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FREDHOLM ALTERNATIVES FOR NONLINEAR INTEGRAL 
EQUATIONS WITH SET-VALUED INPUTS 
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MAYIBONGWE TAFARA MUDZENGI9, SHANKARALINGAPPA B M10 

Abstract. We study nonlinear Hammerstein/Urysohn integral inclusions with set-valued inputs on 𝑿 =

𝑳𝒑(𝛀; 𝐑𝒏), 𝟏 < 𝒑 < ∞, of the form 𝒖 ∈ 𝒇 + 𝐇(𝒖) where 𝐇(𝒖) = {𝐊(𝒈): ∃𝒂 ∈  𝐒(𝑨), 𝒈(⋅) ∈ 𝑵(⋅, 𝒖(⋅); 𝒂(⋅

))}. Under Carathéodory/u.s.c. structure with convex compact values for the multivalued Nemytskii map 𝑵, 
measurability of the input multifunction 𝑨(⋅), and compact or Kuratowski-condensing properties of the 
linear integral operator K, we perform a Lyapunov-Schmidt reduction at the Fredholm linear part 𝑳 = 𝑰 −

𝐊𝑳𝟎 (index 0 ) to obtain a finite-dimensional reduced multimap 𝚽𝒇: 𝒁 ⇉ 𝒁 on 𝒁 = 𝐤𝐞𝐫𝑳. Using multivalued 

fixed-point index/degree, we prove set-valued Fredholm alternatives: either the homogeneous inclusion has a 
nontrivial solution, or for every 𝒇 satisfying the classical compatibility conditions with the cokernel 𝒁∗ =

𝐤𝐞𝐫𝑳∗, the inhomogeneous inclusion admits solutions; in the compact case the solution set is nonempty, 
compact, and acyclic, and in the condensing case it is bounded and closed. We further establish Hausdorff-
Lipschitz stability of solution sets with respect to perturbations of the input multifunction and, for Volterra 
kernels, deliver the necessary a priori bounds via Grönwall-Bihari inequalities, thereby closing all hypotheses 
in a broad causal class.  

Keywords: Fredholm alternative; multivalued integral equations; Hammerstein/Urysohn inclusion; 
Lyapunov-Schmidt reduction; Kuratowski measure of noncompactness; Grönwall-Bihari inequality; Volterra 
kernels; Hausdorff stability. 

1 Introduction 

Let (Ω, B, 𝜇) be a finite measure space (typically Ω = [0,1] with Lebesgue measure) 
and let 𝑋: = 𝐿𝑝(Ω; R𝑛), 𝑌: = 𝐿𝑞(Ω; R𝑛) with 1 < 𝑝 < ∞ and 1/𝑝 + 1/𝑞 = 1. We 
consider nonlinear integral inclusions with set-valued inputs of 
Hammerstein/Urysohn type 

𝑢 − K (𝑁(⋅, 𝑢(⋅); 𝐴(⋅))) = 𝑓, 𝑢 ∈ 𝑋, 𝑓 ∈ 𝑋,         − − − (1.1) 

where K: 𝑌 → 𝑋 is a linear integral operator and 𝑁(⋅,⋅; 𝐴(⋅)) is a multifunctional 
Nemytskii operator built from a Carathéodory nonlinearity 𝑁: Ω × R𝑛 × R𝑚 ⇉ R𝑛 
and a set-valued input 𝐴: Ω ⇉ R𝑚 (measurable, closed convex values). Equation 
(1.1) is to be read in the sense of inclusions: 

∃𝑎 ∈  S(𝐴) such that  𝑢 − K (𝑁(⋅, 𝑢(⋅); 𝑎(⋅))) = 𝑓            − − − (1.2) 

where S(𝐴) denotes the measurable selections of 𝐴. Problems of the form (1.1) 
capture integral models with uncertain or set-valued inputs (e.g., admissible 
controls, bounded disturbances, data-driven parameter bands) and unify 
deterministic and possibilistic modeling within the well-developed framework of 
multivalued analysis and measurable selections [11], [12]. 

The Fredholm alternative for compact perturbations of the identity is a cornerstone 
of linear and nonlinear integral equations: for linear Hammerstein equations 𝑢 −

K𝑢 = 𝑓, either the homogeneous equation admits a nontrivial solution, or the 
inhomogeneous equation is solvable for all right-hand sides in a subspace of finite 
codimension; see, e.g., [5], [6]. Our objective is to lift this dichotomy to the 
multivalued setting (1.2), formulating and proving a set-valued Fredholm 
alternative under natural compactness/condensing hypotheses (via measures of 
noncompactness à la DarboSadovskii) together with measurability and growth 
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conditions that ensure the wellposedness of the multivalued Nemytskii operator 
[2], [7]-[9]. The analysis hinges on (i) upper semi-continuity (u.s.c.) and compactness 
of the solution operator 𝑢 ↦ K(𝑁(⋅, 𝑢; 𝐴(⋅))); (ii) a multivalued Leray-Schauder 
degree or fixed-point index for u.s.c. maps with compact values [2]; and (iii) a 
selection-theoretic passage from set-valued inputs to measurable selections [1], [3], 
[10]. Our results will subsume both convex and nonconvex cases (the latter via 
measurable selections and condensing maps), yielding sharp solvability alternatives 
for (1.1). 

Visual intuition 

We sketch the "band" effect produced by the set-valued input 𝐴(⋅) after the 
Nemytzkii map 𝑁 and the integral smoothing K in the below figure 1. 

 
Figure 1 - Multivalued Hammerstein image as a band. 

A candidate state 𝑢(𝑡) (solid) and the corresponding image 𝑡 ↦  K ⋅ 𝑁(𝑢; 𝐴)(𝑡) 
ranging in an interval-valued "band" (dashed envelopes). The band encodes 
admissible images generated by all measurable selections ∈  S(𝐴). Our Fredholm 
alternative compares the identity 𝑢 ↦ 𝑢 with a compact/condensing multivalued 
perturbation whose values lie in such bands. 

Contributions: We set minimal, verifiable hypotheses guaranteeing:  

(i) well-posedness of the multivalued Hammerstein operator;  
(ii) a Fredholm alternative for (1.1) phrased in terms of the null space and 

cokernel of the linearized part 𝐼 − K ⋅ 𝐷𝑢𝑁(⋅ ,0;⋅); and  
(iii) quantitative stability with respect to the "radius" of the input set 𝐴 using 

Kuratowski's measure of noncompactness.  

Along the way we provide a compact notation/assumptions table and a model 
checklist for classical kernels and growth conditions. 

2 Notation, spaces, and standing assumptions 

We now formalize the setting and list hypotheses used throughout the paper. 
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2.1 Function spaces, kernels, and multivalued maps 

Spaces: 𝑋: = 𝐿𝑝(Ω; R𝑛), 𝑌: = 𝐿𝑞(Ω; R𝑛) with 1 < 𝑝 < ∞, 1/𝑝 + 1/𝑞 = 1. Write 
‖. ‖𝑝 for the 𝐿𝑝 -norm. 

Linear integral operator: K: 𝑌 → 𝑋 given by 

(K𝑔)(𝑡): = ∫  
Ω

𝐾(𝑡, 𝑠)𝑔(𝑠)𝑑𝜇(𝑠) ,           − − − (2.1) 

with 𝐾 ∈ 𝐿𝑟(Ω × Ω; L(R𝑛)) chosen so that K is compact 𝑌 → 𝑋 (e.g., 𝐾 ∈ 𝐿∞ and 

𝜇(Ω) < ∞; or 𝐾 satisfies a Schur/Hilbert-Schmidt condition) [5], [6]. 

 Input multifunction: 𝐴: Ω ⇉ R𝑚 is measurable (graph measurable) with 
nonempty, closed, convex values; denote by S(𝐴) ⊂ 𝐿𝑟(Ω; R𝑚) the set of 
measurable selections (exists under the given hypotheses by Aumann's 
theorem) [1], [10]. 

 Nonlinearity: 𝑁: Ω × R𝑛 × R𝑚 ⇉ R𝑛 is Carathéodory and u.s.c. in ( 𝑢, 𝑎 
) with nonempty, convex, compact values and growth: 

sup
𝑦∈𝑁(𝑡,𝑢,𝑎)

 ‖𝑦‖ ≤ 𝑐0(𝑡) + 𝑐1‖𝑢‖𝛼 + 𝑐2‖𝑎‖𝛽 ,             − − − (2.2) 

for some 𝛼 ∈ [0, 𝑝 − 1], 𝛽 ≥ 0, 𝑐0 ∈ 𝐿𝑞(Ω), 𝑐1, 𝑐2 ≥ 0 (constants independent of 
𝑡 ). The associated multivalued Nemytskii map 

N(𝑢; 𝑎)(𝑡): = 𝑁(𝑡, 𝑢(𝑡), 𝑎(𝑡)) ⊂ R𝑛               − − − (2.3) 

is then measurable with nonempty, convex, compact values and maps 𝑋 × 𝐿𝑟 into 
𝑌 (for suitable 𝑟 ). 

Hammerstein multimap: 

H(𝑢): = {K(𝑔): ∃𝑎 ∈  S(𝐴), 𝑔(⋅) ∈ N(𝑢; 𝑎)(⋅) a.e. } ⊂ 𝑋.                  − − − (2.4) 

By composition of measurable selections with K, H: 𝑋 ⇉ 𝑋 is u.s.c. with convex 
compact values (details in Lemma 2.3) [1]-[3], [10], [12]. The inclusion (1.1) 
becomes the fixed-point problem 

𝑢 ∈ 𝑓 + H(𝑢).            − − − (2.5) 

Measure of noncompactness: 𝛼(⋅) denotes Kuratowski's measure of 
noncompactness in 𝑋 [7]-[9]. We say Φ: 𝑋 ⇉ 𝑋 is 𝛼-condensing if 𝛼(Φ(𝐵)) <

𝛼(𝐵) whenever 𝛼(𝐵) > 0. 

2.2 The linear Fredholm part and projections 

Let 𝐿: = 𝐼 − K ∘ 𝐿0 with a (single-valued) linearization 𝐿0 ∈  L(𝑋, 𝑌) chosen as 
𝐿0(𝑡) = 𝐷𝑢𝑁(𝑡, 0; 𝑎‾(𝑡)) for a reference selection 𝑎‾ ∈  S(𝐴) when it exists.  

Assume: (F1) 𝐿: 𝑋 → 𝑋 is a Fredholm operator of index zero; hence there are 
finitedimensional spaces 

𝑍: = ker𝐿, 𝑍∗: = ker𝐿∗ ⊂ 𝑋∗ ,              − − − (2.6) 

and complementary projections 𝑃: 𝑋 → 𝑍, 𝑄: 𝑋 → 𝑍⊥ with 𝑋 = 𝑍 ⊕ 𝑍⊥. 
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(F2) The restriction 𝐿𝑍⊥: 𝑍⊥ → 𝑍⊥ is an isomorphism with bounded inverse; write 
𝐺 := (𝐿𝐼𝑍⊥)−1. 

The classical Fredholm alternative for 𝐿𝑢 = ℎ reads: solvability is equivalent to the 
compatibility conditions ⟨ℎ, 𝜁⟩ = 0 for all 𝜁 ∈ 𝑍∗, and solutions are unique up to 
𝑍 [4]. In our multivalued setting, (F1)-(F2) enable a Lyapunov-Schmidt splitting of 
(2.5) and a degree/index computation for compact/condensing perturbations of 𝐿 
[2], [3], [8], [9]. 

2.3 Standing hypotheses for the multivalued Hammerstein operator 

We impose the following minimal, verifiable assumptions (constants may change 
from line to line but depend only on data): 

(H1) Measurability and Carathéodory structure: 𝐴(⋅) is measurable with 
nonempty, closed convex values; 𝑁(𝑡,⋅;⋅) is Carathéodory, u.s.c. with nonempty, 
convex compact values; growth (2.2) holds. 

(H2) Compactness or condensing property: Either 

(a) K: 𝑌 → 𝑋 is compact and (2.2) ensures boundedness of N; or 
(b) K ∘ N is 𝛼-condensing (e.g., K compact and N bounded on bounded sets). 

(H3) Upper semi-continuity and closedness: H: 𝑋 ⇉ 𝑋 is u.s.c. with convex 
compact values (Lemma 2.3). In particular, graphs are sequentially closed. 

(H4) Linear Fredholm part: (F1)-(F2) hold for 𝐿: = 𝐼 − K ∘ 𝐿0, where 𝐿0 is a 
bounded linearization of 𝑁 at 𝑢 = 0 along a selection. 

(H5) Boundedness on bounded sets: For each bounded 𝐵 ⊂ 𝑋, H(𝐵) is bounded 
in 𝑋. 

(H6) A priori bound for solutions: There exists 𝑅 > 0 (independent of 𝑓 in a 
bounded set) such that any solution of 𝑢 ∈ 𝑓 + H(𝑢) satisfies ‖𝑢‖𝑝 ≤ 𝑅. 

(This is automatic if K is compact and (2.2) has subcritical growth, or via a 
GrönwallBihari inequality in Volterra type kernels.) 

Under (H1)-(H6), we can formulate a set-valued Fredholm alternative for (1.1) using 
the Lyapunov-Schmidt decomposition: 

𝐶𝑜𝑘𝑒𝑟𝑛𝑒𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛    𝑍∗: ⟨𝑓 − 𝑃 K(𝑔), 𝜁⟩ = 0∀𝜁 ∈ 𝑍∗ 

𝑅𝑎𝑛𝑔𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑛   𝑍⊥: 𝑄𝑢 ∈ 𝑄 K(𝑔) + 𝑄𝑓, 𝑄𝑢

= 𝐺(𝑄 K(𝑔) + 𝑄𝑓)              − − − (2.7) 

with 𝑔(⋅) ∈ N(𝑢; 𝑎)(⋅) a.e. for some 𝑎 ∈  S(𝐴). The alternative will assert 
(roughly): either the homogeneous inclusion admits a nontrivial solution in 𝑍, or 
for every 𝑓 satisfying the compatibility conditions with 𝑍∗ there exists 𝑢 solving 
(1.1) for every admissible input selection 𝑎 ∈  S(𝐴), with solution sets compact (or 
acyclic) and degree nonzero (precise statements belong to Section 4) [14], [15]. 

2.4 Basic properties and a useful lemma 

We record two immediate facts; proofs rely on standard selection and composition 
arguments. 
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Lemma 2.1 (Selection measurability). 

Under (H1), for any 𝑢 ∈ 𝑋 and 𝑎 ∈  S(𝐴) there exists a measurable selection 𝑔(⋅

) ∈ N(𝑢; 𝑎)(⋅) with 𝑔 ∈ 𝑌. 

Sketch: 𝑁 is Carathéodory u.s.c. with compact convex values; apply Aumann's 
measurable selection theorem and growth (2.2) to ensure 𝑔 ∈ 𝑌. 

Lemma 2.2 (Upper semi-continuity of H). 

If (H1) − (H3) hold, then H: 𝑋 ⇉ 𝑋 is u.s.c. with nonempty compact convex 
values; if, in addition, (H2)(b) holds, then H is 𝛼-condensing. 

Sketch: For 𝑢𝑛 → 𝑢 and 𝑣𝑛 ∈ H(𝑢𝑛) with 𝑣𝑛 → 𝑣1 pick 
𝑎𝑛 ∈  S(𝐴), 𝑔𝑛 ∈  N(𝑢𝑛; 𝑎𝑛) a.e. with 𝑣𝑛 = K𝑔𝑛. Use compactness (or 
condensing) of K, tightness from (2.2), and u.s.c. of 𝑁 to pass to a subsequence and 
obtain 𝑣 ∈ H(𝑢). 

Lemma 2.3 (Compactness on bounded sets). 

Under (H2)(a) − (H3) − (H5), H maps bounded sets into relatively compact sets 
of 𝑋. 

Sketch: Boundedness of 𝑔 from (2.2) and compactness of K imply relative 
compactness of {K𝑔: 𝑔 ∈  N(𝑢; 𝑎), ‖𝑢‖ ≤ 𝑅, 𝑎 ∈  S(𝐴)}. 

Table 1 - Core symbols 

Symbol Meaning 

K Linear integral operator (2.1), compact 𝑌 → 𝑋 
𝐴(⋅) Measurable input multifunction with closed convex values 
S(A) Set of measurable selections of 𝐴 
𝑁 Carathéodory multimap, growth (2.2) 

N ( 𝑢; 𝑎 ) Multivalued Nemytskii operator (2.3) 
H(u) Multivalued Hammerstein map (2.4) 
𝐿 = 𝐼 − K𝐿0 Linear Fredholm part; ker𝐿 = 𝑍, ker𝐿∗ = 𝑍∗ 
𝛼(⋅) Kuratowski measure of noncompactness 

3 Problem formulation for set-valued integral operators 

Recall 𝑋 = 𝐿𝑝(Ω; R𝑛), 𝑌 = 𝐿𝑞(Ω; R𝑛) with 1 < 𝑝 < ∞ and 1/𝑝 + 1/𝑞 = 1, a 
compact linear integral operator K: 𝑌 → 𝑋 given by  

(K𝑔)(𝑡) = ∫
Ω

 𝐾(𝑡, 𝑠)𝑔(𝑠)𝑑𝜇(𝑠) 

a measurable input multifunction 𝐴: Ω ⇉ R𝑚 with nonempty closed convex values, 
and a Carathéodory-u.s.c. multimap 𝑁: Ω × R𝑛 × R𝑚 ⇉ R𝑛 with compact convex 
values and growth (2.2). We study the Hammerstein inclusion 

𝑢 ∈ 𝑓 + H(𝑢), H(𝑢): = {K(𝑔): ∃𝑎 ∈  S(𝐴), 𝑔(⋅) ∈ 𝑁(⋅, 𝑢(⋅); 𝑎(⋅)) 𝑎. 𝑒}  

⊂ 𝑋.     − − − (3.1) 

with datum 𝑓 ∈ 𝑋. By Lemmas 2.1 − 2.3, H: 𝑋 ⇉ 𝑋 is u.s.c. with nonempty 
compact convex values and maps bounded sets into relatively compact sets; in the 
"condensing" variant it is 𝛼-condensing (Kuratowski) [16], [18]. 
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3.1 Linear Fredholm part and Lyapunov-Schmidt splitting 

Choose a bounded linear map 𝐿0 ∈  L(𝑋, 𝑌) representing a (Gateaux) linearization 
𝑢 ↦ 𝐷𝑢𝑁(⋅ ,0; 𝑎‾(⋅))𝑢 along a reference selection 𝑎‾ ∈  S(𝐴) (when it exists; 
otherwise any convenient linear "model" suffices). Define 

𝐿: = 𝐼 − K𝐿0 ∈  L(𝑋)         − − − (3.2) 

and assume (F1)-(F2) from §2.2: 𝐿 is Fredholm index zero with 

𝑍: = ker𝐿 ⊂ 𝑋, 𝑍∗: = ker𝐿∗ ⊂ 𝑋∗, 𝑋 = 𝑍 ⊕ 𝑍⊥ 

and 𝐿I𝑍⊥: 𝑍⊥ → 𝑍⊥ an isomorphism with inverse 𝐺. 

Write the nonlinear remainder (for any measurable selection) 

𝑅(𝑢; 𝑎)(𝑡): = 𝑔(𝑡) − 𝐿0𝑢(𝑡), 𝑔(𝑡) ∈ 𝑁(𝑡, 𝑢(𝑡); 𝑎(𝑡)).         − − − (3.3) 

Using (3.2), the inclusion (3.1) is equivalent to 

𝐿𝑢 ∈ 𝑓 + K𝑅(𝑢; 𝑎) for some 𝑎 ∈  S(𝐴).          − − − (3.4) 

Lemma 3.1 (Projected system; elimination of the range variable) 

Let 𝑢 = 𝑧 + 𝑤 with 𝑧: = 𝑃𝑢 ∈ 𝑍, 𝑤: = 𝑄𝑢 ∈ 𝑍⊥. Then (3.4) is equivalent to the 
system 

{
 (Q) 𝑤 = 𝐺(𝑄𝑓 + 𝑄𝐾𝑅(𝑧 + 𝑤; 𝑎))
 (P) 𝑧 ∈ 𝑃𝑓 + 𝑃𝐾𝑅(𝑧 + 𝐺(𝑄𝑓 + 𝑄𝐾𝑅(𝑧 + 𝑤; 𝑎)); 𝑎),

       − − − (3.5) 

for some 𝑎 ∈  S(𝐴) and 𝑔(⋅) ∈ 𝑁(⋅, 𝑧(⋅) + 𝑤(⋅); 𝑎(⋅)) a.e. 

Proof: Apply 𝑄 and 𝑃 to (3.4). Since 𝑄𝐿𝑧 = 𝐿𝑄𝑤 and 𝐿𝐼𝑍⊥ is invertible with 
inverse 𝐺, we solve 𝑤 from the Q -equation to obtain the first line. Substituting 
this into the P − equation gives the second line. The measurable-selection content 
is inherited from Lemma 2.1.  

Remark: The Q-equation is an implicit fixed point for 𝑤 depending on (𝑧, 𝑎); its 
solution set is nonempty, compact, and convex by Schauder (compact case) or 
Darbo-Sadovskiĭ (condensing case). 

3.2 Reduced multivalued map on the finite-dimensional kernel 

For fixed 𝑓 ∈ 𝑋, define the multimap W𝑓: 𝑍 × S(𝐴) ⇉ 𝑍⊥ by 

W𝑓(𝑧, 𝑎): = {𝑤 ∈ 𝑍⊥: 𝑤 = 𝐺(𝑄𝑓 + 𝑄𝐾𝑅(𝑧 + 𝑤; 𝑎))}.        − − − (3.6) 

By the properties above, W𝑓(𝑧, 𝑎) is nonempty, convex and compact. 

Define the reduced multimap on the kernel 

Φ𝑓(𝑧): = {𝑃𝑓 + 𝑃𝐾𝑅(𝑧 + 𝑤; 𝑎): 𝑎 ∈  S(𝐴), 𝑤 ∈  W𝑓(𝑧, 𝑎)}

⊂ 𝑍.        − − − (3.7) 

Lemma 3.2 (Well-posedness and upper semi-continuity of Φ𝑓) 
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Under (H1)-(H5) and (F1)-(F2), Φ𝑓: 𝑍 ⇉ 𝑍 is u.s.c. with nonempty compact convex 

values. Moreover, if (H2)(b) holds, Φ𝑓 is 𝛼-condensing (hence admits a fixed point 

in any nonempty bounded closed convex set of 𝑍 ). 

Proof: Non-emptiness and convexity follow from the convexity of values of 𝑁, 
linearity of K, and convexity of W𝑓(𝑧, 𝑎). Compactness: K is compact or (in the 

condensing case) maps bounded sets into sets of smaller noncompactness; 
boundedness from (H 5) and the growth bound (2.2) yields relative compactness of 
{𝑃 K𝑅(𝑧 + 𝑤; 𝑎)}. Upper semicontinuity is obtained by the standard closed-graph 
argument for compositions of u.s.c. maps with compact values and continuous 
linear maps [2], [13], [18]. Condensing property is inherited from H through the 
continuous affine maps entering (3.7). 

The equivalence in Lemma 3.1 yields the following device. 

Proposition 3.3 (Equivalence with a fixed-point problem in Z) 

A pair 𝑢 = 𝑧 + 𝑤 ∈ 𝑋 solves (3.1) if and only if there exist 𝑎 ∈  S(𝐴) and 𝑤 ∈

 W𝑓(𝑧, 𝑎) such that 

𝑧 ∈ Φ𝑓(𝑧)             − − − (3.8) 

In particular, solutions of (3.1) are in one-to-one correspondence with fixed points 
of Φ𝑓 (augmented with a selection 𝑎 and a range element 𝑤). 

Proof: This is precisely (3.5) rewritten as (3.6)-(3.7). 

The reduction (3.8) moves the problem to the finite-dimensional space 𝑍, where 
we can use Kakutani-Fan-Glicksberg and the multivalued degree (fixed-point index). 

4 Main results and Fredholm alternative theorems 

We state and prove two alternatives: a compact case and a condensing case. 

Throughout, assume (H1)-(H6) and (F1)-(F2). 

4.1 Compact case (u.s.c. with compact convex values) 

Let 𝑟 > 0 be the a priori bound from (H6): any solution of (3.1) satisfies ‖𝑢‖𝑋 ≤

𝑟. Put 𝐵𝑍(𝑅): = {𝑧 ∈ 𝑍: ‖𝑧‖ ≤ 𝑅} with 𝑅 chosen so that every solution has 𝑧 =

𝑃𝑢 ∈ 𝐵𝑍(𝑅). 

Theorem 4.1 (Set-valued Fredholm alternative, compact case) 

Assume K: 𝑌 → 𝑋 is compact and (H1)-(H6), (F1)-(F2) hold. Exactly one of the 
following two assertions is true: 

(A) The homogeneous inclusion 𝑢 ∈ H(𝑢) admits a nontrivial solution, 
equivalently there exists 0 = 𝑧 ∈ 𝑍 with 

𝑧 ∈ Φ0(𝑧)            − − − (4.1) 

(B) For every 𝑓 ∈ 𝑋 satisfying the compatibility conditions 

⟨𝑓, 𝜁⟩ = 0 ∀𝜁 ∈ 𝑍∗                  − − − (4.2) 
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the inclusion 𝑢 ∈ 𝑓 + H(𝑢) has at least one solution 𝑢 ∈ 𝑋. Moreover, the 
solution set is nonempty, compact, and acyclic. 

Proof. 

Step 1 (Reduction and compatibility). 

By Proposition 3.3, solvability of (3.1) is equivalent to existence of 𝑧 ∈ 𝑍 with 𝑧 ∈

Φ𝑓(𝑧). Taking duality with 𝜁 ∈ 𝑍∗ and using 𝐿∗𝜁 = 0 yields the necessary 

condition ⟨𝑓, 𝜁⟩ = ⟨𝑧, 𝜁⟩ − ⟨𝑃 K𝑅(⋅), 𝜁⟩. Since ⟨𝑃 ⋅, 𝜁⟩ = ⟨⋅, 𝜁⟩ and ⟨K(⋅), 𝜁⟩ =

⟨⋅, K∗𝜁⟩, the homogeneous term cancels at 𝑧 = 0; for the inhomogeneous problem, 
(4.2) is the classical Fredholm compatibility for 𝐿𝑢 = ℎ. Thus (4.2) is necessary. 

Step 2 (Fixed-point index in Z). 

By Lemma 3.2, Φ𝑓: 𝐵𝑍(𝑅) ⇉ 𝑍 is u.s.c. with nonempty compact convex values. If 

(A) fails, the homogeneous problem has only the trivial solution. Hence there exists 
𝑟0 ∈ (0, 𝑅) such that 

𝑧 ∉ Φ0(𝑧) for all 𝑧 ∈ 𝜕𝐵𝑍(𝑟0)          − − − (4.3) 

Define a homotopy Φ𝑡𝑓 for 𝑡 ∈ [0,1]. By (H6) and the a priori bound, 𝑧 ∉ Φ𝑡𝑓(𝑧) 

on 𝜕𝐵𝑍(𝑟0) for all 𝑡; otherwise we would obtain nontrivial homogeneous solutions 

in the limit 𝑡 ↓ 0. Therefore, the multivalued fixed-point index ind (Φ𝑡𝑓 , 𝐵𝑍(𝑟0)) 

is well-defined and constant in 𝑡. 

Step 3 (Nonzero index and existence). 

Since 𝑍 is finite-dimensional, Φ0 is a compact convex-valued map mapping 𝐵𝑍(𝑟0) 
into itself, with only the trivial fixed point; the index at 0 equals 1 (orientation of 
the identity). By homotopy invariance, 

ind (Φ𝑓 , 𝐵𝑍(𝑟0)) = ind(Φ0, 𝐵𝑍(𝑟0)) = 1 = 0.              − − − (4.4) 

Thus Φ𝑓 has a fixed point 𝑧 ∈ 𝐵𝑍(𝑟0), equivalently a solution 𝑢 = 𝑧 + 𝑤 of (3.1) 

via (3.5)-(3.7). The solution set is compact and acyclic by the properties of compact 
u.s.c. maps with convex values. 

Remarks. 

(i) If (A) holds, (B) may fail for some 𝑓 violating (4.2), exactly as in the linear 
Fredholm theory. 

(ii) Uniqueness generally fails (set-valued structure), but uniqueness modulo 
𝑍 holds if 𝑅 satisfies a one-sided Lipschitz condition (then the Q-equation 
has a unique solution). 

4.2 Condensing case (Darbo-Sadovskiī) 

When K ⋅ N is only condensing with respect to Kuratowski's measure 𝛼(⋅), we 
replace Schauder's compactness by Darbo-Sadovskii fixed-point theory. 
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Theorem 4.2 (Set-valued Fredholm alternative, condensing case) 

Assume (H1), (H2)(b), (H3)-(H6), (F1)-(F2). Then exactly one of the following 
holds: 

(A𝑐) The homogeneous inclusion 𝑢 ∈ H(𝑢) has a nontrivial solution; 

(𝐵𝑐 ) For every 𝑓 ∈ 𝑋 satisfying (4.2), the inclusion 𝑢 ∈ 𝑓 + H(𝑢) has at least one 
solution; the solution set is bounded and closed. 

Proof. 

Step 1 (Condensing reduction). 

Define Φ𝑓 as in (3.7). By Lemma 3.2, Φ𝑓 is u.s.c. with nonempty convex values and 

𝛼 condensing on bounded subsets of 𝑍 (finite-dimensionality of 𝑍 simplifies 𝛼, but 
we keep the general language). 

Step 2 (A priori bounds and invariant ball). 

By (H6) there exists 𝑅 > 0 so that all solutions lie in 𝐵𝑍(𝑅). If (A𝑐) fails, as in (4.3) 
we can choose 𝑟0 ∈ (0, 𝑅) with 𝑧 ∉ Φ0(𝑧) on 𝜕𝐵𝑍(𝑟0). Consider the homotopy 
Φ𝑡𝑓; the boundary condition persists by the same limiting argument. 

Step 3 (Darbo-Sadovskiï fixed point). 

Because Φ𝑡𝑓 is condensing, the multivalued Darbo-Sadovskiï theorem (measurable 

selections + condensing index) yields a fixed point 𝑧 ∈ 𝐵𝑍(𝑟0) for Φ1𝑓. Reconstruct 

𝑤 from (3.6) and obtain 𝑢 = 𝑧 + 𝑤 solving (3.1). Boundedness and closedness of 
the solution set follow by u.s.c. and the a priori bound. 

4.3 Quantitative stability with respect to the input set 

Let {𝐴𝜀}𝜀≥0 be measurable multifunctions with convex compact values such that 

dist𝐻(𝐴𝜀(𝑡), 𝐴0(𝑡)) ≤ 𝜀  for a.e. 𝑡 ∈ Ω,           − − − (4.5) 

and 𝑁 is Lipschitz in the 𝑎-variable with constant 𝐿𝑎 [17]. 

Theorem 4.3 (Hausdorff stability of solution sets) 

Fix a bounded set of right-hand sides 𝐹 ⊂ 𝑋. Under the hypotheses of Theorem 
4.1 (or 4.2), there exists 𝐶 > 0 such that for all sufficiently small 𝜀 > 0 and any 
𝑓 ∈ 𝐹, 

dist𝐻( S𝐴𝜀
(𝑓), S𝐴0

(𝑓)) ≤ 𝐶𝜀,           − − − (4.6) 

where S𝐴(𝑓) is the solution set of 𝑢 ∈ 𝑓 + H𝐴(𝑢). 

Proof: For selections 𝑎𝜀 ∈ S(𝐴𝜀), pick 𝑎0 ∈  S(𝐴0) with ‖𝑎𝜀 − 𝑎0‖𝐿𝑟 ≤ 𝐶𝜀 
(measurable selection is stable under (4.5)). By Lipschitz continuity in 𝑎 and 

compactness/condensing of K, the graphs of Φ𝑓
(𝜀) converge in the Painlevé-

Kuratowski sense to Φ𝑓
(0). Apply the continuity of fixed points of u.s.c. compact (or 

condensing) maps (outer semicontinuity of solution sets) to obtain (4.6) uniformly 
for 𝑓 ∈ 𝐹. 
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4.4 Volterra specialization with Grönwall-Bihari a priori bounds 

We tailor Theorem 4.1 to causal (Volterra) kernels and obtain a clean a priori 
bound (assumption (H6)) directly from Grönwall-Bihari, thus closing the 
hypotheses in a broad class. 

Setting and hypotheses 

Let Ω = [0, 𝑇] with Lebesgue measure and 𝑋 = 𝐿𝑝(0, 𝑇; R𝑛), 𝑌 =

𝐿𝑞(0, 𝑇; R𝑛), 1 < 𝑝 < ∞, 1/𝑝 + 1/𝑞 = 1. Assume: 

 (V1) Volterra kernel. 

(K𝑔)(𝑡) = ∫  
𝑡

0

𝐾(𝑡, 𝑠)𝑔(𝑠)𝑑𝑠, 𝐾(⋅,⋅) ∈ 𝐿𝑟((0, 𝑇)2; L(R𝑛)) 

with either 𝐾 ∈ 𝐿∞ or 𝐾 Hilbert-Schmidt (so K: 𝑌 → 𝑋 is compact). 

 (V2) Growth structure for the multimap. 

The Carathéodory multimap 𝑁(𝑡, 𝑢, 𝑎) (convex compact values, u.s.c. in (𝑢, 𝑎) ) 
satisfies for a.e. 𝑡, 

sup
𝑦∈𝑁(𝑡,𝑢,𝑎)

 ‖𝑦‖ ≤ 𝛾0(𝑡) + 𝛾1(𝑡)‖𝑢‖ + 𝛾2(𝑡)𝜙(‖𝑢‖) + 𝛾3(𝑡)𝜓(‖𝑎‖)       − −

− (4.7) 

where 𝛾𝑖 ∈ 𝐿𝑞(0, 𝑇), 𝜙: [0, ∞) → [0, ∞) is continuous, increasing, subadditive 

with 𝜙(0) = 0 and Bihari-admissible (i.e., ∫
𝑑𝑠

𝜙(𝑠)

∞

= ∞ ), and 𝜓 is increasing with 

𝜓(0) = 0. Typical choices: 𝜙(𝑠) = 𝑠𝛼  with 0 < 𝛼 ≤ 1. 

 (V3) Selections in 𝑳𝒓. 

For the measurable input multifunction 𝐴(𝑡) with convex compact values, S(𝐴) ⊂

𝐿𝑟(0, 𝑇; R𝑚) is nonempty, and ‖𝑎(⋅)‖𝐿𝑟 ≤ 𝑀𝐴 for some 𝑀𝐴 (e.g., pointwise radius 
bound). 

 (F1)-(F2) hold for 𝐿 = 𝐼 − K𝐿0 as stated in §2.2. 

Goal: Prove (H6) from (V1)-(V3): any solution 𝑢 to 𝑢 ∈ 𝑓 + H(𝑢) with 𝑓 ∈ 𝑋 
bounded satisfies ‖𝑢‖𝑋 ≤ 𝐶 (constant depending only on bounds of , 𝐾, 𝛾𝑖 , 𝑀𝐴 ). 

Lemma 4.4 (Pointwise control and integral inequality) 

Let 𝑢 ∈ 𝑋 solve 𝑢 ∈ 𝑓 + H(𝑢). Then there exist 𝑎 ∈  S(𝐴) and 𝑔 ∈ 𝑌 with 𝑔(𝑡) ∈

𝑁(𝑡, 𝑢(𝑡), 𝑎(𝑡)) a.e. and 

‖𝑢(𝑡)‖ ≤ ‖𝑓(𝑡)‖ + ∫  
𝑡

0

‖𝐾(𝑡, 𝑠)‖‖𝑔(𝑠)‖𝑑𝑠  for a.e. 𝑡 ∈ [0, 𝑇]       − − − (4.8) 

Using (4.7), 

‖𝑢(𝑡)‖ ≤ ‖𝑓(𝑡)‖ + ∫‖𝐾(𝑡, 𝑠)‖(𝛾0(𝑠) + 𝛾1(𝑠)‖𝑢(𝑠)‖ + 𝛾2(𝑠)𝜙(‖𝑢(𝑠)‖)

𝑡

0

+ 𝛾3(𝑠)𝜓(‖𝑎(𝑠)‖)𝑑𝑠)    − − − (4.9) 

Proof: Choose a measurable selection 𝑔 (Lemma 2.1) and note that 𝑢 = 𝑓 + K𝑔. 
Take norms and apply triangle inequality. Substitute the growth bound (4.7). 
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Define 

𝑘(𝑡): = ∫  
𝑡

0

  ‖𝐾(𝑡, 𝑠)‖𝛾1(𝑠)𝑑𝑠, ℎ(𝑡): = ‖𝑓(𝑡)‖ + ∫  
𝑡

0

  ‖𝐾(𝑡, 𝑠)‖(𝛾0(𝑠) + 𝛾3(𝑠)𝜓(‖𝑎(𝑠)‖))𝑑𝑠

𝜙̃(𝑟): = ∫  
𝑡

0

  ‖𝐾(𝑡, 𝑠)‖𝛾2(𝑠)𝜙(𝑟)𝑑𝑠 = 𝜙(𝑟) ⋅ ∫  
𝑡

0

 ‖𝐾(𝑡, 𝑠)‖𝛾2(𝑠)𝑑𝑠

 

Then (4.9) yields the Bihari-type inequality 

‖𝑢(𝑡)‖ ≤ ℎ(𝑡) + ∫  
𝑡

0

𝑘′(𝑡, 𝑠)‖𝑢(𝑠)‖𝑑𝑠 + ∫  
𝑡

0

ℓ(𝑡, 𝑠)𝜙(‖𝑢(𝑠)‖)𝑑𝑠.         − −

− (4.10) 

where 𝑘′(𝑡, 𝑠) = ‖𝐾(𝑡, 𝑠)‖𝛾1(𝑠) and ℓ(𝑡, 𝑠) = ‖𝐾(𝑡, 𝑠)‖𝛾2(𝑠). 

Lemma 4.5 (Grönwall-Bihari a priori bound) 

Assume 𝑘∗(𝑇): = sup
𝑡∈[0,𝑇]

 ∫  
𝑡

0
𝑘′(𝑡, 𝑠)𝑑𝑠 < ∞ and ℓ∗(𝑇): = sup

𝑡
 ∫  

𝑡

0
ℓ(𝑡, 𝑠)𝑑𝑠 < ∞. 

Then any solution satisfies 
‖𝑢(𝑡)‖ ≤ Γ(𝐻(𝑡)𝑒𝑘∗(𝑇)), 𝐻(𝑡): = sup

0≤𝜏≤𝑡
 ℎ(𝜏),          − − − (4.11) 

where Γ is the Bihari envelope associated with 𝜙, i.e., 

Γ(𝜉) = Φ−1(Φ(𝜉) + ℓ∗(𝑇)), Φ(𝑟): = ∫  
𝑟

𝑟0

𝑑𝑠

𝜙(𝑠)
          − − − (4.11) 

Proof. Standard Bihari reduction: set 𝑣(𝑡) = sup
0≤𝑠≤𝑡

 ‖𝑢(𝑠)‖ and bound the right-

hand side of (4.10) by 𝐻(𝑡) + 𝑘∗(𝑇)𝑣(𝑡) + ℓ∗(𝑇)𝜙(𝑣(𝑡)). Apply Grönwall to the 
linear part and then Bihari to the 𝜙-term (see [19], [20]). 

Consequences: Since 𝑓, 𝑎 (hence 𝜓(‖𝑎‖)) and 𝛾𝑖 are 𝐿𝑞-bounded and ‖𝐾‖ has 
finite Volterra integrals, 𝐻(𝑇), 𝑘∗(𝑇), ℓ∗(𝑇) are finite; thus (4.11) yields a uniform 
𝐿∞ bound, and therefore an 𝐿𝑝  bound on 𝑢. This proves (H6). 

Theorem 4.4 (Volterra Fredholm alternative) 

Under (V1)-(V3) and (F1)-(F2), (H1)-(H6) hold. Hence the set-valued Fredholm 
alternative of Theorem 4.1 (compact case) and Theorem 4.2 (condensing case) 
apply to the Volterra Hammerstein inclusion 𝑢 ∈ 𝑓 + H(𝑢). 

5 Applications and illustrative examples 

We collect ready-to-check conditions and a concrete finite-rank example that 
exhibits the Lyapunov-Schmidt (LS) reduction explicitly. 

5.1 Quick-check growth and kernel conditions 

Let Ω = [0, 𝑇], 𝑋 = 𝐿𝑝 , 𝑌 = 𝐿𝑞. The table below ensures (H1)-(H6) and (V1)-(V3) 
at a glance. 
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Table 2 - Sufficient conditions (any column suffices). 

Case Kernel 𝑲(𝒕, 𝒔) Growth of 𝑵 
(values convex, 
u.s.c.) 

Selectio
n bound 

Consequenc
e 

Sublinear 𝐾 ∈ 𝐿∞ 
Volterra 

‖𝑦‖ ≤ 𝛾0 +

𝛾1‖𝑢‖𝛼 +

𝛾3𝜓(‖𝑎‖), 0 <

𝛼 < 1 

‖𝑎‖𝐿𝑟

≤ 𝑀𝐴 
Compact K, 
Bihari with 
𝜙(𝑠) =

𝑠𝛼 ⇒ (H6) 
Linear-
plusLipschit
z 

𝐾 
HilbertSchmid
t Volterra 

‖𝑦‖

≤ 𝛾0 + 𝛾1‖𝑢‖

+ 𝛾2‖𝑢‖𝑎 

same Grönwall + 
Bihari ⇒

(H6) 

Saturating 𝐾 ∈ 𝐿∞ 
Volterra 

‖𝑦‖

≤ 𝛾0

+ 𝛾1min{‖𝑢‖, 𝑀} 

same Linear 
Grönwall 
(no blowup) 
⇒ (H6) 

In all cases, (H2)(a) holds by compact K; measurability and convex compact values 
give (H1), (H3). The linear 𝐿 = 𝐼 − K𝐿0 is Fredholm index zero if 𝐿0 is bounded 
and K compact. The compatibility conditions (4.2) are checked once 𝑍 =

ker𝐿, 𝑍∗ = ker𝐿∗ are computed (finite dimensional by Fredholm). 

5.2 Finite-rank Volterra kernel and explicit LS reduction 

Let 𝑋 = 𝐿2(0, 𝑇) and consider a finite-rank Volterra operator 

(K𝑔)(𝑡) = ∑  

𝑚

𝑖=1

𝜙𝑖(𝑡) ∫  
𝑡

0

𝜓𝑖(𝑠)𝑔(𝑠)𝑑𝑠.           − − − (5.1) 

with 𝜙𝑖 , 𝜓𝑖 ∈ 𝐿2(0, 𝑇). Then K is compact and rank K ≤ 𝑚. 

Let 𝐿0 be a bounded linear map 𝑋 → 𝑌 and define 𝐿 = 𝐼 − K𝐿0. The range of K𝐿0 
is contained in span {𝜙1, … , 𝜙𝑚}; hence 

𝑍 = ker𝐿 = {𝑧 ∈ span{𝜙𝑖}: 𝑧 = K𝐿0𝑧}.           − − − (5.2) 

In particular, dim𝑍 ≤ 𝑚. The LS splitting 𝑋 = 𝑍 ⊕ 𝑍⊥ is now explicit. 

Example 5.1 (Two-mode kernel, scalar case) 

Take 𝑛 = 1, 𝑚 = 2, 𝐿0 = 𝜆0𝐼, and 

(K𝑔)(𝑡) = 𝜙1(𝑡) ∫  
𝑡

0

𝜓1(𝑠)𝑔(𝑠)𝑑𝑠 + 𝜙2(𝑡) ∫  
𝑡

0

𝜓2(𝑠)𝑔(𝑠)𝑑𝑠          − − − (5.3) 

Let Φ(𝑡) = (𝜙1(𝑡), 𝜙2(𝑡))⊤, Ψ(𝑠) = (𝜓1(𝑠), 𝜓2(𝑠))⊤, and set the 2 × 2 Gram 
matrix 

𝑀: = [∫  
𝑇

0

  ⟨𝜙𝑖 , V𝜓𝑗⟩
𝐿2𝑑𝑠]

𝑖,𝑗

, ( V𝜓)(𝑡): = ∫  
𝑡

0

𝜓(𝑠)𝑑𝑠.              − − − (5.4) 

Then 𝑧 ∈ 𝑍 if and only if its coordinate vector 𝑐 = (𝑐1, 𝑐2)⊤ in the basis {𝜙𝑖} 
satisfies 

𝑐 = 𝜆0𝑀𝑐,             − − − (5.5) 
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i.e., 1 is an eigenvalue of 𝜆0𝑀. Thus dim𝑍 is the multiplicity of eigenvalue 1 of 
𝜆0𝑀; likewise 𝑍∗ is computed in the dual basis. 

Let the multimap be pointwise 
𝑁(𝑡, 𝑢, 𝑎) = 𝐵(𝑡)𝑎 + 𝐹(𝑡, 𝑢),          − − − (5.6) 

with 𝐵(⋅) ∈ 𝐿∞(0, 𝑇; R1×𝑚𝑎 ), 𝑎(⋅) ∈ S(𝐴), and 𝐹(𝑡,⋅) Lipschitz near 0 with 
𝐹𝑢(𝑡, 0) = 𝜇(𝑡). Then 𝐿0𝑢 = 𝜇𝑢 and 𝑅(𝑢; 𝑎) = 𝐵(⋅)𝑎 + (𝐹(𝑡, 𝑢) − 𝜇𝑢). 

Reduced equations: Decompose 𝑢 = 𝑧 + 𝑤, 𝑧 = ∑  𝑐𝑖𝜙𝑖. The Q-equation 

𝑤 = 𝐺 (𝑄𝑓 + 𝑄𝐾(𝐵𝑎 + 𝐹(𝑧 + 𝑤) − 𝜇(𝑧 + 𝑤)))           − − − (5.7) 

is a contraction on a small ball (choose 𝑇 or data small) yielding a unique 𝑤 =

𝑤(𝑧, 𝑎). Substituting in the P -equation gives a finite-dimensional multivalued 
inclusion in ≃ Rdim𝑍 : 

𝑐 ∈ 𝑃𝑓 + P(𝑎, 𝑐, 𝑤(𝑐, 𝑎)) ,             − − − (5.8) 

where P is affine in 𝑎 (through 𝐵 ) and smooth in 𝑐 (through 𝐹 ). Theorems 4.1-
4.2 apply directly to (5.8) (compact/condensing, convex values), providing the 
Fredholm alternative and, when the homogeneous problem has only 𝑐 = 0, 
solvability for all 𝑓 satisfying the compatibility with 𝑍∗. 

Compatibility in practice: If dim𝑍 = 1 with normalized 𝑧1, then 𝑍∗ = span{𝜉1} 
and the condition (4.2) reads ⟨𝑓, 𝜉1⟩ = 0. In concrete terms, 𝜉1 can be chosen 
proportional to 𝜙1 or 𝜙2 depending on 𝑀 (via adjoint eigenvectors). 

Takeaway: Finite-rank kernels allow one to compute 𝑍, 𝑍∗ and the LS reduction 
explicitly; the global solvability then follows from Theorem 4.1/4.2 once the 
homogeneous inclusion is trivial in 𝑍. 

6 Concluding remarks 

We developed a Fredholm-type framework for nonlinear integral equations with 
set-valued inputs of Hammerstein/Urysohn form, 

𝑢 ∈ 𝑓 + H(𝑢), H(𝑢) = {K(𝑔): ∃𝑎 ∈  S(𝐴), 𝑔(⋅) ∈ 𝑁(⋅, 𝑢(⋅); 𝑎(⋅)) a.e. } 

on 𝑋 = 𝐿𝑝(Ω; R𝑛), combining measurable-selection tools with 
compact/condensing operator theory. Under minimal, verifiable hypotheses-
Carathéodory/u.s.c. structure and convex compact values for 𝑁; measurability and 
bounded radius for the input multifunction 𝐴(⋅); compactness (or Kuratowski-
condensing) of K ; and a Fredholm linear part 𝐿 = 𝐼 − K𝐿0 of index zero-we carried 
out a Lyapunov-Schmidt reduction to the finite-dimensional kernel 𝑍 = ker𝐿 and 
built a reduced multimap Φ𝑓: 𝑍 ⇉ 𝑍 whose fixed points are in one-to-one 

correspondence with solutions of the original inclusion. This yielded precise set-
valued Fredholm alternatives: either the homogeneous inclusion has a nontrivial 
solution, or-subject to the classical compatibility conditions with 𝑍∗ = ker𝐿∗-the 
inhomogeneous inclusion admits at least one solution; in the compact case, 
solution sets are nonempty, compact, and acyclic, while in the condensing case they 
are bounded and closed. Quantitatively, we established stability of solution sets 
with respect to perturbations of the input multifunction via Hausdorff estimates, 
and-in the Volterra setting-verified the a priori bounds required by the theory 
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through Grönwall-Bihari inequalities, thereby closing assumptions (H1) − (H6) 
for broad classes of kernels and growth laws. A finite-rank kernel example made the 
LS splitting explicit, and a small pseudo-arclength routine illustrated how the 
resulting reduced problem can be explored numerically, including the impact of 
input-set radii through reachable "bands" of solution coordinates. Altogether, the 
paper provides a compact, implementable toolkit-reduction, degree/index, and 
stability estimates-for analyzing existence and solvability under set-valued 
uncertainty in integral models, and it suggests clear extensions: multiple-eigenvalue 
kernels and equivariant settings, nonconvex values via measurable selections and 
approximation, noncompact perturbations handled by generalized measures of 
noncompactness, and validated numeric for guaranteed computation of entire 
solution continua. 
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