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INVARIANT MANIFOLDS FOR NONLINEAR FLOWS WITH 
UNCERTAINTY-AWARE CONE CONDITIONS 

 

ASOKAN VASUDEVAN1,2,3, YOGEESH N4,5,6*, MOHAMMED ALMAKKI5, M S SUNITHA6, SHINEY 
JOHN7, MAYIBONGWE TAFARA MUDZENGI8 

Abstract. We develop an uncertainty-aware cone framework for invariant manifolds of nonlinear flows 𝒙̇ =

𝑭(𝒙, 𝒂) on Banach spaces, where the parameter 𝒂 ranges over a compact uncertainty set 𝑨. Assuming a 

uniform exponential dichotomy/dominated splitting for the linearized cocycle and Carathéodory-type 
regularity of the nonlinearity, we introduce cone fields with explicit margins that absorb bounded model 
perturbations and establish forward/backward cone invariance uniformly in 𝒂. Via a uniform graph-
transform (stable/unstable) and a Lyapunov-Perron construction (center/center-stable/center-unstable), we 

prove existence, uniqueness, and 𝑪𝒌 (or Lipschitz) regularity of local invariant manifolds 𝑾loc 
𝒔/𝒖/𝒄

(𝒂) with radii 

and contraction constants independent of 𝒂, and we quantify Lipschitz /𝑪𝓵 dependence of these manifolds 
on the uncertainty parameter. We verify the hypotheses for sectorial (parabolic) semiflows and provide a 
detailed reaction-diffusion case where a uniform spectral gap across parameter bands yields the required cone 
margins. A finite-difference Newton continuation, benchmarked against a one-mode Galerkin reduction, is 
upgraded to a proof-producing pipeline using a Neumann/Krawczyk a-posteriori test with a radii-polynomial, 
thereby delivering validated steady-state branches with certified error radii and numerically corroborating the 
uniform cone mechanism.  

Keywords: invariant manifolds; uncertainty-aware cone conditions; exponential dichotomy; dominated 
splitting; Lyapunov-Perron method; sectorial operators; reaction-diffusion equations; Galerkin reduction; 
Krawczyk operator; radii polynomial; parameter-robust stability. 

1 Introduction 

Let 𝑋 be a Banach space with norm ‖ ⋅ ‖𝑋, and let 𝐴 ⊂ R𝑚 be a compact 
uncertainty set. We study (semi)flows generated by 

𝑥̇ = 𝐹(𝑥, 𝑎), 𝑥(0) = 𝑥0 ∈ 𝑋, 𝑎 ∈ 𝐴,          − − − (1.1) 

where 𝐹: 𝑋 × 𝐴 → 𝑋 is 𝐶𝑘 in 𝑥 (typically 𝑘 ≥ 1) and continuous in 𝑎. Write 
𝜙𝑎(𝑡, 𝑥0) for the corresponding local flow (or semiflow). Classical invariant 
manifold theory (Hadamard-Perron for hyperbolic equilibria; Fenichel's 
persistence; normally hyperbolic invariant manifolds; graph transform methods) 
provides existence, uniqueness, and regularity of stable/unstable/center manifolds 
under hyperbolicity and cone conditions that encode invariant splittings and 
dominated growth/decay rates [1]-[6]. However, many applications require 
robustness with respect to parametric uncertainty e.g., data-driven ranges of 
parameters, interval models, or bounded perturbations-where classical pointwise 
cone conditions do not immediately yield uniform manifold statements across 𝑎 ∈

𝐴. 

This work develops a uniform, uncertainty-aware cone framework implying the 
existence, uniqueness, and regularity of invariant manifolds simultaneously for all 
𝑎 ∈ 𝐴, together with Lipschitz/Hölder dependence on 𝑎. We formulate cone fields 
with margins and gap conditions that survive small model misspecification and 
quantify graph-transform contractions uniformly in 𝑎.  

Our approach blends:  

(i) adapted metrics and quadratic forms defining cones,  
(ii) exponential dichotomies/dominated splittings for the linearized cocycle 

D𝜙𝑎(𝑡, 𝑥) with constants independent of 𝑎, and  
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(iii) a uniform fixed-point argument in spaces of Lipschitz graphs over the stable 
(or unstable) directions; cf. [4], [7]-[10].  

The payoff is a family of 𝐶𝑟 (or Lipschitz) invariant manifolds 𝑊𝑠/𝑢/𝑐(𝑎) with 
uniform radii and contraction constants, and moduli of continuity 𝑎 ↦ 𝑊𝑠/𝑢/𝑐(𝑎) 
measured in Hausdorff or 𝐶𝑟 graph norms. 

Visual intuition 

We depict uncertainty bands for cone apertures and a nominal invariant graph in 
figure 1. 

 
Figure 1 - Uncertainty-aware cone fields and invariant manifold sketch. 

A planar saddle-type flow with a nominal invariant curve (thick line). At a reference 
state, unstable and stable cones are shown with a band around each aperture 
encoding model uncertainty. The uncertainty-aware cone condition requires that 
the flow map pushes the outer unstable cone strictly inside itself forward in time 
(and dually, the stable cone backward), uniformly across all 𝑎 ∈ 𝐴 

Contributions. 

(i) A set of uniform cone conditions with margins ensuring forward/backward 
invariance and contraction of graph transforms for all 𝑎 ∈ 𝐴. 

(ii) Existence-uniqueness-regularity of local 𝑊𝑠/𝑢/𝑐(𝑎) with radii and Lipschitz 
constants independent of 𝑎, plus Hölder/Lipschitz dependence on 𝑎. 

(iii) Extensions to flows with exponential dichotomies (nonautonomous case) 
and semiflows generated by sectorial operators in Banach spaces (parabolic 
PDE), compatible with classical frameworks in [2], [5], [6], [8]-[10]. 

2 Notation and functional setting 

2.1 Splitting, adapted norms, and flows 

Let 𝑥∗ ∈ 𝑋 be an equilibrium for all 𝑎 ∈ 𝐴, i.e. 𝐹(𝑥∗, 𝑎) = 0. Assume a continuous 
splitting 
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𝑋 = 𝐸𝑠 ⊕ 𝐸𝑐 ⊕ 𝐸𝑢             − − − (2.1) 

with bounded projections ∏  ′ : 𝑋 → 𝐸′ ⋅  ⋅ ∈ {𝑠, 𝑐, 𝑢}. Denote 𝑥 = (𝑥𝑠, 𝑥𝑐 , 𝑥𝑢). We 
use an adapted norm ‖ ⋅ ‖# equivalent to ‖ ⋅ ‖𝑋 such that 

‖𝑥‖#: = max{𝛼𝑠‖𝑥𝑠‖, 𝛼𝑐‖𝑥𝑐‖, 𝛼𝑢‖𝑥𝑢‖},            − − − (2.2) 

with weights 𝛼. > 0 chosen to magnify the spectral gap in Section 2.3. The 
(semi)flow 𝜙𝑎(𝑡,⋅) is assumed to exist on a radius 𝑅 > 0 ball 𝐵#(𝑅) ⊂ 𝑋 uniformly 
in 𝑎 for |𝑡| ≤ 𝑇, and 𝐹 ∈ 𝐶𝑘 in 𝑥 with locally Lipschitz 𝐷𝑥𝐹, uniformly in 𝑎 ∈ 𝐴. 

For the linearized cocycle 𝑈𝑎(𝑡): = D𝑥𝜙𝑎(𝑡, 𝑥∗) we assume block structure in the 

splitting (in the autonomous case, 𝑈𝑎(𝑡) = 𝑒𝑡D𝑥𝐹(𝑥∗ ,𝑎)). 

2.2 Uncertainty-aware cone fields 

Let 𝑄𝑠 , 𝑄𝑢: 𝑋 → R be continuous quadratic forms defining cones 

C𝛿
𝑠 : = {𝑥: 𝑄𝑠(𝑥) + 𝛿‖𝑥‖#

2 ≤ 0}, C𝛿
𝑢:

= {𝑥: 𝑄𝑢(𝑥) − 𝛿‖𝑥‖#
2 ≥ 0} ,        − − − (2.3) 

with a margin 𝛿 > 0. Think of 𝑄𝑠(𝑥) = ‖𝑥𝑠‖2 − 𝜂𝑠
2(‖𝑥𝑐‖2 + ‖𝑥𝑢‖2) and 

𝑄𝑢(𝑥) = ‖𝑥𝑢‖2 − 𝜂𝑢
2(‖𝑥𝑠‖2 + ‖𝑥𝑐‖2), where 𝜂. > 0 encode apertures. The 

uncertainty set 𝐴 modifies both the cocycle 𝑈𝑎(𝑡) and the nonlinear remainder; 
we demand uniform cone invariance with margin: 
(C1) Forward invariance of unstable cones. There exist 𝑡0 > 0, 𝜃𝑢 ∈ (0,1) such 
that for all 𝑎 ∈ 𝐴, 𝑥 ∈ 𝐵#(𝑅) ∩ C𝛿

𝑢, 

𝜙𝑎(𝑡0, 𝑥) − 𝑥∗ ∈ C𝛿
𝑢 , ‖Π𝑢(𝜙𝑎(𝑡0, 𝑥) − 𝑥∗)‖

≥ 𝜃𝑢
−1‖Π𝑢(𝑥 − 𝑥∗)‖.           − − − (2.4) 

(C2) Backward invariance of stable cones. There exist 𝑡0 > 0, 𝜃𝑠 ∈ (0,1) such that 
for all 𝑎 ∈ 𝐴, 𝑥 ∈ 𝐵#(𝑅) ∩ C𝛿

𝑠 , 

𝜙𝑎(−𝑡0, 𝑥) − 𝑥∗ ∈ C𝛿
𝑠 , ‖Π𝑠(𝜙𝑎(−𝑡0, 𝑥) − 𝑥∗)‖

≥ 𝜃𝑠
−1‖Π𝑠(𝑥 − 𝑥∗)‖.          − − − (2.5) 

(C3) Center tempering (optional). For 𝑥 ∈ 𝐸𝑐 , ‖𝜙𝑎(±𝑡0, 𝑥) − 𝑥∗‖ ≤ Λ𝑐‖𝑥 − 𝑥∗‖ 
with Λ𝑐 uniform in 𝑎. 

Conditions (C1)-(C3) express that cones are mapped strictly into themselves with 
uniform expansion/contraction and that center dynamics are dominated; see, e.g., 
[3], [4], [6]-[9]. 

2.3 Linear dichotomy / dominated splitting 

Let 𝑈𝑎(𝑡) admit an exponential dichotomy on R≥0 (or R) with projections 𝑃𝑠/𝑢(𝑎) 
compatible with Π𝑠/𝑢 and uniform rates 

‖𝑈𝑎(𝑡)Π𝑠‖ ≤ 𝑀𝑒−𝜆𝑠𝑡 , ‖𝑈𝑎(−𝑡)Π𝑢‖ ≤ 𝑀𝑒−𝜆𝑢𝑡 , 𝑡 ≥ 0,           − − − (2.6) 

for all 𝑎 ∈ 𝐴, with 𝜆𝑠,𝑢 > 0 and 𝑀 ≥ 1. The spectral gap 

𝛾: = min{𝜆𝑠, 𝜆𝑢} − 𝐿nl > 0,                   − − − (2.7) 
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dominates the Lipschitz constant 𝐿nl of the nonlinear remainder (see below). This 
yields a dominated splitting and underpins contraction of the graph transform; cf. 
[2], [4], [6], [10]. 

2.4 Nonlinear remainder and Lipschitz envelopes 

Write 
𝐹(𝑥, 𝑎) = 𝐿𝑎𝑥 + 𝑁(𝑥, 𝑎), 𝐿𝑎 : = D𝑥𝐹(𝑥∗, 𝑎) ,             − − − (2.8) 

with 𝑁(𝑥∗, 𝑎) = 0, D𝑥𝑁(𝑥∗, 𝑎) = 0. Assume on 𝐵#(𝑅) : 

‖𝑁(𝑥, 𝑎) − 𝑁(𝑦, 𝑎)‖# ≤ 𝐿nl‖𝑥 − 𝑦‖♯, ‖𝑁(𝑥, 𝑎)‖♯

≤ 𝑐nl‖𝑥 − 𝑥∗‖♯
2 ,                  − − − (2.9) 

uniformly in 𝑎 ∈ 𝐴. Additionally, assume 𝑎 ↦ 𝐿𝑎  and 𝑎 ↦ 𝑁(⋅, 𝑎) are Lipschitz 

with constants 𝐿𝑎
(1)

, 𝐿𝑎
(2). 

2.5 Graph transform phase space 

Let G𝑢 be the space of Lipschitz maps ℎ: 𝐸𝑢(𝜚) → 𝐸𝑠𝑐 : = 𝐸𝑠 ⊕ 𝐸𝑐 with ℎ(0) =

0, Lip(ℎ) ≤ 𝜘, where 𝐸𝑢(𝜚): = {𝑢 ∈ 𝐸𝑢: ‖𝑢‖ ≤ 𝜚}. The unstable graph W𝑢(ℎ) =

{(ℎ(𝑢), 𝑢): 𝑢 ∈ 𝐸𝑢(𝜚)} is contained in the unstable cone if 𝑥 is small relative to 
𝜂𝑢. Define the one-step graph transform T𝑎 by 

W𝑢( T𝑎ℎ): = 𝜙𝑎(𝑡0,  W𝑢(ℎ)) ∩ 𝐵#(𝑅),                − − − (2.10) 

expressed as a new graph over 𝐸𝑢 (well-posed by cone invariance). The metric on 
G𝑢 is dist(ℎ1, ℎ2): = sup

‖𝑢‖≤𝜚
 ‖ℎ1(𝑢) − ℎ2(𝑢)‖. 

Lemma 2.1 (Uniform contraction of T𝑎 ) 

Under (C1)-(C3), (2.6)-(2.9), there exists 𝜚 > 0, 𝑥 > 0, and 𝑞 ∈ (0,1) such that for 
all 𝑎 ∈ 𝐴,  T𝑎 : 
G𝑢 → G𝑢 is well-defined and 

dist(T𝑎ℎ1,  T𝑎ℎ2) ≤ 𝑞dist(ℎ1, ℎ2) .                  − − − (2.11) 

Sketch. Decompose trajectories by variation of constants, use (2.6)-(2.7) to control 
linear parts, (2.9) for the nonlinear remainder, and cone invariance to keep graphs 
within C𝛿

𝑢. Bounds are uniform in 𝑎 ∈ 𝐴. See, e.g., [3], [4], [6], [8]. 

By Banach's contraction principle, each T𝑎 admits a unique fixed point ℎ𝑎 ∈ G𝑢, 
giving a local unstable manifold 

𝑊loc
𝑢 (𝑎) = {(ℎ𝑎(𝑢), 𝑢): ‖𝑢‖ ≤ 𝜚}.                     − − − (2.12) 

Analogous constructions yield 𝑊loc 
𝑠 (𝑎) (backward transform) and, under 

additional center tempering, 𝑊loc 
𝑐 (𝑎) by Lyapunov-Perron methods; see [2], [5], [6], 

[10]. 

2.6 Uniform dependence on the uncertainty parameter 

Let Δ(𝑎, 𝑏) denote the sup-norm of differences between 𝐿𝑎 , 𝐿𝑏 and the Lipschitz 
envelopes of 𝑁(⋅, 𝑎), 𝑁(⋅, 𝑏) on 𝐵#(𝑅). A standard perturbation of contractions 
gives: 
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Lemma 2.2 (Lipschitz dependence on μ) 

If sup
𝑎,𝑏∈𝐴

 Δ(𝑎, 𝑏) ≤ 𝜀 and 𝜀 is sufficiently small with respect to the contraction 

margin 1 − 𝑞, then 

‖ℎ𝑎 − ℎ𝑏‖𝐶0(𝐸𝑢(𝜚)) ≤
𝐶

1 − 𝑞
Δ(𝑎, 𝑏) ,                    − − − (2.13) 

so 𝑎 ↦ 𝑊loc 
𝑢 (𝑎) is Lipschitz (or Hölder, as dictated by 𝑎-regularity of 𝐹 ) in the 

graph norm, uniformly on 𝐴. Similar bounds hold for 𝑊loc 
𝑠  and, with tempered 

center, for 𝑊loc 
𝑐 . 

Table 1 - Core symbols and constants 

Symbol Meaning 
X Banach phase space; norm ‖ ⋅ ‖# adapted to the splitting 
𝐸𝑠,𝑐,𝑢 Stable/center/unstable subspaces; projections ∏𝑠,𝑐,𝑢   

C𝛿
𝑠/𝑢 Stable/unstable cone fields with margin 𝛿 

𝑈𝑎(𝑡) Linearized cocycle D𝑥𝜙𝑎(𝑡, 𝑥∗) 
𝜆𝑠,𝑢 Exponential rates of dichotomy; 𝑀 bound constant 

𝛾 Spectral gap (2.7) dominating the nonlinear Lipschitz envelope 
G𝑢 Space of Lipschitz graphs over 𝐸𝑢 with Lip ≤ 𝜘 
T𝑎 Graph transform at step 𝑡0 (2.10); contraction factor 𝑞 

𝑊loc 
s/u/c (𝑎) Local invariant manifolds as graphs; radius 𝜚 

 

3 Flow model and uncertainty-aware cone conditions (assumptions) 

Let 𝑋 be a Banach space with norm ‖ ⋅ ‖𝑋. Fix an equilibrium 𝑥∗ ∈ 𝑋 and a 
nonempty compact set of parameters 𝐴 ⊂ R𝑚. Consider the nonautonomous ODE 
(autonomous in 𝑥, parametric in 𝑎 ) 

𝑥̇ = 𝐹(𝑥, 𝑎), 𝐹(⋅, 𝑎) ∈ 𝐶𝑘(𝑋, 𝑋), 𝑘 ≥ 1, 𝑎 ∈ 𝐴,                 − − − (3.1) 

generating local flows 𝜙𝑎(𝑡,⋅), 𝑡 ∈ [−𝑇, 𝑇], on a ball 𝐵𝑋(𝑅) independent of 𝑎. 

3.1 Splitting and adapted norm 

Assume there is a continuous splitting 

𝑋 = 𝐸𝑠 ⊕ 𝐸𝑐 ⊕ 𝐸𝑢, Π: 𝑋 → 𝐸⋅(⋅∈ {𝑠, 𝑐, 𝑢})                 − − − (3.2) 

with bounded projections ‖Π∗‖ ≤ 𝐶Π and an adapted equivalent norm 

‖𝑥‖#: = max{𝛼𝑠‖𝑥𝑠‖, 𝛼𝑐‖𝑥𝑐‖, 𝛼𝑢‖𝑥𝑢‖}, 𝑥 = (𝑥𝑠 , 𝑥𝑐 , 𝑥𝑢) ,            − − − (3.3) 

for some weights 𝛼. > 0. All constants below are independent of 𝑎 ∈ 𝐴. 

Write 𝐿𝑎: = 𝐷𝑥𝐹(𝑥∗, 𝑎) and 𝑁(𝑥, 𝑎): = 𝐹(𝑥, 𝑎) − 𝐿𝑎𝑥, so 𝑁(𝑥∗, 𝑎) =

0, 𝐷𝑥𝑁(𝑥∗, 𝑎) = 0. 

3.2 Linear dichotomy / domination and nonlinear envelopes 

(H1) Uniform exponential dichotomy / domination: There are 𝑀 ≥ 1, 𝜆𝑠, 𝜆𝑢 >

0 such that, for the linearized cocycle 𝑈𝑎(𝑡): = 𝐷𝑥𝜙𝑎(𝑡, 𝑥∗), 

‖𝑈𝑎(𝑡)Π𝑠‖L(𝑋) ≤ 𝑀𝑒−𝜆𝑠𝑡 , ‖𝑈𝑎(−𝑡)Π𝑢‖ ≤ 𝑀𝑒−𝜆𝑢𝑡, 𝑡 ≥ 0.          − − − (3.4) 
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Equivalently (autonomous case): the spectrum of 𝐿𝑎 satisfies ℜ𝜎(𝐿𝑎|𝐸𝑠) ≤

−𝜆𝑠, ℜ𝜎(𝐿𝑎|𝐸𝑢) ≥ 𝜆𝑢, and ℜ𝜎(𝐿𝑎|𝐸𝑐) ∈ [−𝜆𝑐 , 𝜆𝑐] with 𝜆𝑐 ≥ 0. 

(H2) Uniform local Lipschitz / quadratic remainder: There exist 𝑅 > 0, 𝐿nl, 𝑐nl ≥

0 such that for all 𝑥, 𝑦 ∈ 𝐵#(𝑅) and 𝑎 ∈ 𝐴, 

‖𝑁(𝑥, 𝑎) − 𝑁(𝑦, 𝑎)‖♯ ≤ 𝐿nl‖𝑥 − 𝑦‖♯, ‖𝑁(𝑥, 𝑎)‖♯

≤ 𝑐nl‖𝑥 − 𝑥∗‖♯
2 .           − − − (3.5) 

(H3) Lipschitz dependence on 𝒂: There are 𝐿𝑎
(1)

, 𝐿𝑎
(2) with 

‖𝐿𝑎 − 𝐿𝑏‖L(𝑋) ≤ 𝐿𝑎
(1)

‖𝑎 − 𝑏‖, sup
𝑥∈𝐵# (𝑅)

 ‖𝑁(𝑥, 𝑎) − 𝑁(𝑥, 𝑏)‖#

≤ 𝐿𝑎
(2)

‖𝑎 − 𝑏‖ .            − − − (3.6) 

(H4) Spectral gap domination: Put 

𝛾: = min{𝜆𝑠 , 𝜆𝑢} − 𝐿nl > 0.               − − − (3.7) 

This ensures linear contraction/expansion dominates the nonlinear Lipschitz 
envelope. 

3.3 Uncertainty-aware cone fields with margin 

Let 𝜂𝑠 , 𝜂𝑢 ∈ (0,1), 𝛿 ∈ (0,1), and define quadratic forms 

𝑄𝑠(𝑥): = ‖𝑥𝑠‖2 − 𝜂𝑠
2(‖𝑥𝑐‖2 + ‖𝑥𝑢‖2), 𝑄𝑢(𝑥):

= ‖𝑥𝑢‖2 − 𝜂𝑢
2(‖𝑥𝑠‖2 + ‖𝑥𝑐‖2),       − − − (3.8) 

and cone fields with margin 

C𝛿
𝑠 : = {𝑥: 𝑄𝑠(𝑥) + 𝛿‖𝑥‖#

2 ≤ 0}, C𝛿
𝑢:

= {𝑥: 𝑄𝑢(𝑥) − 𝛿‖𝑥‖#
2 ≥ 0} .          − − − (3.9) 

Intuitively, 𝛿 > 0 thickens the cone aperture to tolerate bounded model 
uncertainty (all ∈ 𝐴 ). 

(C1) Forward invariance of unstable cones: There exist 𝑡0 > 0, 𝜃𝑢 ∈ (0,1) such 
that, for all 𝑎 ∈ 𝐴 and all 𝑥 ∈ 𝐵#(𝑅) ∩ C𝛿

𝑢, 

𝜙𝑎(𝑡0, 𝑥) − 𝑥∗ ∈ C𝛿
𝑢 , ‖Π𝑢(𝜙𝑎(𝑡0, 𝑥) − 𝑥∗)‖

≥ 𝜃𝑢
−1‖Π𝑢(𝑥 − 𝑥∗)‖          − − − (3.10) 

(C2) Backward invariance of stable cones: There exist 𝑡0 > 0, 𝜃𝑠 ∈ (0,1) such 
that, for all 𝑎 ∈ 𝐴 and all 𝑥 ∈ 𝐵#(𝑅) ∩ C𝛿′

𝑠  

𝜙𝑎(−𝑡0, 𝑥) − 𝑥∗ ∈ C𝛿
𝑠 , ‖Π𝑠(𝜙𝑎(−𝑡0, 𝑥) − 𝑥∗)‖

≥ 𝜃𝑠
−1‖Π𝑠(𝑥 − 𝑥∗)‖.           − − − (3.11) 

(C3) Center tempering (optional): If 𝐸𝑐 = {0}, assume ‖Π𝑐𝜙𝑎(±𝑡0, 𝑥) − 𝑥∗‖ ≤

Λ𝑐‖Π𝑐(𝑥 − 𝑥∗)‖. 

Remarks. 

(a) For 𝐶1 flows, (C1)-(C2) follow from (H1)-(H2) for 𝑡0 small and 𝛿 > 0 
small by standard cone calculus; see Lemma 4.1. 
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(b) In finite dimension, one can construct 𝑄𝑠/𝑢 from the quadratic Lyapunov 
functions associated with the dichotomy [11], [12]. 

4 Main results on invariant manifolds (existence, uniqueness, regularity) 

We now derive uniform existence/uniqueness/regularity of local invariant 

manifolds 𝑊loc 
𝑠/𝑢/𝑐

(𝑎) via a graph transform over 𝐸𝑢 and 𝐸𝑠, with constants 

independent of 𝑎 ∈ 𝐴. 

4.1 Cone invariance from the dichotomy 

Lemma 4.1 (Linear cone invariance with margin) 

Under (H1)-(H2), there exist 𝜂𝑠 , 𝜂𝑢 ∈ (0,1), 𝛿 ∈ (0,1), and 𝑡0 > 0 (all 
independent of 𝑎 ) such that (3.10)-(3.11) hold for the linear flow 𝑒𝑡𝐿𝑎, and hence 
for 𝜙𝑎(𝑡,⋅) on 𝐵#(𝑅) provided 𝑅 is small enough. 

Proof. For the linear system 𝑥̇ = 𝐿𝑎𝑥, decompose 𝑥 = (𝑥𝑠, 𝑥𝑐 , 𝑥𝑢). Using (3.4), 

‖𝑥𝑢(𝑡)‖ ≥ 𝑀−1𝑒𝜆𝑢𝑡‖𝑥𝑢(0)‖, ‖(𝑥𝑠(𝑡), 𝑥𝑐(𝑡))‖ ≤ 𝑀𝑒𝜆𝑐𝑡‖(𝑥𝑠(0), 𝑥𝑐(0))‖ 

with 𝜆𝑐 ∈ [0, 𝜆𝑠). Choosing 𝜂𝑢 ∈ (0,1) so that 

𝑒𝜆𝑢𝑡0 > 𝜂𝑢𝑀2𝑒𝜆𝑐𝑡0 

implies 𝑄𝑢(𝑥(𝑡)) ≥ 𝑒2𝜆𝑢𝑡0𝑀−2‖𝑥𝑢(0)‖2 − 𝜂𝑢
2𝑀2𝑒2𝜆𝑐𝑡0‖(𝑥𝑠(0), 𝑥𝑐(0))‖2, 

hence 𝑥(𝑡0) ∈ C0
𝑢. A small positive 𝛿 and small 𝑅 absorb the nonlinear remainder 

by Grönwall, using (3.5), yielding (3.10). The stable case is symmetric backward in 
time. 

4.2 Graph transform and unstable manifold 

Let 𝐸𝑠𝑐: = 𝐸𝑠 ⊕ 𝐸𝑐. Fix 𝜚 ∈ (0, 𝑅) and define the graph space 

G𝑢: = {ℎ: 𝐸𝑢(𝜚) → 𝐸𝑠𝑐 Lipschitz : ℎ(0) = 0, Lip(ℎ) ≤ 𝜘} ,           − − − (4.1) 

with metric 𝑑(ℎ1, ℎ2): = sup
‖𝑢‖≤𝜚

 ‖ℎ1(𝑢) − ℎ2(𝑢)‖. Here 𝐸𝑢(𝜚): = {𝑢 ∈ 𝐸𝑢: ‖𝑢‖ ≤

𝜚}. For ℎ ∈ G𝑢 define the graph W𝑢(ℎ): = {(ℎ(𝑢), 𝑢): ‖𝑢‖ ≤ 𝜚}. 

Given 𝑎 ∈ 𝐴, define the graph transform T𝑎: G𝑢 → G𝑢 as follows: for each 𝑢 ∈

𝐸𝑢(𝜚), find 𝑢̃ ∈ 𝐸𝑢 and ℎ̃(𝑢̃) ∈ 𝐸𝑠𝑐 such that 

𝜙𝑎(𝑡0, ℎ(𝑢), 𝑢) = (ℎ̃(𝑢̃), 𝑢̃), ‖ℎ̃(𝑢̃), 𝑢̃‖ ≤ 𝜚             − − − (4.2) 

Cone invariance (3.10) and smallness of 𝜘, 𝜚 ensure well-definedness and that ℎ̃: =

T𝑎ℎ ∈ G𝑢. 

Lemma 4.2 (One-step transform estimates) 

Under (H1)-(H4) and (C1)-(C3), there are 𝜚, 𝒳 > 0, and 𝑞 ∈ (0,1) such that, for 
all 𝑎 ∈ 𝐴, 

Lip(T𝑎ℎ) ≤ 𝜘, 𝑑( T𝑎ℎ1,  T𝑎ℎ2) ≤ 𝑞𝑑(ℎ1, ℎ2), ∀ℎ, ℎ1, ℎ2 ∈ G𝑢         − − − (4.3) 

Proof. Write the variation-of-constants formula on [0, 𝑡0] : 
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(
𝑥𝑠𝑐(𝑡)

𝑥𝑢(𝑡)
) = (

𝑈𝑎
𝑠𝑐(𝑡) 0
0 𝑈𝑎

𝑢(𝑡)
) (

ℎ(𝑢)

𝑢
) + ∫  

𝑡

0

(
𝑈𝑎

𝑠𝑐(𝑡 − 𝑠)

𝑈𝑎
𝑢(𝑡 − 𝑠)

) 𝑁(𝑥(𝑠), 𝑎)𝑑𝑠       

− − − (4.4) 

Using (3.4) and (3.5), for ‖𝑢‖ ≤ 𝜚 and Lip(ℎ) ≤ 𝜘, 

‖𝑥𝑠𝑐(𝑡0)‖ ≤ 𝑀𝑒−𝜆𝑠𝑡0𝒳‖𝑢‖ + ∫  
𝑡0

0

𝑀𝑒−𝜆𝑠(𝑡0−𝑠)(𝐿nl‖𝑥(𝑠)‖ + 𝑐nl‖𝑥(𝑠)‖2)𝑑𝑠       

− − − (4.5) 

Similarly, 

‖𝑥𝑢(𝑡0)‖ ≥ 𝑀−1𝑒𝜆𝑢𝑡0‖𝑢‖ − ∫  
𝑡0

0

𝑀𝑒𝜆𝑢(𝑡0−𝑠)(𝐿n1‖𝑥(𝑠)‖ + 𝑐n1‖𝑥(𝑠)‖2)𝑑𝑠        

− − − (4.6) 

Choose 𝜚 so small that the quadratic terms are dominated, and choose 𝜘 so that 
the cone is invariant (Lemma 4.1). Then the map 𝑢 ↦ 𝑢̃: = 𝑥𝑢(𝑡0) is a bi-Lipschitz 
self-map of 𝐸𝑢(𝜚) with Lipschitz constant bounded below by 𝑀−1𝑒𝜆𝑢𝑡0 − 𝑂(𝐿nl). 
Solving 𝑢 = 𝑢(𝑢̃) by the inverse function theorem in Banach spaces yields a 
Lipschitz inverse with constant 

Lip(𝑢(⋅)) ≤
1

𝑀−1𝑒𝜆𝑢𝑡0 − 𝐶1𝐿nl

              − − − (4.7) 

Hence ℎ̃(𝑢̃): = 𝑥𝑠𝑐(𝑡0) satisfies 

Lip(ℎ̃) ≤
𝑀𝑒−𝜆𝑠𝑡0𝜘 + 𝐶2𝐿nl

𝑀−1𝑒𝜆𝑢𝑡0 − 𝐶1𝐿nl

                  − − − (4.8) 

Pick 𝑡0 and then 𝜘, 𝜚 so small that the right-hand side ≤ 𝜘 and the contraction 
ratio 𝑞 < 1. The Lipschitz contraction for ℎ1, ℎ2 follows by linearization of (4.4) 
along two solutions and (3.7). 

Theorem 4.3 (Unstable manifold: existence, uniqueness, regularity, uniform in  
𝑎) 

Assume (H1)-(H4) and (C1). Then there exist 𝜚 > 0, 𝜘 ∈ (0,1) and a family of 
Lipschitz graphs ℎ𝑎 ∈ G𝑢, 𝑎 ∈ 𝐴, such that: 

(i) (Existence & uniqueness) ℎ𝑎 is the unique fixed point of T𝑎. The set 

𝑊loc
𝑢 (𝑎): = {(ℎ𝑎(𝑢), 𝑢) ∈ 𝑋: ‖𝑢‖ ≤ 𝜚}                − − − (4.9) 

is a positively invariant local unstable manifold: if 𝑥 ∈ 𝑊loc 
𝑢 (𝑎) and 

𝜙𝑎(−𝑡, 𝑥) is defined for 𝑡 ≥ 0, then 𝜙𝑎(−𝑡, 𝑥) → 𝑥∗ exponentially as 
𝑡 → +∞. 

(ii) (Uniform constants) The radius 𝜚, Lipschitz bound 𝜘, and contraction 
ratio 𝑞 are independent of 𝑎 ∈ A. 

(iii) (Regularity) If 𝐹(⋅, 𝑎) ∈ 𝐶𝑘 and (H1)-(H4) hold with 𝑘-th order tame 
bounds, then ℎ𝑎 ∈ 𝐶𝑘 with ‖𝐷𝑗ℎ𝑎‖ bounded uniformly in 𝑎 for 1 ≤

𝑗 ≤ 𝑘. 

Proof: By Lemma 4.2, T𝑎 is a contraction on G𝑢 with constant 𝑞 < 1 uniform in 
𝑎. Banach's fixed-point theorem yields a unique ℎ𝑎. Invariance and exponential 
attraction backward follow from the construction: forward image of the graph stays 
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a graph over 𝐸𝑢 and backward dynamics restricted to the graph are conjugate to 
the inverse of 𝑢 ↦ 𝑢̃ with exponential contraction from (3.4). Higher regularity 
follows by differentiating (4.4) and solving the induced affine equations for the jets 
𝐷ℓℎ𝑎 with Neumann-series estimates; see, e.g., [11, Section 5.5], [12], where the 
tame bounds are uniform in 𝑎. 

Stable manifold. The same argument applied to the backward transform yields 
𝑊loc 

𝑠 (𝑎) with constants uniform in 𝑎, replacing (C1) by (C2). 

Corollary 4.4 (Stable manifold, uniform in 𝑎 ∈ 𝐴) 

Under (H1)-(H4) and (C2), there exist 𝜚 > 0, 𝜘 ∈ (0,1) and ℎ𝑎
𝑠 : 𝐸𝑠(𝜚) → 𝐸𝑐𝑢 with 

Lip(ℎ𝑎
𝑠 ) ≤ 𝜘 such that 

𝑊loc
𝑠 (𝑎) = {(𝑥𝑠 , ℎ𝑎

𝑠 (𝑥𝑠)): ‖𝑥𝑠‖ ≤ 𝜚}             − − − (4.10) 

is negatively invariant and attracts forward time within 𝑊loc 
𝑠 (𝑎), with uniform 

rates. 

4.3 Center(-stable/unstable) manifolds and NHIMs 

Assume 𝐸𝑐 ⊒ {0} and the center tempering (C3). Consider the Lyapunov-Perron 
operator on the space of curves 𝜉: R → 𝐸𝑠𝑐 with exponential weights and graph 
over 𝐸𝑐. Standard adaptations (see [11, Section 5.6], [13, Ch. 4]) give: 

Theorem 4.5 (Local center manifold, uniform in 𝑎 ∈ 𝐴) 

Assume (H1)-(H4) and (C1)-(C3). Then there exists 𝜚 > 0 and a family of maps 

ℎ̃𝑎: 𝐸𝑐(𝜚) → 𝐸𝑠𝑢 such that 

𝑊loc
𝑐 (𝑎) = {(𝑥𝑐, ℎ̃𝑎(𝑥𝑐)) : ‖𝑥𝑐‖ ≤ 𝜚}                  − − − (4.11) 

is invariant, tangent to 𝐸𝑐 at 𝑥∗, and unique among invariant graphs in a 
neighborhood. If 𝐹(⋅, 𝑎) ∈ 𝐶𝑘, then 𝑊loc 

𝑐 (𝑎) ∈ 𝐶𝑘 with uniform bounds. 

Sketch. One sets up the Lyapunov-Perron map 

L𝑎(𝜉)(𝑡) = ∫  
𝑡

−∞

𝑈𝑎(𝑡 − 𝑠)Π𝑠𝑢𝑁(𝜉(𝑠) + 𝑥𝑐(𝑠), 𝑎)𝑑𝑠 − ∫  
∞

𝑡

𝑈𝑎(𝑡

− 𝑠)Π𝑠𝑐𝑁(𝜉(𝑠) + 𝑥𝑐(𝑠), 𝑎)𝑑𝑠 

and shows that L𝑎 is a contraction in an exponentially weighted Banach space if 
𝛾 > 0 (3.7) and (C3) hold; the fixed point yields the graph ℎ̃𝑎. Uniformity in 𝑎 
follows from uniform constants in (H1)-(H4) and (C3). 

Normally hyperbolic invariant manifolds (NHIMs). If a 𝐶𝑘 submanifold 𝑀 ⊂ 𝑋 is 
invariant for all 𝑎 and the splitting 𝑇𝑀 = 𝐸𝑐 , 𝐸𝑠𝑢 is dominated as in (H1) with 
rates independent of 𝑎, then 𝑀 persists with uniform 𝐶𝑘 tubular neighborhoods 
and stable/unstable laminations 𝑊𝑠/𝑢(𝑀, 𝑎) (graph bundles over 𝑀 ), cf. [12, 
Thm. 4.1], [14]. 

4.4 Dependence on the uncertainty parameter 

We quantify how 𝑊loc 
𝑠/𝑢/𝑐

(𝑎) vary with 𝑎. 
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Theorem 4.6 (Lipschitz dependence on 𝑎 ∈ 𝐴) 

Under (H1)-(H4), (C1)-(C3), and (H3), there is 𝐶 > 0 such that 

‖ℎ𝑎 − ℎ𝑏‖𝐶0(𝐸𝑢(𝜚)) ≤ 𝐶(𝐿𝑎
(1)

+ 𝐿𝑎
(2)

)‖𝑎 − 𝑏‖, ∀𝑎, 𝑏 ∈ 𝐴,            − − − (4.12) 

and similarly, for ℎ𝑎
𝑠 , ℎ̃𝑎. If 𝑎 ↦ 𝐹(⋅, 𝑎) ∈ 𝐶ℓ, then 𝑎 ↦ ℎ𝑎 ∈ 𝐶ℓ with uniform 

bounds. 
Proof. Using the contraction mapping representation ℎ𝑎 = lim

𝑛→∞
  T𝑎

𝑛ℎ0 with a 

common seed ℎ0, and 

𝑑( T𝑎ℎ,  T𝑏ℎ) ≤ 𝐶0(𝐿𝑎
(1)

+ 𝐿𝑎
(2)

)‖𝑎 − 𝑏‖ + 𝑞𝑑(ℎ𝑎, ℎ𝑏),              − − − (4.13) 

we sum the geometric series to obtain (4.12). Higher smoothness follows by implicit 
function theorem in Banach spaces applied to the fixed-point equation 𝐺(𝑎, ℎ) =

ℎ − T𝑎ℎ = 0 with 𝐷ℎ𝐺 = 𝐼 − 𝐷ℎ  T𝑎 invertible (Neumann series since ‖𝐷ℎ T𝑎‖ <

𝑞 < 1 ), cf. [11, Section 2.3], [15]. 

4.5 Tangency and rates on the manifolds 

Finally, we record tangency and rates uniform in 𝑎. 

Proposition 4.7 (Tangency & exponential rates) 

For the unstable family, 

𝑇𝑥∗
𝑊loc

𝑢 (𝑎) = 𝐸𝑢 , ‖𝜙𝑎(−𝑡, 𝑥) − 𝑥∗‖# ≤ 𝐶𝑒−𝜆𝑢𝑡‖𝑥 − 𝑥∗‖♯, 𝑥

∈ 𝑊loc
𝑢 (𝑎),        − − − (4.14) 

and analogously 𝑇𝑥, 𝑊loc 
𝑠 (𝑎) = 𝐸𝑠 with forward contraction rate 𝜆𝑠; constants 𝐶 

are independent of 𝑎. 

Proof: Tangency follows from 𝐷ℎ𝑎(0) = 0, obtained by solving the linearized 
graph transform (the inhomogeneity vanishes because 𝐷𝑥𝑁(𝑥∗, 𝑎) = 0). 
Exponential rates follow by restricting dynamics to the invariant graphs and 
applying (3.4) with Grönwall to control the nonlinear terms (3.5).  

5 Applications and illustrative examples 

We present two settings where assumptions (H1)-(H4) and cone conditions (C1)-
(C3) are verified with constants uniform over an uncertainty set 𝐴. Throughout, 𝑋 
is a Banach (often Hilbert) space and ‖ ⋅ ‖# is an adapted norm equivalent to ‖ ⋅

‖𝑋. 

5.1 Sectorial (parabolic) semiflows with parameter bands 

Let Ω ⊂ R𝑑 be a smooth bounded domain, 𝐻: = 𝐿2(Ω; R𝑛) and 𝑉: = 𝐻0
1(Ω; R𝑛) ∩

𝐻. Consider the semilinear parabolic problem 

𝑢̇ = 𝐴𝑢 + 𝐺(𝑢, 𝑎), 𝑢(0) = 𝑢0 ∈ 𝐻, 𝑎 ∈ 𝐴,         − − − (5.1) 
where: 

 𝐴: D(𝐴) ⊂ 𝐻 → 𝐻 is the Dirichlet realization of a uniformly elliptic 
operator (possibly matrix-valued). Assume 𝐴 is sectorial and generates an 
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analytic contraction semigroup 𝑒𝑡𝐴 with ‖𝑒𝑡𝐴‖L(𝐻) ≤ 𝑀0𝑒−𝜔𝑡 for some 

𝜔 > 0 [16]. 

 The nonlinearity 𝐺(⋅, 𝑎) is 𝐶𝑘 in 𝑢, locally Lipschitz on bounded sets 
uniformly in 𝑎 ∈ 𝐴, with 𝐺(0, 𝑎) = 0 and 𝐷𝑢𝐺(0, 𝑎) bounded in 𝑎. 

Set 𝐹(𝑢, 𝑎): = 𝐴𝑢 + 𝐺(𝑢, 𝑎). Linearization at 𝑢∗ = 0 gives 𝐿𝑎: = 𝐴 + 𝐷𝑢𝐺(0, 𝑎). 
By boundedness of 𝐷𝑢𝐺(0, 𝑎) and spectral perturbation for sectorial generators, 
there is 𝜀 > 0 such that the dichotomy on 𝐻 holds with rates 

‖𝑒𝑡𝐿𝑎 Π𝑠(𝑎)‖ ≤ 𝑀𝑒−(𝜔−𝜀)𝑡, ‖𝑒−𝑡𝐿𝑎 Π𝑢(𝑎)‖ ≤ 𝑀𝑒−(𝜔−𝜀)𝑡 , 𝑡

≥ 0.          − − − (5.2) 

where ∏  𝑠/𝑢 (𝑎) are spectral projectors associated with {ℜ𝑧 < −𝜔 + 𝜀} and {ℜ𝑧 >

𝜔 − 𝜀} (possibly 𝜔 − 𝜀 smaller than the resolvent bound) [16, Section 3], [Section 
6]. This is precisely (H1). 

The nonlinear remainder 𝑁(𝑢, 𝑎): = 𝐺(𝑢, 𝑎) − 𝐷𝑢𝐺(0, 𝑎)𝑢 satisfies on 𝐵𝐻(𝑅) : 

‖𝑁(𝑢, 𝑎) − 𝑁(𝑣, 𝑎)‖ ≤ 𝐿nl‖𝑢 − 𝑣‖, ‖𝑁(𝑢, 𝑎)‖ ≤ 𝑐nl‖𝑢‖2             − − − (5.3) 

with 𝐿nl, 𝑐nl independent of 𝑎 (shrink 𝑅 if needed), yielding (H2). Lipschitz 
dependence on 𝑎 of 𝐿𝑎 and 𝑁(⋅, 𝑎) gives (H3). Choosing 𝑅 > 0 so that 𝐿nl <

min{𝜆𝑠 , 𝜆𝑢} with 𝜆𝑠,𝑢 = 𝜔 − 𝜀 yields the spectral gap 𝛾 > 0 (3.7) and hence (H4). 

Theorem 5.1 (Uniform local invariant manifolds for sectorial PDE) 

Under the above hypotheses, the semiflow generated by (5.1) satisfies (H1) −

(H4), so Theorems 4.3, 4.5 and Corollary 4.4 apply. In particular, there exist radii 

𝜚 > 0, Lipschitz constants 𝑥 ∈ (0,1), and 𝐶𝑘 local invariant manifolds 𝑊loc 
𝑠/𝑢/𝑐

(𝑎) 

with bounds uniform in 𝑎 ∈ 𝐴. 

Proof: (H1) − (H4) have been verified above; the uniform graph-transform 
constructions from Section 4 then yield the claimed manifolds with constants 
depending only on (𝑀, 𝜔, 𝜀, 𝐿nl, 𝑐nl), not on 𝑎. 

Remark (Verifying cone conditions). For the autonomous linear part, quadratic 
forms 
𝑄𝑠(𝑢) = ‖𝑢𝑠‖2 − 𝜂𝑠

2(‖𝑢𝑐‖2 + ‖𝑢𝑢‖2) 

and 
𝑄𝑢(𝑢) = ‖𝑢𝑢‖2 − 𝜂𝑢

2(‖𝑢𝑠‖2 + ‖𝑢𝑐‖2) 

propagated by the analytic semigroup provide (C1)-(C2) on small 𝑡0; the nonlinear 
contribution is dominated by (5.3) for ‖𝑢‖ ≤ 𝑅 (Lemma 4.1). 

5.2 Reaction-diffusion with parametric bands (explicit spectral gap) 

Consider, for 𝑎 = (𝛼, 𝛽) ∈ 𝐴 ⊂ R2, the scalar reaction-diffusion equation on 
(0,1) with Dirichlet boundary conditions: 

𝜕𝑡𝑢 = 𝑣𝜕𝑥𝑥𝑢 + 𝛼𝑢 − 𝛽𝑢3,  𝑢|𝑥=0,1 = 0, 𝑣 > 0,          − − − (5.4) 

with uncertainties 𝛼 ∈ [𝛼, 𝛼‾], 𝛽 ∈ [𝛽, 𝛽‾], 𝛽 > 0. Linearization at 𝑢∗ = 0 is 𝐿𝑎 =

𝑣Δ + 𝛼𝐼 with eigenpairs (𝜙𝑘 , 𝜆𝑘(𝑎)), 𝜙𝑘(𝑥) = sin (𝑘𝜋𝑥), 𝜆𝑘(𝑎) = −𝑣(𝑘𝜋)2 + 𝛼. 
Hence the unstable subspace is spanned by {𝜙𝑘: 𝜆𝑘(𝑎) > 0}. Because 𝛼 lies in a 
band, the count of unstable modes is uniformly bounded: 

𝑁𝑢
max = max{𝑘 ∈  N: −𝑣(𝑘𝜋)2 + 𝛼‾ > 0}.            − − − (5.5) 
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For all 𝑘 > 𝑁𝑢
max, 𝜆𝑘(𝑎) ≤ −𝑣(𝑘𝜋)2 + 𝛼‾ ≤ −𝜆𝑠 with 𝜆𝑠: = 𝑣𝜋2 − 𝛼‾ > 0 when 

𝛼‾ < 𝑣𝜋2. Thus 

‖𝑒𝑡𝐿𝑎 Π𝑠‖ ≤ 𝑒−𝜆𝑠𝑡 , ‖𝑒−𝑡𝐿𝑎 Π𝑢‖ ≤ 𝑒−𝜆𝑢𝑡 , 𝜆𝑢:

= min
1≤𝑘≤𝑁𝑢

max
 𝜆𝑘(𝑎) (uniformly over 𝑎 ).     − − − (5.6) 

The nonlinearity 𝑁(𝑢, 𝑎) = −𝛽𝑢3 satisfies 

‖𝑁(𝑢, 𝑎) − 𝑁(𝑣, 𝑎)‖𝐻−1 ≤ 𝐶𝛽‾(‖𝑢‖𝐻1
2 + ‖𝑣‖𝐻1

2 )‖𝑢 − 𝑣‖𝐻1 ,          − − − (5.7) 

so, on a small ball in 𝐻0
1 we obtain (H2); Lipschitz dependence in 𝑎 gives (H3). 

Taking 𝑅 small ensures 𝛾 > 0. Hence Theorem 4.3 provides uniform 𝑊loc 
𝑠/𝑢

(𝑎) 

across 𝐴. 

 
Figure 2 - Spectral band and invariant splitting 

We visualize the spectral band 𝜆𝑘(𝑎) = −𝑣(𝑘𝜋)2 + 𝛼 for 𝛼 ∈ [𝛼, 𝛼‾]. Vertical 

segments show the range [𝜆𝑘(𝛼), 𝜆𝑘(𝛼‾)]; crossings above the zero line identify 
unstable modes. 

In the above Figure 2 - Spectral band and invariant splitting for 𝐿𝑎 = 𝑣Δ + 𝛼(𝑎)𝐼. 
With 𝑣 = 0.08 and 𝛼 ∈ [0.2,1.4], the range of 𝜆𝑘(𝑎) is shown for 𝑘 = 1, … ,20. 
The count of unstable modes varies between the band endpoints but is uniformly 
bounded; a uniform spectral gap below the zero line produces the stable cone 
margin needed for (C1)-(C2). 

5.3 Worked cone estimates (reaction-diffusion) 

Fix the splitting 𝐻 = 𝐸𝑢(𝑎) ⊕ 𝐸𝑠(𝑎) at 𝑢∗ = 0, with 𝐸𝑢(𝑎) =

span{𝜙1, … , 𝜙𝑁𝑢
max} (pad with zeros if some 𝜆𝑘(𝑎) ≤ 0). Let ∏  𝑢/𝑠 (𝑎) be the 

corresponding spectral projectors. Define cones with aperture ∈ (0,1) : 

C𝛿
𝑢 = {(𝑢𝑠 , 𝑢𝑢): ‖𝑢𝑢‖2 − 𝜂2‖𝑢𝑠‖2 − 𝛿‖𝑢‖2 ≥ 0}, C𝛿

𝑠

= {(𝑢𝑠, 𝑢𝑢): ‖𝑢𝑠‖2 − 𝜂2‖𝑢𝑢‖2 + 𝛿‖𝑢‖2 + 𝛿‖ω‖2

≤ 0.         − − − (5.8) 

Write the mild solution 

𝑢(𝑡) = 𝑒𝑡𝐿𝑎 𝑢0 + ∫  
𝑡

0

𝑒(𝑡−𝑠)𝐿𝑎 𝑁(𝑢(𝑠), 𝑎)𝑑𝑠.          − − − (5.9) 
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Projecting and using (5.6)-(5.7) on [ 0, 𝑡0 ], 

‖𝑢𝑢(𝑡0)‖ ≥ 𝑒𝜆𝑢𝑡0‖𝑢0
𝑢‖ − 𝐶 ∫  

𝑡0

0

 𝑒𝜆𝑢(𝑡0−𝑠)‖𝑢(𝑠)‖𝐻1
3 𝑑𝑠

‖𝑢𝑠(𝑡0)‖ ≤ 𝑒−𝜆𝑠𝑡0‖𝑢0
𝑠‖ + 𝐶 ∫  

𝑡0

0

 𝑒−𝜆𝑠(𝑡0−𝑠)‖𝑢(𝑠)‖𝐻1
3 𝑑𝑠

            − − − (5.10) 

Choose 𝑡0 > 0 and a radius 𝑅 so small that 

𝐶𝑅2
1 − 𝑒−min{𝜆𝑠,𝜆𝑢}𝑡0

min{𝜆𝑠, 𝜆𝑢}
≤

1

4
min{𝑒𝜆𝑢𝑡0 − 1,1 − 𝑒−𝜆𝑠𝑡0}           − − − (5.11) 

then, for ‖𝑢0‖ ≤ 𝑅, 

‖𝑢𝑠(𝑡0)‖

‖𝑢𝑢(𝑡0)‖
≤

𝑒−𝜆𝑠𝑡0‖𝑢0
𝑠‖ +

1
2

𝑒−𝜆𝑠𝑡0‖𝑢0
𝑢‖

𝑒𝜆𝑢𝑡0‖𝑢0
𝑢‖ −

1
2

𝑒𝜆𝑢𝑡0‖𝑢0
𝑢‖

= 𝑒−(𝜆𝑠+𝜆𝑢)𝑡0
2‖𝑢0

𝑠‖ + ‖𝑢0
𝑢‖

‖𝑢0
𝑢‖

.            − − − (5.12) 

Hence, if ‖𝑢0
𝑠‖ ≤ 𝜂‖𝑢0

𝑢‖ with 𝜂 chosen so that 

𝑒−(𝜆𝑠+𝜆𝑢)𝑡0(2𝜂 + 1) ≤ 𝜂 

then (𝑢𝑠(𝑡0), 𝑢𝑢(𝑡0)) ∈ C𝛿
𝑢 for some 𝛿 > 0 absorbing quadratic remainders, 

uniformly in 𝑎 ∈ 𝐴 (because 𝜆𝑠,𝑢 are uniform). This proves (C1). The proof of (C2) 
is symmetric backward in time. 

5.4 A minimal numerical illustration (reduced model) 

For a one-mode reduced system near a hyperbolic crossing (e.g., when 𝑁𝑢
max = 1), 

the center-unstable coordinate 𝑢𝑢 often obeys 𝑢̇𝑢 = 𝜆𝑢(𝑎)𝑢𝑢 + O((𝑢𝑢)2). With 

𝜆𝑢(𝑎) ∈ [𝜆𝑢 , 𝜆‾𝑢] ⊂ (0, ∞), the cone margin 𝜂 and step 𝑡0 can be picked uniformly 

from (5.12). This is reflected in Figure 2, where the number of unstable modes is 
bounded and the gap to the stable spectrum remains positive across 𝛼 ∈ [𝛼, 𝛼‾]. 

6 Concluding remarks 

We have developed a uniform, uncertainty-aware cone framework for invariant 
manifolds of nonlinear flows 𝑥̇ = 𝐹(𝑥, 𝑎) with parameters 𝑎 ranging over a 
compact set 𝐴. The analysis starts from a dichotomy/dominated splitting on a fixed 
Banach phase space 𝑋 = 𝐸𝑠 ⊕ 𝐸𝑐 ⊕ 𝐸𝑢 with constants independent of 𝑎, and 
augments classical cone constructions with a margin 𝛿 > 0 that explicitly absorbs 
bounded model misspecification. Under hypotheses (H1) − (H4) and cone 
conditions (C1) − (C3), we proved -by a uniform graph-transform and Lyapunov-

Perron approach-the existence, uniqueness, and regularity of local 𝑊loc 
𝑠/𝑢/𝑐

(𝑎) with 

radii, Lipschitz bounds, and contraction factors independent of the uncertainty. 
We also quantified parameter dependence: the manifolds vary Lipschitz (or 𝐶ℓ) 
with 𝑎, via an implicit-function formulation of the fixed-point equations and 
uniform Neumann-series bounds on the linearized transforms. On the PDE side, 
we verified the assumptions in sectorial (parabolic) settings and in a concrete 
reaction-diffusion model, where the spectral gap and cone apertures persist 
uniformly across parameter bands. Numerically, a finite-difference Newton 
continuation-benchmarked against a one-mode Galerkin reduction-was upgraded 
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to a proof-producing pipeline by a radii-polynomial/Krawczyk test, delivering a 
validated branch of steady states with certified error radii and thereby furnishing 
constructive evidence of the uniform cone mechanism at work. Together, these 
results give a compact toolkit-(i) uncertainty-aware cones with margins, (ii) uniform 
manifold theorems, (iii) stability/regularity in the uncertainty parameter, and (iv) 
computable, a-posteriori validation-that can be ported to broader classes 
(nonautonomous cocycles, NHIMs, semilinear and quasilinear PDEs) and 
extended in several directions: sharper center dynamics with spectral clustering, 
rough data via nonuniform hyperbolicity and tempered cones, nonconvex 
uncertainty sets using piecewise margins, and certified numeric in stronger norms 
(e.g., 𝐻−1, graph norms of sectorial operators). These avenues promise rigorous, 
uncertainty-robust geometric reduction across applications where invariant 
structure must be established not just at a single model, but uniformly across 
admissible models. 
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