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FREDHOLM ALTERNATIVES FOR NONLINEAR INTEGRAL
EQUATIONS WITH SET-VALUED INPUTS
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Abstract. We study nonlinear Hammerstein/Urysohn integral inclusions with set-valued inputs on X =
LP(Q;R™),1 < p < o, of the form u € f + H(u) where H(u) = {K(g):3a € S(4),g(-) € N(-,u(-); a(:
)} Under Carathéodory/u.s.c. structure with convex compact values for the multivalued Nemytskii map N,
measurability of the input multifunction A(+), and compact or Kuratowski-condensing properties of the
linear integral operator K, we perform a Lyapunov-Schmidt reduction at the Fredholm linear part L = I —
KL, (index 0) to obtain a finite-dimensional reduced multimap ®;:Z 3 Z on Z = kerL. Using multivalued
fixed-point index/degree, we prove set-valued Fredholm alternatives: either the homogeneous inclusion has a
nontrivial solution, or for every f satisfying the classical compatibility conditions with the cokernel Z* =
KkerL", the inhomogeneous inclusion admits solutions; in the compact case the solution set is nonempty,
compact, and acyclic, and in the condensing case it is bounded and closed. We further establish Hausdorff-
Lipschitz stability of solution sets with respect to perturbations of the input multifunction and, for Volterra
kernels, deliver the necessary a priori bounds via Gronwall-Bihari inequalities, thereby closing all hypotheses
in a broad causal class.

Keywords: Fredholm alternative; multivalued integral equations; Hammerstein/Urysohn inclusion;
Lyapunov-Schmidt reduction; Kuratowski measure of noncompactness; Gronwall-Bihari inequality; Volterra
kernels; Hausdorff stability.

1 Introduction

Let (Q, B, ) be a finite measure space (typically Q = [0,1] with Lebesgue measure)
and let X: = LP(Q; R™),Y: = LI(Q;R") withl1 <p <coand1/p+1/q = 1. We
consider nonlinear integral inclusions with setwalued inputs of
Hammerstein/Urysohn type

u-K(NGu(kAQ))=fueXfex, ———(L1)

where K: Y — X is a linear integral operator and N(-,-; A(+)) is a multifunctional
Nemytskii operator built from a Carathéodory nonlinearity N: 0 X R® x R™ 33 R"
and a setvalued input A: Q 3 R™ (measurable, closed convex values). Equation

(1.1) is to be read in the sense of inclusions:
Ja € S(A) such that u — K (N(-,u(-);a(-))) =f -———(12)

where S(A) denotes the measurable selections of A. Problems of the form (1.1)
capture integral models with uncertain or setwvalued inputs (e.g., admissible
controls, bounded disturbances, data-driven parameter bands) and unify
deterministic and possibilistic modeling within the well-developed framework of

multivalued analysis and measurable selections [11], [12].

The Fredholm alternative for compact perturbations of the identity is a cornerstone
of linear and nonlinear integral equations: for linear Hammerstein equations u —
Ku = f, either the homogeneous equation admits a nontrivial solution, or the
inhomogeneous equation is solvable for all right-hand sides in a subspace of finite
codimension; see, e.g., [5], [6]. Our objective is to lift this dichotomy to the
multivalued setting (1.2), formulating and proving a setvalued Fredholm
alternative under natural compactness/condensing hypotheses (via measures of

noncompactness a la DarboSadovskii) together with measurability and growth
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conditions that ensure the wellposedness of the multivalued Nemytskii operator
[2], [7H9]. The analysis hinges on (i) upper semi-continuity (u.s.c.) and compactness
of the solution operator u = K(N(:,u; A(+))); (ii) a multivalued Leray-Schauder
degree or fixed-point index for u.s.c. maps with compact values [2]; and (iii) a
selection-theoretic passage from setvalued inputs to measurable selections [1], [3],
[10]. Our results will subsume both convex and nonconvex cases (the latter via

measurable selections and condensing maps), yielding sharp solvability alternatives

for (1.1).

Visual intuition

We sketch the "band" effect produced by the setvalued input A(:) after the
Nemytzkii map N and the integral smoothing K in the below figure 1.
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Figure 1 - Multivalued Hammerstein image as a band.

A candidate state u(t) (solid) and the corresponding image t = K- N(u; A)(t)
ranging in an intervalvalued "band" (dashed envelopes). The band encodes
admissible images generated by all measurable selections € S(A4). Our Fredholm
alternative compares the identity u = u with a compact/condensing multivalued
perturbation whose values lie in such bands.

Contributions: We set minimal, verifiable hypotheses guaranteeing:

(i) well-posedness of the multivalued Hammerstein operator;

(ii) a Fredholm alternative for (1.1) phrased in terms of the null space and
cokernel of the linearized part I — K- D,,N(-,0;-); and

(iii) quantitative stability with respect to the "radius" of the input set A using
Kuratowski's measure of noncompactness.

Along the way we provide a compact notation/assumptions table and a model
checklist for classical kernels and growth conditions.

2 Notation, spaces, and standing assumptions

We now formalize the setting and list hypotheses used throughout the paper.
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2.1 Function spaces, kernels, and multivalued maps

Spaces: X:=LP(Q;R™),Y:=L1(G;R") with 1 <p < o0,1/p+1/q = 1. Write
II- |l,, for the LP-norm.

Linear integral operator: K: Y — X given by

(Kg)(t): = f Kt )gs)du(s),  ———(21)
(9}

with K € LT(Q X Q; L(R")) chosen so that Kis compactY = X (e.g., K € L® and
U(Q)) < oo; or K satisfies a Schur/Hilbert-Schmidt condition) [5], [6].

e  Input multifunction: A: Q =3 R™ is measurable (graph measurable) with
nonempty, closed, convex values; denote by S(4) € L™ (Q; R™) the set of

measurable selections (exists under the given hypotheses by Aumann's

theorem) [1], [10].

e  Nonlinearity: N: Q X R™ X R™ 3 R" is Carathéodory and u.s.c. in (u, a

) with nonempty, convex, compact values and growth:

sup )Ilyll < () +arllull® + c;llall?, -—=(22)

YyEN(t,u,a

for some a € [0,p —1],8 = 0,¢, € L1(Q), c1, ¢, = 0 (constants independent of
t ). The associated multivalued Nemytskii map

N(u; a)(t):= N(t,u(t),a(t)) c R - ——(23)

is then measurable with nonempty, convex, compact values and maps X X L into
Y (for suitable 7).

Hammerstein multimap:

H(u):={K(g):3a € S(4),g(-) E N(w; a)(-) ae. } C X. -——(024

By composition of measurable selections with K, H: X 3 X is u.s.c. with convex
compact values (details in Lemma 2.3) [1]{3], [10], [12]. The inclusion (1.1)

becomes the fixed-point problem
u € f+H(w). -——(25)

Measure of noncompactness: «(-) denotes Kuratowski's measure of
noncompactness in X [7H9]. We say ®: X =3 X is a-condensing if a(P(B)) <
a(B) whenever a(B) > 0.

2.2 The linear Fredholm part and projections

Let L:=1—Ko L, with a (single-valued) linearization L, € L(X,Y) chosen as
Lo(t) = D,N(t,0; a(t)) for a reference selection @ € S(A) when it exists.

Assume: (F1) L: X — X is a Fredholm operator of index zero; hence there are

finitedimensional spaces
Z:=KkerL,Z*:= kerL* c X~, ———(2.6)

and complementary projections P:X = Z,Q: X » Z* with X =Z @ Z*+.
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(F2) The restriction Ly1: Z+ — Z% is an isomorphism with bounded inverse; write

G = (LI,1)™

The classical Fredholm alternative for Lu = h reads: solvability is equivalent to the
compatibility conditions (h, {} = 0 for all { € Z*, and solutions are unique up to
Z [4]. In our multivalued setting, (F1)-(F2) enable a Lyapunov-Schmidt splitting of

(2.5) and a degree/index computation for compact/condensing perturbations of L
(2], 131, (8], [O].

2.3 Standing hypotheses for the multivalued Hammerstein operator

We impose the following minimal, verifiable assumptions (constants may change

from line to line but depend only on data):

(H1) Measurability and Carathéodory structure: A(:) is measurable with
nonempty, closed convex values; N(t,;+) is Carathéodory, u.s.c. with nonempty,
convex compact values; growth (2.2) holds.

(H2) Compactness or condensing property: Either

(@) K:Y - X is compact and (2.2) ensures boundedness of N; or
(b) Ko Nisa-condensing (e.g., K compact and N bounded on bounded sets).

(H3) Upper semi-continuity and closedness: H: X =3 X is u.s.c. with convex

compact values (Lemma 2.3). In particular, graphs are sequentially closed.

(H4) Linear Fredholm part: (F1){F2) hold for L:=1—Ko Ly, where L,y is a

bounded linearization of N at u = 0 along a selection.

(H5) Boundedness on bounded sets: For each bounded B < X, H(B) is bounded
in X.

(H6) A priori bound for solutions: There exists R > 0 (independent of f in a
bounded set) such that any solution of u € f + H(u) satisfies ||ul|, < R.

(This is automatic if K is compact and (2.2) has subcritical growth, or via a
GronwallBihari inequality in Volterra type kernels.)

Under (H1)-(H6), we can formulate a set-valued Fredholm alternative for (1.1) using
the Lyapunov-Schmidt decomposition:

Cokernel equationsin Z*:(f —PK(g),{) =0v( € Z"

Range equation in Z*+:Qu € Q K(g) + Qf,Qu
=G(QK(g) +Qf) -——@27

with g(*) € N(u; a)(*) a.e. for some a € S(A). The alternative will assert
(roughly): either the homogeneous inclusion admits a nontrivial solution in Z, or
for every f satisfying the compatibility conditions with Z* there exists u solving
(1.1) for every admissible input selection @ € S(A), with solution sets compact (or
acyclic) and degree nonzero (precise statements belong to Section 4) [14], [15].

2.4 Basic properties and a useful lemma

We record two immediate facts; proofs rely on standard selection and composition
arguments.
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Lemma 2.1 (Selection measurability).

Under (H1), for any u € X and a € S(A) there exists a measurable selection g (-
)ENw a)(-)withg €Y.

Sketch: N is Carathéodory u.s.c. with compact convex values; apply Aumann's
measurable selection theorem and growth (2.2) to ensure g € Y.

Lemma 2.2 (Upper semi-continuity of H).

If (H1) — (H3) hold, then H: X =3 X is u.s.c. with nonempty compact convex
values; if, in addition, (H2)(b) holds, then H is @-condensing.

Sketch. For u,—-»u and v, €H(w, with v,->v; pick
a, € S(A), g, € N(u,;a,) ae with v, =Kg, Use compactness (or
condensing) of K, tightness from (2.2), and u.s.c. of N to pass to a subsequence and
obtain v € H(w).

Lemma 2.3 (Compactness on bounded sets).

Under (H2)(a) — (H3) — (H5), H maps bounded sets into relatively compact sets
of X.

Sketch: Boundedness of g from (2.2) and compactness of K imply relative
compactness of {Kg: g € N(u; a),||u|| £ R,a € S(A)}.

Table 1 - Core symbols

Symbol Meaning

K Linear integral operator (2.1), compact ¥ = X

A() Measurable input multifunction with closed convex values
S(A) Set of measurable selections of A

N Carathéodory multimap, growth (2.2)

N(u;a) Multivalued Nemytskii operator (2.3)

H(u) Multivalued Hammerstein map (2.4)

L =1—KL, | Linear Fredholm part; kerL = Z,kerL* = Z*

a(r) Kuratowski measure of noncompactness

3 Problem formulation for set-valued integral operators

Recall X = LP(Q;R™),Y = LI(;R") with 1<p <o and 1/p+1/g=1, a
compact linear integral operator K: Y — X given by

(K9 (@®) = [ K(t,$)g(s)du(s)
a measurable input multifunction A: Q = R™ with nonempty closed convex values,
and a Carathéodory-u.s.c. multimap N: Q X R® X R™ 33 R" with compact convex
values and growth (2.2). We study the Hammerstein inclusion

u € f +H(u), H(uw): = {K(g): da € S(A),g9() € N(-,u(-); a(-)) a. e}
cX. ——-31

with datum f € X. By Lemmas 2.1 —2.3,H: X 3 X is us.c. with nonempty

compact convex values and maps bounded sets into relatively compact sets; in the

"condensing" variant it is @-condensing (Kuratowski) [16], [18].
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3.1 Linear Fredholm part and Lyapunov-Schmidt splitting

Choose a bounded linear map Ly € L(X,Y) representing a (Gateaux) linearization
u = D, N(-,0;a(-))u along a reference selection @ € S(A) (when it exists;
otherwise any convenient linear "model" suffices). Define

Li=1-KLy€ L(X) ———(3.2)
and assume (F1)(F2) from §2.2: L is Fredholm index zero with

Z:=KerLc X,Z*:=kerl*c X" X=Z® Z*
and LI;1: Z+ - Z* an isomorphism with inverse G.
Write the nonlinear remainder (for any measurable selection)
R(u; a)():= g(t) — Lou(t), g(t) € N(t, u(t); a(t)). - ——(3.3)
Using (3.2), the inclusion (3.1) is equivalent to
Lu € f + KR(u; a) for some a € S(A). -——(34)

Lemma 3.1 (Projected system; elimination of the range variable)

Letu =z +w with zz2= Pu € Z,w:= Qu € Z*. Then (3.4) is equivalent to the
system

{(Q)wz G(Qf + QKR(z + w; a)) 35

(P)z € Pf+ PKR(z+ G(Qf + QKR(z + w; a)); a),
for some a € S(A) and g(-) € N(-, z(-) + w(-);a()) a.e.

Proof: Apply @ and P to (3.4). Since QLz = LQw and LI,1 is invertible with
inverse G, we solve w from the QQ -equation to obtain the first line. Substituting
this into the P — equation gives the second line. The measurable-selection content

is inherited from Lemma 2.1.
Remark: The Q-equation is an implicit fixed point for w depending on (z, a); its
solution set is nonempty, compact, and convex by Schauder (compact case) or

Darbo-Sadovskil (condensing case).

3.2 Reduced multivalued map on the finite-dimensional kernel

For fixed f € X, define the multimap W;:Z X S(A) = Z* by
Wr(z,a):={weZw =G(Qf + QKR(z+ w;a))}. ———(3.6)
By the properties above, Wr(z, @) is nonempty, convex and compact.

Define the reduced multimap on the kernel

br(2):= {Pf + PKR(z+w;a):a € S(A),w € We(z, a)}
cZ. -——(.7

Lemma 3.2 (Well-posedness and upper semi-continuity of @)
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Under (H1)-(H5) and (F1)AF2), ®;: Z 3 Z is u.s.c. with nonempty compact convex
values. Moreover, if (H2)(b) holds, ®; is a-condensing (hence admits a fixed point

in any nonempty bounded closed convex set of Z ).

Proof: Non-emptiness and convexity follow from the convexity of values of N,
linearity of K, and convexity of W¢(z,a). Compactness: K is compact or (in the
condensing case) maps bounded sets into sets of smaller noncompactness;
boundedness from (H 5) and the growth bound (2.2) yields relative compactness of
{P KR(z + w; a)}. Upper semicontinuity is obtained by the standard closed-graph
argument for compositions of u.s.c. maps with compact values and continuous
linear maps (2], [13], [18]. Condensing property is inherited from H through the

continuous affine maps entering (3.7).

The equivalence in Lemma 3.1 yields the following device.

Proposition 3.3 (Equivalence with a fixed-point problem in Z)

A pair u = z+ w € X solves (3.1) if and only if there exist @ € S(A) and w €
W (z, a) such that

Z € ®y(2) -—--(398)

In particular, solutions of (3.1) are in one-to-one correspondence with fixed points

of F (augmented with a selection a and a range element w).
Proof: This is precisely (3.5) rewritten as (3.6)-(3.7).

The reduction (3.8) moves the problem to the finite-dimensional space Z, where
we can use Kakutani-Fan-Glicksberg and the multivalued degree (fixed-point index).

4 Main results and Fredholm alternative theorems

We state and prove two alternatives: a compact case and a condensing case.
Throughout, assume (H1)-(H6) and (F1)-(F2).

4.1 Compact case (u.s.c. with compact convex values)

Let 7 > 0 be the a priori bound from (H6): any solution of (3.1) satisfies ||u|ly <
r. Put B;(R):= {z € Z:||z|]| £ R} with R chosen so that every solution has z =
Pu € B;(R).

Theorem 4.1 (Set-valued Fredholm alternative, compact case)

Assume K:Y = X is compact and (H1)-(H6), (F1)-(F2) hold. Exactly one of the
following two assertions is true:

(A) The homogeneous inclusion u € H(u) admits a nontrivial solution,
equivalently there exists 0 = z € Z with
Z € Dy(2) -——(“41D

(B) For every f € X satisfying the compatibility conditions

(f.{y=0v¢ez ———(42)

67



FREDHOLM ALTERNATIVES FOR NONLINEAR INTEGRAL EQUATIONS WITH SET-VALUED
INPUTS

the inclusion u € f + H(u) has at least one solution u € X. Moreover, the

solution set is nonempty, compact, and acyclic.
Proof.
Step 1 (Reduction and compatibility).

By Proposition 3.3, solvability of (3.1) is equivalent to existence of z € Z with z €
®r(z). Taking duality with { € Z* and using L'{ =0 yields the necessary
condition (f,{) =(z,{) — (P KR(:),{). Since (P -, {) =(-,{) and (K(),{) =

(-, K*{), the homogeneous term cancels at z = 0; for the inhomogeneous problem,
(4.2) is the classical Fredholm compatibility for Lu = h. Thus (4.2) is necessary.

Step 2 (Fixed-point index in Z).

By Lemma 3.2, ®;: Bz(R) 33 Z is u.s.c. with nonempty compact convex values. If

(A) fails, the homogeneous problem has only the trivial solution. Hence there exists
15 € (0, R) such that

z & ®y(z) forall z € B, (1) ———(4.3)

Define a homotopy ®¢ for t € [0,1]. By (H6) and the a priori bound, z & ®.¢(z)
on 0B (1) for all t; otherwise we would obtain nontrivial homogeneous solutions
in the limit t | 0. Therefore, the multivalued fixed-point index ind ((th,BZ (ro))

is well-defined and constant in t.
Step 3 (Nonzero index and existence).

Since Z is finite-dimensional, @, is a compact convex-valued map mapping B (7y)
into itself, with only the trivial fixed point; the index at O equals 1 (orientation of

the identity). By homotopy invariance,
ind (b, B, (1)) = ind(g, B, (1)) = 1 = 0. ———(44)

Thus @ has a fixed point z € B;(7p), equivalently a solution u = z + w of (3.1)
via (3.5)-(3.7). The solution set is compact and acyclic by the properties of compact

u.s.c. maps with convex values.

Remarks.

(i) If(A) holds, (B) may fail for some f violating (4.2), exactly as in the linear
Fredholm theory.

(if) Uniqueness generally fails (set-valued structure), but uniqueness modulo
Z holds if R satisfies a one-sided Lipschitz condition (then the Q-equation

has a unique solution).

4.2 Condensing case (Darbo-Sadovskil)

When K- N is only condensing with respect to Kuratowski's measure a(-), we

replace Schauder's compactness by Darbo-Sadovskii fixed-point theory.

68



YOGEESH N. et.al.

Theorem 4.2 (Set-valued Fredholm alternative, condensing case)

Assume (H1), (H2)(b), (H3)-(H6), (F1)-(F2). Then exactly one of the following
holds:

(A.) The homogeneous inclusion u € H(u) has a nontrivial solution;

(B.) For every f € X satisfying (4.2), the inclusion u € f + H(u) has at least one

solution; the solution set is bounded and closed.

Proof.
Step 1 (Condensing reduction).
Define @ as in (3.7). By Lemma 3.2, @ is u.s.c. with nonempty convex values and

a condensing on bounded subsets of Z (finite-dimensionality of Z simplifies @, but

we keep the general language).
Step 2 (A priori bounds and invariant ball).

By (H6) there exists R > 0 so that all solutions lie in Bz (R). If (A,) fails, as in (4.3)
we can choose 1 € (0,R) with z & ®(z) on dB;(r,). Consider the homotopy

®,f; the boundary condition persists by the same limiting argument.
Step 3 (Darbo-Sadovskii fixed point).

Because @, is condensing, the multivalued Darbo-Sadovskii theorem (measurable
selections + condensing index) yields a fixed point z € B;(r,) for ®; ;. Reconstruct
w from (3.6) and obtain u = z + w solving (3.1). Boundedness and closedness of
the solution set follow by u.s.c. and the a priori bound.

4.3 Quantitative stability with respect to the input set

Let {A,}cs0 be measurable multifunctions with convex compact values such that
disty (4A:(t),Ap(t)) < € forae. t €Q, ———(4.5)

and N is Lipschitz in the a-variable with constant L, [17].

Theorem 4.3 (Hausdorff stability of solution sets)

Fix a bounded set of right-hand sides F € X. Under the hypotheses of Theorem
4.1 (or 4.2), there exists C > 0 such that for all sufficiently small € > 0 and any
fEF,

disty; ( Sa, (), Sa, () < Ce, ———(4.6)
where S, (f) is the solution set of u € f + H, ().

Proof: For selections a, € S(4,), pick ag € S(4,) with |la; — aoll,r < Ce
(measurable selection is stable under (4.5)). By Lipschitz continuity in a and

compactness/condensing of K, the graphs of CD](CE) converge in the Painlevé-
Kuratowski sense to CD)(CO). Apply the continuity of fixed points of u.s.c. compact (or

condensing) maps (outer semicontinuity of solution sets) to obtain (4.6) uniformly

forf €F.
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4.4 Volterra specialization with Gronwall-Bihari a priori bounds

We tailor Theorem 4.1 to causal (Volterra) kernels and obtain a clean a priori
bound (assumption (H6)) directly from Gronwall-Bihari, thus closing the
hypotheses in a broad class.

Setting and hypotheses

Let Q=][0,T] with Lebesgue measure and X =LP(0,T;R"),Y =
Li(0,T;R"),1<p <o0,1/p+1/q = 1. Assume:

e (V1) Volterra kernel.

t

Kg)(t) = f K(t,5)g(s)ds, K(~) € I ((0,TY% L(RY))
0

with either K € L* or K Hilbert:Schmidt (so K: ¥ — X is compact).

o (V2) Growth structure for the multimap.

The Carathéodory multimap N(t,u,a) (convex compact values, w.s.c. in (u,a) )

satisfies for a.e. t,

JeSup a)llyll <V +yaOllull + v2(Oplul) + y:Op(lald  —-
- (4.7)

where y; € L9(0,T), ¢: [0,00) = [0,00) is continuous, increasing, subadditive
with ¢(0) = 0 and Bihari-admissible (i.e., f % = 00 ), and P is increasing with
Y(0) = 0. Typical choices: ¢p(s) = s* with0 < a < 1.

o  (V3)Selections in L".

For the measurable input multifunction A(t) with convex compact values, S(4) <
L"(0,T; R™) is nonempty, and ||a(-)||r < M, for some M, (e.g., pointwise radius
bound).

o (FF2) hold for L = I — KL, as stated in §2.2.

Goal: Prove (HO6) from (V1)-(V3): any solution u to u € f + H(u) with f € X
bounded satisfies ||u]|y < C (constant depending only on bounds of , K, y;, M, ).

Lemma 4.4 (Pointwise control and integral inequality)

Letu € X solveu € f + H(w). Then there exista € S(A) and g € Y with g(t) €
N(t,u(t),a(t)) a.e. and

luIl < If O + f IK(E )llg(s)llds forae t€[0,T] ———(48)
Using (4.7),

lu@Il < I @OI + JIIK(t, o (s) + i Nuls)l + 2 (s)p(lluls)I)
+vs()Y(llals)IDds) ———(4.9)

Proof: Choose a measurable selection g (Lemma 2.1) and note that u = f + Kg.
Take norms and apply triangle inequality. Substitute the growth bound (4.7).
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Define

k(t):=f 1Kt $)lly1(s)ds, h(t): = IIf(t)||+f 1K (&, ) (o (s) + vs()(llals)D)ds

F(r): = f 1Kt )1y () b(r)ds = b(r) - f Kt $)llya(s)ds
0 0

Then (4.9) yields the Bihari-type inequality

@Il < h(t) + f K (&, 5)llu(s) | ds + f 06, )(lu()Dds.  ——
0 0
— (4.10)

where k'(t, ) = [IK(t, 5)[ly1(s) and £(¢,s) = [IK (L, 5)|[¥2(5)-

Lemma 4.5 (Gronwall-Bihari a priori bound)
Assume k,(T):= sup [; k'(t,s)ds < oo and £,(T): = sup [} £(t,s)ds < co.
te(o,T] t

Then any solution satisfies

lu(®Il < T(H(®)e*™),H(t):= sup h(z), ———(411)
0

<7<t
where I is the Bihari envelope associated with ¢, i.e.,

rd
[(€) = OL(D(E) + £.(T)), d(r): = ¢(—Z) —_(411)

Proof. Standard Bihari reduction: set v(t) = sup ||u(s)|| and bound the right-
Osss<t

hand side of (4.10) by H(t) + k. (T)v(t) + £.(T)p(v(t)). Apply Gronwall to the
linear part and then Bihari to the ¢-term (see [19], [20]).

Consequences: Since f, a (hence Y(||a||)) and y; are L%-bounded and ||K|| has
finite Volterra integrals, H(T), k,(T), £, (T) are finite; thus (4.11) yields a uniform
L* bound, and therefore an LP bound on u. This proves (H6).

Theorem 4.4 (Volterra Fredholm alternative)

Under (V1){(V3) and (F1)(F2), (H1)(H6) hold. Hence the setvalued Fredholm
alternative of Theorem 4.1 (compact case) and Theorem 4.2 (condensing case)
apply to the Volterra Hammerstein inclusion u € f + H(w).

5 Applications and illustrative examples

We collect ready-to-check conditions and a concrete finite-rank example that
exhibits the Lyapunov-Schmidt (LS) reduction explicitly.

5.1 Quick-check growth and kernel conditions

Let Q =[0,T],X = L?,Y = L9. The table below ensures (H1)-(H6) and (V1)-(V3)

at a glance.
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Table 2 - Sufficient conditions (any column suffices).

Case Kernel K(t,s) | Growth of N | Selectio | Consequenc
(values convex, | n bound | e
w.s.c.)
Sublinear KeL” Iyl <vo + lla|| Compact K,
Volterra yallul|l® + <M, Bihari with
yapdllal), 0< $(s) =
a<l1 s = (H6)
Linear- K 154 same Gronwall  +
plusLipschit | HilbertSchmid | <y, + v1|lul| Bihari =
z t Volterra + v, llu||* (H6)
Saturating KelL” 154! same Linear
Volterra <Y Gronwall
+ yymin{||u||, M} (no blowup)
= (Ho)

In all cases, (H2)(a) holds by compact K; measurability and convex compact values
give (H1), (H3). The linear L = I — KL, is Fredholm index zero if L, is bounded
and K compact. The compatibility conditions (4.2) are checked once Z =
kerL, Z* = KerL" are computed (finite dimensional by Fredholm).

5.2 Finite-rank Volterra kernel and explicit LS reduction

Let X = L2(0,T) and consider a finite-rank Volterra operator

KO =Y ® [ w©gds. ===
=1 0

with ¢;,¥; € L?(0,T). Then K is compact and rank K < m.

Let Ly be a bounded linear map X — Y and define L = I — KL,. The range of KL,
is contained in span {¢, ..., ¢,,, }; hence

Z =KkerL = {z € span{¢,}: z = KLyz}. -——-(.2)
In particular, dimZ < m. The LS splitting X = Z @ Z* is now explicit.

Example 5.1 (Two-mode kernel, scalar case)

Taken =1,m = 2,Ly, = Apl, and
(Kg)(t) = ¢1(t)f Y1 (s)g(s)ds + ¢2(t)f Y2 (s)g(s)ds -==(03)

Let ®(t) = (¢4 (), P ()T, P(s) = (Y1(5),¥,(s))T, and set the 2 X 2 Gram

matrix
M:=U <¢i,v¢,->des] (V) (8): = f (s)ds. ———(54)
0 ij 0

Then z € Z if and only if its coordinate vector ¢ = (cy,¢;)7 in the basis {¢;}
satisfies

¢ = AyMc, ———(5.5)
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i.e., 1 is an eigenvalue of AgM. Thus dimZ is the multiplicity of eigenvalue 1 of
AoM; likewise Z* is computed in the dual basis.

Let the multimap be pointwise
N(t,u,a) = B(t)a+ F(t,u), ———(5.6)

with B(-) € L*(0,T; RY™a),a() € S(A), and F(t,) Lipschitz near 0 with
E,(t,0) = u(t). Then Lyu = pu and R(w; a) = B()a + (F(t,u) — pu).

Reduced equations: Decompose U = z 4+ w,z =Y, ¢;¢;. The Q-equation
w=G (Qf +QK(Ba+ F(z +w) — u(z + w))) ———(57)

is a contraction on a small ball (choose T or data small) yielding a unique w =
w(z,a). Substituting in the P -equation gives a finite-dimensional multivalued

inclusion in =~ R4iMZ

c € Pf +P(a,c,w(c,a)), ———(5.8)

where P is affine in a (through B ) and smooth in ¢ (through F ). Theorems 4.1-
4.2 apply directly to (5.8) (compact/condensing, convex values), providing the
Fredholm alternative and, when the homogeneous problem has only ¢ =0,
solvability for all f satisfying the compatibility with Z*.

Compatibility in practice: If dimZ = 1 with normalized z;, then Z* = span{¢, }
and the condition (4.2) reads (f,&;) = 0. In concrete terms, & can be chosen

proportional to ¢, or ¢, depending on M (via adjoint eigenvectors).

Takeaway: Finite-rank kernels allow one to compute Z, Z* and the LS reduction
explicitly; the global solvability then follows from Theorem 4.1/4.2 once the
homogeneous inclusion is trivial in Z.

6 Concluding remarks

We developed a Fredholm-type framework for nonlinear integral equations with

set-valued inputs of Hammerstein/Urysohn form,
u € f+Hw),Hu) = {K(g): da € S(A),9(-) € N(',u('); a(-)) a.e.}

on X =IP(Q;R"), combining measurable-selection tools with
compact/condensing operator theory. Under minimal, verifiable hypotheses-
Carathéodory/u.s.c. structure and convex compact values for N; measurability and
bounded radius for the input multifunction A(:); compactness (or Kuratowski-
condensing) of K; and a Fredholm linear part L = I — KL, of index zero-we carried
out a Lyapunov-Schmidt reduction to the finite-dimensional kernel Z = kerL and
built a reduced multimap ®;:Z =3 Z whose fixed points are in oneto-one
correspondence with solutions of the original inclusion. This yielded precise set-
valued Fredholm alternatives: either the homogeneous inclusion has a nontrivial
solution, orsubject to the classical compatibility conditions with Z* = kerL*the
inhomogeneous inclusion admits at least one solution; in the compact case,
solution sets are nonempty, compact, and acyclic, while in the condensing case they
are bounded and closed. Quantitatively, we established stability of solution sets
with respect to perturbations of the input multifunction via Hausdorff estimates,

and-in the Volterra settingverified the a priori bounds required by the theory
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through Grénwall-Bihari inequalities, thereby closing assumptions (H1) — (H6)
for broad classes of kernels and growth laws. A finiterank kernel example made the
LS splitting explicit, and a small pseudo-arclength routine illustrated how the
resulting reduced problem can be explored numerically, including the impact of
inputset radii through reachable "bands" of solution coordinates. Altogether, the
paper provides a compact, implementable toolkit-reduction, degree/index, and
stability estimatesfor analyzing existence and solvability under setvalued
uncertainty in integral models, and it suggests clear extensions: multiple-eigenvalue
kernels and equivariant settings, nonconvex values via measurable selections and
approximation, noncompact perturbations handled by generalized measures of
noncompactness, and validated numeric for guaranteed computation of entire

solution continua.
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