -——(49)

is a positively invariant local unstable manifold: if x € W¥ (a) and
¢a(—t,x) is defined for t = 0, then ¢, (—t,x) = x, exponentially as
t — +oo.

(ii) (Uniform constants) The radius @, Lipschitz bound #, and contraction
ratio q are independent of a € A.

(iii) (Regularity) If F(-,a) € C* and (H1)(H4) hold with k-th order tame
bounds, then h, € C¥ with ||D’h,|| bounded uniformly in a for 1 <
j<k.

Proof: By Lemma 4.2, T, is a contraction on G* with constant ¢ < 1 uniform in
a. Banach's fixed-point theorem yields a unique h,. Invariance and exponential

attraction backward follow from the construction: forward image of the graph stays
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a graph over E* and backward dynamics restricted to the graph are conjugate to
the inverse of u = 1 with exponential contraction from (3.4). Higher regularity
follows by differentiating (4.4) and solving the induced affine equations for the jets
D*?h, with Neumann-series estimates; see, e.g., [11, Section 5.5], [12], where the

tame bounds are uniform in a.

Stable manifold. The same argument applied to the backward transform vyields
WS. (@) with constants uniform in a, replacing (C1) by (C2).

Corollary 4.4 (Stable manifold, uniform in a € A)
Under (H1)(H4) and (C2), there exist ¢ > 0, € (0,1) and h: E*(p) = E with
Lip(h3) < # such that

Wise(@) = {(x°, hg (x*)): lIx°|| < o} - == (410)

is negatively invariant and attracts forward time within W,3. (a), with uniform
rates.
4.3 Center(-stable/unstable) manifolds and NHIMs

Assume E€ 2 {0} and the center tempering (C3). Consider the Lyapunov-Perron

operator on the space of curves £: R = E¢ with exponential weights and graph
over E€. Standard adaptations (see [11, Section 5.6], [13, Ch. 4]) give:

Theorem 4.5 (Local center manifold, uniform in a € A4)

Assume (H1)-(H4) and (C1)-(C3). Then there exists ¢ > 0 and a family of maps
hq:E€(0) = E* such that

Wise(@) = {(x4,ha(x9)) : 1x°)l < o} - ——(a11)

is invariant, tangent to E€ at x,, and unique among invariant graphs in a
neighborhood. If F(+, @) € C¥, then WS, (a) € C¥ with uniform bounds.

Sketch. One sets up the Lyapunov-Perron map

L©© = [ (6= NG +x () ds = [ U(e
—S)IIN(E(s) + x°(s),a)ds

and shows that L, is a contraction in an exponentially weighted Banach space if
¥ > 0 (3.7) and (C3) hold; the fixed point yields the graph h,. Uniformity in a
follows from uniform constants in (H1)-(H4) and (C3).

Normally hyperbolic invariant manifolds NHIMs). If a C* submanifold M c X is
invariant for all a and the splitting TM = E€,E* is dominated as in (H1) with
rates independent of a, then M persists with uniform C* tubular neighborhoods
and stable/unstable laminations WS/“(M, a) (graph bundles over M ), cf. [12,
Thm. 4.1], [14].

4.4 Dependence on the uncertainty parameter

We quantify how VI/losc/u/c (@) vary with a.
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Theorem 4.6 (Lipschitz dependence on a € A)
Under (H1)-(H4), (C1)(C3), and (H3), there is C > 0 such that

Iha = Rollcoggucy < C(LY + LY)lla - bll,Va, b € 4, -——(412)

and similarly, for hS,h,. If a = F(-,a) € C¥, then a = h, € C* with uniform
bounds.

Proof. Using the contraction mapping representation h, = lim Tgh, with a
n—-oo

common seed hg, and
d( Tyh, Tyh) < Co(LY + L) lla — bl + qd(h, hy), ———(413)

we sum the geometric series to obtain (4.12). Higher smoothness follows by implicit
function theorem in Banach spaces applied to the fixed-point equation G(a, h) =
h — T,h = 0 with DG = I — D}, T, invertible (Neumann series since ||D;, T, || <
q <1),cf. [11, Section 2.3], [15].

4.5 Tangency and rates on the manifolds

Finally, we record tangency and rates uniform in a.

Proposition 4.7 (Tangency & exponential rates)

For the unstable family,

T Wige(@) = E, ll¢a(=t, %) — x.|ly < Ce ™t ||x — x, I, x
€ VVlgc(a)' - (414)

and analogously Ty, W, (@) = E*® with forward contraction rate Ag; constants C

are independent of a.

Proof: Tangency follows from Dh,(0) = 0, obtained by solving the linearized
graph transform (the inhomogeneity vanishes because D,N(x,,a) =0).
Exponential rates follow by restricting dynamics to the invariant graphs and

applying (3.4) with Grénwall to control the nonlinear terms (3.5).

5 Applications and illustrative examples

We present two settings where assumptions (H1)-(H4) and cone conditions (C1)-
(C3) are verified with constants uniform over an uncertainty set A. Throughout, X
is a Banach (often Hilbert) space and || - ||4 is an adapted norm equivalent to || -

Ilx-

5.1 Sectorial (parabolic) semiflows with parameter bands

Let Q © R4 be a smooth bounded domain, H: = L2(Q; R™) and V: = Hi(Q;R™) n

H. Consider the semilinear parabolic problem

u=Au+ G, a),u(0) =uy, €EH,a €A, -——(G1
where:

e A:D(A) € H - H is the Dirichlet realization of a uniformly elliptic

operator (possibly matrix-valued). Assume A is sectorial and generates an

10
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analytic contraction semigroup e*4 with ||etA||L(H) < Mye~®* for some
w > 0[16].

e The nonlinearity G(-,a) is C¥ in u, locally Lipschitz on bounded sets
uniformly in a € 4, with G(0,a) = 0 and D,,G(0, a) bounded in a.

Set F(u,a):= Au + G(u,a). Linearization at u, = 0 gives L,:= A + D,,G(0, a).
By boundedness of D,,G(0,a) and spectral perturbation for sectorial generators,
there is € > 0 such that the dichotomy on H holds with rates

letLall®(a)]| < Me™(@~% |le~tall*(a)|| < Me™ @9t ¢t
>0, ———(52)

where [[/* (a) are spectral projectors associated with {Rz < —w + €} and {Rz >
w — €} (possibly w — € smaller than the resolvent bound) [16, Section 3], [Section
6]. This is precisely (H1).

The nonlinear remainder N(u, a): = G(u,a) — D,,G(0, a)u satisfies on By (R) :
IN(w @) = N(v, @)l < Lallu — v, IN(w, &) || < cwllull? --=(3)

with Ly, ¢y independent of a (shrink R if needed), yielding (H2). Lipschitz
dependence on a of L, and N(:,a) gives (H3). Choosing R > 0 so that L <
min{A,, A, } with A5, = w — ¢ yields the spectral gap ¥ > 0 (3.7) and hence (H4).

Theorem 5.1 (Uniform local invariant manifolds for sectorial PDE)

Under the above hypotheses, the semiflow generated by (5.1) satisfies (H1) —

(H4), so Theorems 4.3, 4.5 and Corollary 4.4 apply. In particular, there exist radii
0 > 0, Lipschitz constants x € (0,1), and C* local invariant manifolds Vl/hi/u/c (a)
with bounds uniform in a € A.

Proof: (H1) — (H4) have been verified above; the uniform graph-transform
constructions from Section 4 then yield the claimed manifolds with constants
depending only on (M, w, €, Ly, ¢,1), not on a.

Remark (Verifying cone conditions). For the autonomous linear part, quadratic
forms

Q* (W = [lw’[I* = nZ (s l* + [lu* (1)

and

Q*(w) = [lu*II” = nZ(llw’l? + llucll®)

propagated by the analytic semigroup provide (C1)-(C2) on small ty; the nonlinear
contribution is dominated by (5.3) for ||u]| < R (Lemma 4.1).

5.2 Reaction-diffusion with parametric bands (explicit spectral gap)

Consider, for a = (a, ) € A € R?, the scalar reaction-diffusion equation on
(0,1) with Dirichlet boundary conditions:

0 = V0 u + au — Pu, Ul =0, >0, ———(54)

with uncertainties a € [a, @], 8 € [B, 8], B > 0. Linearization at u, = 0 is L, =

vA + al with eigenpairs (¢, 1, (@), Pr (x) = sin(kmx), A, (@) = —v(kn)? + a.
Hence the unstable subspace is spanned by {¢: 1, (@) > 0}. Because a lies in a

band, the count of unstable modes is uniformly bounded:
N@* = max{k € N: —v(km)* + @ > 0}. ———(5.5)
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For all k > N 2, (a) < —v(kn)? + @ < —2, with A;:=vr® — @ > 0 when
@ < vm?. Thus

||€“‘“HS|| < e—lst’ ”e—tLal-[u“ < e_lut,/‘lu:

= }Enlivrrlnaxlk (@) (uniformly overa). ———(5.6)
The nonlinearity N (1, a) = —fu? satisfies
INw, @) = Nw, @)llg-1 < CB(Ilullfx + IwllF)][w = vilge, -==0G7

so, on a small ball in H} we obtain (H2); Lipschitz dependence in a gives (H3).
Taking R small ensures y > 0. Hence Theorem 4.3 provides uniform VVl:L/ “(a)

across A.

o unstable modes: 0-1
’ @€[0.2,1.4], v=0.08

—50 "
-100F .
-150 .

—-200 .

eigenvalue A(a)

—250

—300

1 1 1 1 1
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

mode index k

Figure 2 - Spectral band and invariant splitting

We visualize the spectral band A,(a) = —v(km)? + a for a € [a, @]. Vertical

segments show the range [Ak(g), Ak(é)]; crossings above the zero line identify

unstable modes.

In the above Figure 2 - Spectral band and invariant splitting for L, = vA + a(a)l.
With v = 0.08 and a € [0.2,1.4], the range of A, (a) is shown for k = 1, ...,20.
The count of unstable modes varies between the band endpoints but is uniformly

bounded; a uniform spectral gap below the zero line produces the stable cone

margin needed for (C1){(C2).

5.3 Worked cone estimates (reaction-diffusion)

Fix the spliting H=E"“(a) P E’(a) at u,=0, with E%(a)=
Span{d)l, ---'¢N,'{‘3X} (pad with zeros if some Ax(a) < 0). Let [[*/* (a) be the

corresponding spectral projectors. Define cones with aperture € (0,1) :

Cs = {@®,u): lu*l? = n?llw’]|? = &ljull* = 03, C§
= {@®, u): [w |12 = n?[lw)1? + 8]lull? + S]lwl|?
<0. ———(58)

Write the mild solution
t

u(t) = etlay, + J eElaN(u(s),a)ds. ———=(59)

0
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Projecting and using (5.6)(5.7) on [ 0, t, |,

to
llu* ()l = e**ollugl - Cf eMu ™I |u(s)||2ds

. — — —(5.10)
llu (t)l < e™stefugll + Cf e 4™ ju(s) || ds

0

Choose t, > 0 and a radius R so small that

. 1-— e_min{ASrlu}to

1
- < minfeMuto — 11— e Asto ———(511
LA _4m1n{e J1—e } (5.11)

then, for ||[ug|l < R,

_ 1 _
llus ()| e~ tellugll + 5 e luf]|

us ()l ~ 1
llu (&l etuto |[ug || — 5 etuto[ug|

2|lugll + lugl

= e_(ls'*'lu)to ”
llugl

- ——(5.12)

Hence, if ||ug|| < nlluy|| with n chosen so that
e_(ls'*'lu)t() (Zn + 1) < n

then (us(to),u”(to)) € C§ for some § > 0 absorbing quadratic remainders,
uniformly in a € A (because A, are uniform). This proves (C1). The proof of (C2)

is symmetric backward in time.

5.4 A minimal numerical illustration (reduced model)

For a one-mode reduced system near a hyperbolic crossing (e.g., when N"* = 1),
the center-unstable coordinate u* often obeys 1* = A, (a)u* + 0((u*)?). With
A (a) € [/_1u, /Tu] C (0, ), the cone margin ) and step t, can be picked uniformly
from (5.12). This is reflected in Figure 2, where the number of unstable modes is

bounded and the gap to the stable spectrum remains positive across @ € [, &].

6 Concluding remarks

We have developed a uniform, uncertainty-aware cone framework for invariant
manifolds of nonlinear flows % = F(x,a) with parameters a ranging over a
compact set A. The analysis starts from a dichotomy/dominated splitting on a fixed
Banach phase space X = E* @ E¢ @ E" with constants independent of a, and
augments classical cone constructions with a margin § > 0 that explicitly absorbs
bounded model misspecification. Under hypotheses (H1) — (H4) and cone

conditions (C1) — (C3), we proved -by a uniform graph-transform and Lyapunov-

Perron approach-the existence, uniqueness, and regularity of local M/ch/u/ ‘(a) with
radii, Lipschitz bounds, and contraction factors independent of the uncertainty.
We also quantified parameter dependence: the manifolds vary Lipschitz (or C?)
with a, via an implicitfunction formulation of the fixed-point equations and
uniform Neumann-series bounds on the linearized transforms. On the PDE side,
we verified the assumptions in sectorial (parabolic) settings and in a concrete
reaction-diffusion model, where the spectral gap and cone apertures persist
uniformly across parameter bands. Numerically, a finite-difference Newton

continuation-benchmarked against a one-mode Galerkin reduction-was upgraded
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to a proof-producing pipeline by a radii-polynomial/Krawczyk test, delivering a
validated branch of steady states with certified error radii and thereby furnishing
constructive evidence of the uniform cone mechanism at work. Together, these
results give a compact toolkit-(i) uncertainty-aware cones with margins, (ii) uniform
manifold theorems, (iii) stability/regularity in the uncertainty parameter, and (iv)
computable, a-posteriori validation-that can be ported to broader classes
(nonautonomous cocycles, NHIMs, semilinear and quasilinear PDEs) and
extended in several directions: sharper center dynamics with spectral clustering,
rough data via nonuniform hyperbolicity and tempered cones, nonconvex
uncertainty sets using piecewise margins, and certified numeric in stronger norms
(e.g., H™1, graph norms of sectorial operators). These avenues promise rigorous,
uncertainty-robust geometric reduction across applications where invariant
structure must be established not just at a single model, but uniformly across

admissible models.
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