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GLOBAL BIFURCATION FOR NONLINEAR OPERATORS 
WITH UNCERTAINTY BANDS 

 

YOGEESH N1,2*, MARKALA KARTHIK3, ASOKAN VASUDEVAN4,5,6, CHETHANA N S7, SOON EU 
HUI8, MAYIBONGWE TAFARA MUDZENGI9, SHANKARALINGAPPA B M10 

Abstract. We study solution sets of nonlinear operator equations 𝐹(𝜆, 𝑢, 𝑎) = 0 on Banach spaces, where 𝜆 ∈ R 
is the primary parameter and 𝑎 ranges over a compact ancillary set modelling uncertainty bands. Assuming 𝐹 ∈

𝐶1, Fredholm index zero on the trivial branch, a simple spectral crossing and a band-uniform transversality, we 
develop a uniform Lyapunov-Schmidt reduction yielding a 𝐶1  local curve with constants independent of 𝑎. Using 
Leray-Schauder degree, we prove a band-robust Rabinowitz alternative: for each 𝑎 and for the band-union 

continuum C =∪𝑎 C(𝑎), either the component is unbounded in R × 𝑋 or it impinges on another trivial point; 
if the simple crossing is isolated for all 𝑎, only unboundedness can occur. Quantitatively, we establish Hausdorff-
Lipschitz stability of solution sets with respect to 𝑎 on bounded windows and derive radius-to-extent inequalities 
that bound the growth of the 𝜆 projection of C by 𝑂(rad(𝐴)). The results furnish a compact toolkit for global 

bifurcation under parametric uncertainty with explicit stability constants and verifiable hypotheses. 

Keywords: global bifurcation; uncertainty bands; Fredholm index zero; Lyapunov Schmidt reduction; topological 
degree; Rabinowitz alternative; Hausdorff stability. 

1 Introduction 

Let 𝑋, 𝑌 be real Banach spaces and let 𝜆 ∈ R denote a primary bifurcation 
parameter. We study nonlinear operator equations 

𝐹(𝜆, 𝑢, 𝑎) = 0, (𝜆, 𝑢, 𝑎) ∈ R × 𝑋 × 𝐴,       − − − (1.1) 

where 𝐴 ⊂ R𝑚 is a compact set of ancillary parameters modelling an uncertainty 
band. For each 𝑎 ∈ 𝐴, the map 𝐹(⋅,⋅, 𝑎): R × 𝑋 → 𝑌 is assumed to be 𝐶1 and 
Fredholm of index zero at the linearized level along the trivial branch 𝑢 ≡ 0. Our 
goal is to establish a band-robust global bifurcation alternative for the union of 

continua of nontrivial solutions C = U𝑎∈𝐴C(𝑎) that emanate from a simple spectral 
crossing ( 𝜆∗, 0, 𝑎 ) and to quantify how C deforms as the band radius rad(𝐴) varies. 

Classically, for a single operator 𝐹(𝜆, 𝑢), existence of an unbounded continuum or 
a continuum reaching another trivial point is guaranteed by the global bifurcation 
theorem of Rabinowitz based on topological degree and index jumps [1]. Local 
branches near simple eigenvalue crossings are provided by the Crandall-Rabinowitz 
theorem using Lyapunov-Schmidt reduction [2]. Comprehensive treatments appear 
in Kielhöfer's monograph [3] and in Zeidler's nonlinear functional analysis [4]. The 
present work extends these conclusions uniformly across a set of ancillary 
parameters: we show that the degree jump persists on a neighborhood 𝐴∗ ⊂ 𝐴 of 
the crossing point, that the local curve exists with constants independent of 𝑎 ∈

𝐴∗, and that the resulting global alternative holds for the band-union continuum 
C. In addition, we provide quantitative Hausdorff-Lipschitz stability of solution sets 
with respect to 𝑎 under mild continuity of 𝐷𝑢𝐹. 

Guiding example: Consider a semilinear elliptic model on a bounded Lipschitz 
domain Ω ⊂ R𝑁, 

𝐹(𝜆, 𝑢, 𝑎) = −Δ𝑢 − 𝜆𝑢 − 𝑓(𝑢; 𝑎) ∈ 𝐻−1(Ω), 𝑢 ∈ 𝐻0
1(Ω),       − − − (1.2) 
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with Carathéodory nonlinearity 𝑓 subcritical and 𝑓𝑢(0; 𝑎) = 0 uniformly in 𝑎. The 
linearization 𝐿(𝜆, 𝑎) = −Δ − 𝜆𝐼 has a simple spectral crossing at 𝜆∗ = 𝜆1(Ω), 
independent of 𝑎. For each 𝑎, a local branch Cloc (𝑎) bifurcates from ( 𝜆∗, 0 ); our 
results show that the family {C(𝑎)}𝑎∈𝐴 forms an uncertainty band of continua 
whose union obeys the classical global alternative and varies Lipschitz-continuously 
(in a bounded window) with respect to 𝑎. 

Geometry at a glance 

See the visual schematic figure 1 below; it depicts ‖𝑢‖𝑋 versus 𝜆 for a few's in 𝐴. A 
simple eigenvalue crossing at 𝜆∗ generates local branches that collectively form a 
"tube" across 𝑎,  and the global alternative applies to the outer envelope of this tube. 

 
Figure 1 - Band-robust global bifurcation geometry. 

Curves above in figure 1 show representative continua C(𝑎) in the (𝜆, ‖𝑢‖𝑋)-plane 
for several 𝑎 ∈ 𝐴. The dashed axis is the trivial branch ‖𝑢‖𝑋 = 0; the marked point 
is the crossing ( 𝜆∗, 0 ). The union of curves forms an uncertainty band; our 
theorems assert a Rabinowitz-type global alternative for the union and give stability 
bounds with respect to rad(𝐴). 

Contributions 

 A uniform local theorem ensuring existence and uniqueness of a 𝐶1 local 
branch with constants independent of 𝑎 in a neighborhood 𝐴∗ ⊂ 𝐴 of 
the crossing. 

 A band-robust global alternative: the union continuum C is unbounded 
in R × 𝑋 or meets another trivial point for every 𝑎 ∈ 𝐴; if the crossing is 
isolated for all 𝑎, only the unbounded alternative can occur, adapting 
Rabinowitz's degree jump. 

 Quantitative stability: on any bounded window 𝑊, the Hausdorff 
distance between C(𝑎1) ∩ 𝑊 and C(𝑎2) ∩ 𝑊 is 𝑂(‖𝑎1 − 𝑎2‖) under 
Lipschitz continuity of 𝐷𝑢𝐹 in 𝑎 (proof strategy follows graph 
convergence and degree continuity). 

 Model classes including semilinear elliptic, 𝑝-Laplacian, and discrete 
graph operators illustrate the assumptions and deliver explicit constants. 
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2 Notation and standing assumptions 

We collect symbols and hypotheses used throughout. Let ⟨⋅,⋅⟩ denote the duality 
pairing between 𝑌 and 𝑌′ when needed. 

2.1 Spaces, parameters, and basic objects 

 𝑋, 𝑌 : real Banach spaces; 𝑋 reflexive when compactness is needed. 

 𝜆 ∈ R : primary parameter; 𝑢 ∈ 𝑋 : state. 

 𝐴 ⊂ R𝑚 : compact uncertainty band with center 𝑎‾ ∈ 𝐴 and radius 

rad(𝐴): = sup
𝑎∈𝐴

 ‖𝑎 − 𝑎‾‖R𝑚             − − − (2.1) 

 Operator 𝐹: R × 𝑋 × 𝐴 → 𝑌, with trivial branch 𝐹(𝜆, 0, 𝑎) = 0 for all 
(𝜆, 𝑎). 

Linearization: 𝐿(𝜆, 𝑎): = 𝐷𝑢𝐹(𝜆, 0, 𝑎) ∈ L(𝑋, 𝑌). 

Fredholm index: 𝑛𝑑 𝐿 = dimker𝐿 − codimRange𝐿 . 

Solution sets. For each 𝑎 ∈ 𝐴, 

S(𝑎) = {(𝜆, 𝑢) ∈ R × 𝑋: 𝐹(𝜆, 𝑢, 𝑎) = 0}             − − − (2.2) 

Let C(𝑎) ⊂ S(𝑎) be the connected component containing ( 𝜆∗, 0 ). 

Hausdorff distance. For sets 𝐸, 𝐹 ⊂ R × 𝑋 and a bounded window 𝑊 ⊂ R × 𝑋, 

dist𝐻(𝐸 ∩ 𝑊, 𝐹 ∩ 𝑊)

= max { sup
𝑥∈𝐸∩𝑊

  inf
𝑦∈𝐹∩𝑊

 ‖𝑥 − 𝑦‖, sup
𝑦∈𝐹∩𝑊

  inf
𝑥∈𝐸∩𝑊

 ‖𝑥 − 𝑦‖}     − −

− (2.3) 

Table 1 - Core symbols. 

Symbol Meaning 
𝐹(𝜆, 𝑢, 𝑎) Nonlinear operator R × 𝑋 × 𝐴 → 𝑌 
𝐿(𝜆, 𝑎) Linearization 𝐷𝑢𝐹(𝜆, 0, 𝑎) 
𝜆∗ Spectral crossing parameter 

C (a) Continuum of nontrivial solutions for fixed 𝑎 

C Band-union continuum ⋃𝑎∈𝐴  C(𝑎) 
rad(𝐴) Band radius defined in (2.1) 

2.2 Hypotheses 

We impose assumptions H1-H6; all constants are uniform on the relevant 
neighborhoods. 

H1 (Regularity): For each 𝑎 ∈ 𝐴, the map 𝐹(⋅,⋅, 𝑎) ∈ 𝐶1(R × 𝑋, 𝑌), and 
(𝜆, 𝑢, 𝑎) ↦ 𝐷𝑢𝐹(𝜆, 𝑢, 𝑎) is continuous. 

H2 (Fredholm index zero): The linearization 

𝐿(𝜆, 𝑎) = 𝐷𝑢𝐹(𝜆, 0, 𝑎) is Fredholm of index 0 for all (𝜆, 𝑎)

∈ R × 𝐴.       − − − (2.4) 
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H3 (Simple crossing): There exists (𝜆∗, 𝑎∗) ∈ R × 𝐴 such that 

dim ker𝐿(𝜆∗, 𝑎∗) = codimRange𝐿(𝜆∗, 𝑎∗) = 1.             − − − (2.5) 

Let 𝑣∗ ∈ 𝑋 ∖ {0} span ker𝐿(𝜆∗, 𝑎∗) and 𝜓∗ ∈ 𝑌′ ∖ {0} annihilate Range 𝐿(𝜆∗, 𝑎∗). 

H4 (Transversality in a band): There exists a neighborhood 𝐴∗ ⊂ 𝐴 of 𝑎∗ such 
that, for all 𝑎 ∈ 𝐴∗, 

𝐷𝜆𝐿(𝜆∗, 𝑎)𝑣∗ ∉  Range 𝐿(𝜆∗, 𝑎).         − − − (2.6) 

Equivalently, ⟨𝜓∗, 𝐷𝜆𝐿(𝜆∗, 𝑎)𝑣∗⟩ = 0 with sign fixed on 𝐴∗. 

H5 (Compactness): Writing 𝑁(𝜆, 𝑢, 𝑎): = 𝐹(𝜆, 𝑢, 𝑎) − 𝐿(𝜆, 𝑎)𝑢, the map 𝑁 is 𝐿 
compact on bounded sets uniformly in 𝑎 ∈ 𝐴 (e.g., 𝑁 compact or completely 
continuous on bounded sets). 

H6 (Properness on bounded sets): For any bounded Ω ⊂ R × 𝑋, the set 

{(𝜆, 𝑢, 𝑎) ∈ Ω × 𝐴: 𝐹(𝜆, 𝑢, 𝑎) = 0}             − − − (2.7) 
is compact. 

Remark 2.1 (Why index zero): Index zero allows use of Leray-Schauder degree for 
𝐼 − 𝐾 with 𝐾 compact after a suitable isomorphism and ensures homotopy 
invariance needed for the degree jump across 𝜆∗. 

2.3 Uniform Lyapunov-Schmidt reduction 

By H2 − H4 there exist algebraic splittings 𝑋 = span{𝑣∗} ⊕ 𝑍, 𝑌 = span{𝜓∗} ⊕

𝑊 and neighborhoods 𝐼 ∋ 𝜆∗, 𝑈 ∋ 0, 𝐴∗ ∋ 𝑎∗ such that the equation 𝐹(𝜆, 𝑠𝑣 +

𝑤, 𝑎) = 0 with 𝑣 = 𝑣∗ uniquely determines 𝑤 = 𝑤(𝜆, 𝑠, 𝑎) ∈ 𝑍 for |𝑠| small and 
(𝜆, 𝑎) ∈ 𝐼 × 𝐴∗. The remaining scalar reduced equation is 

𝑔(𝜆, 𝑠, 𝑎): = ⟨𝜓∗, 𝐹(𝜆, 𝑠𝑣∗ + 𝑤(𝜆, 𝑠, 𝑎), 𝑎)⟩ = 0.       − − − (2.8) 

Differentiating gives 

𝜕𝑠𝑔(𝜆∗, 0, 𝑎) = ⟨𝜓∗, 𝐷𝑢𝐹(𝜆∗, 0, 𝑎)𝑣∗⟩ = 0, 𝜕𝜆𝑔(𝜆∗, 0, 𝑎)

= ⟨𝜓∗, 𝐷𝜆𝐿(𝜆∗, 𝑎)𝑣∗⟩ ≠ 0           − − − (2.9) 

and the nondegenerate slope condition 𝜕𝜆𝑔(𝜆∗, 0, 𝑎)𝜕𝑠𝑠𝑔(𝜆∗, 0, 𝑎) < 0 (or an 
equivalent sign condition) holds uniformly in 𝑎 ∈ 𝐴∗ by H 4. Therefore, by the 
implicit function theorem on the reduced problem, there exist 𝛿 > 0 and a 𝐶1 
curve 

Cloc(𝑎) = {(𝜆(𝑠, 𝑎), 𝑢(𝑠, 𝑎)): |𝑠| < 𝛿}, 𝑢(𝑠, 𝑎)

= 𝑠𝑣∗ + 𝑤(𝜆(𝑠, 𝑎), 𝑠, 𝑎) ,       − − − (2.10) 

with bounds 
|𝜆(𝑠, 𝑎) − 𝜆∗| ≤ 𝑐|𝑠|, ‖𝑢(𝑠, 𝑎)‖𝑋 ≤ 𝑐|𝑠| .          − − − (2.11) 

where 𝑐 > 0 is independent of 𝑎 ∈ 𝐴∗. This uniform control is the key input for 
the band-robust global alternative developed later, paralleling the single-parameter 
theory in [1]-[3]. 
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2.4 Degree jump across the band 

Fix 𝜆− < 𝜆∗ < 𝜆+in 𝐼 and a ball 𝐵 ⊂ 𝑋 so that 𝐹(𝜆,⋅, 𝑎) = 0 on 𝜕𝐵 for 𝜆 ∈

{𝜆−, 𝜆+} and all 𝑎 ∈ 𝐴∗. Define Leray-Schauder degrees 

𝑑±(𝑎): = deg(𝐼 − 𝐿(𝜆±, 𝑎)−1𝑁(𝜆±,⋅, 𝑎), 𝐵, 0) .           − − − (2.12) 

Under H1 − H6 and the simple crossing (2.5) with transversality (2.6), one has 

𝑑−(𝑎) − 𝑑+(𝑎) = ±1  for all 𝑎 ∈ 𝐴∗ ,           − − − (2.13) 

i.e., the degree jump is constant across the band. Consequently, each C(𝑎) satisfies 
the Rabinowitz global alternative [1], and the band-union continuum C =

U𝑎∈𝐴C(𝑎) inherits the same dichotomy; the quantitative stability estimates rely on 
continuity of solution sets and degree with respect to parameters [3], [4]. 

3 Problem formulation and main results 

We consider the operator equation 

𝐹(𝜆, 𝑢, 𝑎) = 0, (𝜆, 𝑢, 𝑎) ∈ R × 𝑋 × 𝐴,            − − − (3.1) 

under assumptions H1-H6 of Section 2. Recall 𝐿(𝜆, 𝑎) = 𝐷𝑢𝐹(𝜆, 0, 𝑎), the simple 
crossing (𝜆∗, 𝑎∗) with eigenvector 𝑣∗ and cokernel vector 𝜓∗, and the splittings 𝑋 =

span{𝑣∗} ⊕ 𝑍, 𝑌 = span{𝜓∗} ⊕ 𝑊. 

3.1 Uniform Lyapunov-Schmidt reduction and local branch 

We first produce a reduced scalar equation that is uniform for 𝑎 in a neighborhood 
of 𝑎∗. 

Lemma 3.1 (Uniform invertibility on the complement) 

There exist neighborhoods 𝐼 ∋ 𝜆∗, 𝐴∗ ⊂ 𝐴 of 𝑎∗, and 𝑈 ⊂ 𝑋 with 0 ∈ 𝑈 such that 
for all (𝜆, 𝑎) ∈ 𝐼 × 𝐴∗ the restriction 

𝐿𝑊𝑍(𝜆, 𝑎): = 𝑃𝑊 ∘ 𝐿(𝜆, 𝑎)|𝑍: 𝑍 → 𝑊.          − − − (3.2) 

is a bounded linear isomorphism with 

sup
(𝜆,𝑎)∈𝐼×𝐴∗

 ‖𝐿𝑊𝑍(𝜆, 𝑎)−1‖ ≤ 𝐶0 < ∞.              − − − (3.3) 

Proof: By H2 and the simple crossing at (𝜆∗, 𝑎∗), ker𝐿(𝜆∗, 𝑎∗) = span{𝑣∗} and 
Range 𝐿(𝜆∗, 𝑎∗) is complemented by 𝑊 = span{𝜓∗}⊥. Continuity of 𝐿(𝜆, 𝑎) in 
(𝜆, 𝑎) (H1) and stability of Fredholm index imply that for (𝜆, 𝑎) near (𝜆∗, 𝑎∗), 
ker𝐿(𝜆, 𝑎) is one-dimensional and transversal to 𝑍. Hence 𝐿𝑊𝑍(𝜆, 𝑎) is bijective. 
A uniform bound (3.3) follows from continuity of the inverse map on a compact 
neighborhood by the bounded inverse theorem; see, e.g., [5, Thm. 9.3] or [6, 
Section 15]. 

Lemma 3.2 (Uniform LS reduction) 

There exist neighborhoods 𝐼 ∋ 𝜆∗, 𝐴∗ ⊂ 𝐴, and N ⊂ R × R × 𝐴∗ such that for each 
(𝜆, 𝑠, 𝑎) ∈ N there is a unique 𝑤 = 𝑤(𝜆, 𝑠, 𝑎) ∈ 𝑍 solving 

𝑃𝑊𝐹(𝜆, 𝑠𝑣∗ + 𝑤, 𝑎) = 0.              − − − (3.4) 
and 𝑤 is 𝐶1 with uniform bounds 
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‖𝑤(𝜆, 𝑠, 𝑎)‖ ≤ 𝐶1|𝑠|, ‖𝐷(𝜆,𝑠)𝑤(𝜆, 𝑠, 𝑎)‖ ≤ 𝐶2           − − − (3.5) 

where 𝐶1, 𝐶2 depend only on 𝐼, 𝐴∗. 

Proof: Write 𝐺(𝜆, 𝑠, 𝑤, 𝑎): = 𝑃𝑊𝐹(𝜆, 𝑠𝑣∗ + 𝑤, 𝑎). Then 

𝐷𝑤𝐺(𝜆∗, 0,0, 𝑎∗) = 𝑃𝑊𝐿(𝜆∗, 𝑎∗)|𝑍 = 𝐿𝑊𝑍(𝜆∗, 𝑎∗) 

invertible by Lemma 3.1. By the uniform inverse bound and 𝐶1-regularity (H1), the 
implicit function theorem yields a 𝐶1 map 𝑤(𝜆, 𝑠, 𝑎) on a product neighborhood, 
with the stated estimates (e.g., by the standard fixed-point proof with a contraction 
whose Lipschitz constants are uniform on 𝐼 × 𝐴∗). 

Define the reduced equation 

𝑔(𝜆, 𝑠, 𝑎): = ⟨𝜓∗, 𝐹(𝜆, 𝑠𝑣∗ + 𝑤(𝜆, 𝑠, 𝑎), 𝑎)⟩ = 0.        − − − (3.6) 

Lemma 3.3 (Nondegenerate slope and sign persistence) 

On 𝐼 × {0} × 𝐴∗, 
𝜕𝑠𝑔(𝜆∗, 0, 𝑎) = 0, 𝜕𝜆𝑔(𝜆∗, 0, 𝑎) = ⟨𝜓∗, 𝐷𝜆𝐿(𝜆∗, 𝑎)𝑣∗⟩ ≠ 0.           − − − (3.7) 

and the sign of 𝜕𝜆𝑔(𝜆∗, 0, 𝑎) is constant for 𝑎 ∈ 𝐴∗. 

Proof. The first identity is ⟨𝜓∗, 𝐿(𝜆∗, 𝑎)𝑣∗⟩ = 0. The second follows from H4. 
Continuity in 𝑎 gives sign constancy on a small neighborhood. 

Proposition 3.4 (Uniform local branch) 

There exist 𝛿 > 0 and 𝐶 > 0 such that for each 𝑎 ∈ 𝐴∗ there is a unique 𝐶1 curve 

Cloc(𝑎) = {(𝜆(𝑠, 𝑎), 𝑢(𝑠, 𝑎)): |𝑠| < 𝛿}, 𝑢(𝑠, 𝑎)

= 𝑠𝑣∗ + 𝑤(𝜆(𝑠, 𝑎), 𝑠, 𝑎) ,          − − − (3.8) 

satisfying 𝑔(𝜆(𝑠, 𝑎), 𝑠, 𝑎) = 0 and the bounds 

|𝜆(𝑠, 𝑎) − 𝜆∗| ≤ 𝐶|𝑠|, ‖𝑢(𝑠, 𝑎)‖𝑋 ≤ 𝐶|𝑠| .               − − − (3.9) 

Proof: Apply the implicit function theorem to 𝑔(𝜆, 𝑠, 𝑎) = 0 with respect to 𝜆 at 
(𝜆∗, 0, 𝑎) using Lemma 3.3; bounds (3.9) follow from (3.5) and smooth dependence. 
Uniqueness stems from the reduction: any solution near (𝜆∗, 0) has 𝑤 uniquely 
defined by (3.4), so two solution curves must coincide. 

3.2 Degree jump and the band-robust global alternative 

Fix 𝜆− < 𝜆∗ < 𝜆+inside 𝐼 and a ball 𝐵 ⊂ 𝑋 with 0 ∈ 𝐵 such that, for all 𝑎 ∈ 𝐴∗, 

𝐹(𝜆±, 𝑢, 𝑎) ≠ 0  for every 𝑢 ∈ 𝜕𝐵.          − − − (3.10) 

Define compact perturbations of the identity 

Φ𝑎
±(𝑢): = 𝑢 − 𝐿(𝜆±, 𝑎)−1𝑁(𝜆±, 𝑢, 𝑎), 𝑁(𝜆, 𝑢, 𝑎):

= 𝐹(𝜆, 𝑢, 𝑎) − 𝐿(𝜆, 𝑎)𝑢.          − − − (3.11) 

well-defined by 𝐇𝟐 and 𝐇𝟓, and consider the Leray-Schauder degree 
deg(Φ𝑎

±, 𝐵, 0). 
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Lemma 3.5 (Degree constancy in the band) 

There exists 𝐴† ⊆ 𝐴∗ open such that deg(Φ𝑎
±, 𝐵, 0) is constant for 𝑎 ∈ 𝐴†. 

Proof: By H1-H6, Φ𝑎
±is a compact perturbation of the identity depending 

continuously on 𝑎 in the operator norm, and 0 ∉ Φ𝑎
±(𝜕𝐵) uniformly by (3.10). 

Apply homotopy invariance of the Leray-Schauder degree with parameter 𝑎. 

Lemma 3.6 (Parity of the jump) 

For all 𝑎 ∈ 𝐴∗, 
deg(Φ𝑎

−, 𝐵, 0) − deg(Φ𝑎
+, 𝐵, 0) = ±1.         − − − (3.12) 

Proof: In the reduced equation (3.6), the change of index across 𝜆∗ is governed by 
the sign of 𝜕𝜆𝑔(𝜆∗, 0, 𝑎) and the multiplicity of the crossing. Since the crossing is 
simple (H3) and transversal with sign fixed on 𝐴∗ (Lemma 3.3), the local additivity 
of degree shows a unit jump; see the classical argument of Rabinowitz adapted to 
the parameterized family. 

Theorem 3.7 (Global alternative for each fixed 𝑎) 

For every 𝑎 ∈ 𝐴 sufficiently close to 𝑎∗ (hence for all ∈ 𝐴∗ ), the connected 
component C(𝑎) ⊂ S(𝑎) of solutions containing ( 𝜆∗, 0 ) satisfies the global 
alternative: either 

(i) C (a) is unbounded in R × 𝑋, or 

(ii) C(𝑎) meets another trivial point (𝜆̂, 0) with ker𝐿(𝜆̂, 𝑎) = {0}. 

Proof: This is Rabinowitz's global theorem for compact perturbations of Fredholm 
index-zero maps applied at fixed 𝑎, with the degree jump (3.12) ensuring nontrivial 
continuation. 

Theorem 3.8 (Band-robust global alternative) 

Let C = U𝑎∈𝐴C(𝑎). Under H1-H6, either 

(i) C is unbounded in R × 𝑋, or 

(ii) for some 𝜆̂ ∈ R and a sequence 𝑎𝑛 ∈ 𝐴, (𝜆̂, 0) ∈∪𝑛 C(𝑎𝑛) with 

ker𝐿(𝜆̂, 𝑎𝑛) = {0} for infinitely many 𝑛. 

If, in addition, 𝜆∗ is the only simple crossing for all 𝑎 ∈ 𝐴, then only (i) can occur. 

Proof: For each 𝑎 ∈ 𝐴, Theorem 3.7 yields (i) or (ii). If (ii) were to happen 
uniformly with trivial points different from 𝜆∗, we would obtain a second crossing 
for some 𝑎 contradicting the isolation assumption. Taking closures and using 
compactness H6 yields the band-union statement. 

4 Local bifurcation uniform in uncertainty bands 

We sharpen Section 3 in two directions: (i) continuity and stability of solution sets 
with respect to the ancillary parameter 𝑎, and (ii) quantitative control of the "extent" 
of the band-union continuum inside bounded windows [7], [8]. 

Throughout, let 𝑊 ⊂ R × 𝑋 be a fixed bounded window (e.g., [𝜆1, 𝜆2] × 𝐵𝑋(𝑅) ). 
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4.1 Continuity of solution sets and Hausdorff stability 

Lemma 4.1 (Graph continuity of solution sets) 

Suppose 𝐇𝟏 holds and 𝐹 is jointly continuous in (𝜆, 𝑢, 𝑎). Then for any (𝜆𝑛 , 𝑢𝑛 , 𝑎𝑛) 
→ (𝜆, 𝑢, 𝑎), 

‖𝐹(𝜆𝑛 , 𝑢𝑛 , 𝑎𝑛) − 𝐹(𝜆, 𝑢, 𝑎)‖𝑌 → 0.         − − − (4.1) 

Proof: Immediate from joint continuity; used to transfer convergence along zero-
sets. 
We use Painlevé-Kuratowski convergence of sets and Hausdorff distance on 𝑊 
(Section 2). 

Lemma 4.2 (Upper semi continuity of solution sets) 

Assume 𝐇𝟏, 𝐇𝟓, 𝐇𝟔. If 𝑎𝑛 → 𝑎 in 𝐴, then every limit point of 𝑆(𝑎𝑛) ∩ 𝑊 lies in 
𝑆(𝑎) ∩ 𝑊; i.e., 

lim sup
𝑛→∞

 ( S(𝑎𝑛) ∩ 𝑊) ⊆ S(𝑎) ∩ 𝑊.           − − − (4.2) 

Proof: Let (𝜆𝑛 , 𝑢𝑛) ∈ S(𝑎𝑛) ∩ 𝑊 with (𝜆𝑛 , 𝑢𝑛) → (𝜆, 𝑢) ∈ 𝑊. By H6, the 
sequence has convergent subsequences remaining in 𝑊. By Lemma 4.1, 
𝐹(𝜆𝑛, 𝑢𝑛 , 𝑎𝑛) → 𝐹(𝜆, 𝑢, 𝑎). Since each term is zero, the limit is zero and (𝜆, 𝑢) ∈

S(𝑎). 

Lemma 4.3 (Local uniqueness implies Hausdorff continuity) 

Under Lemma 3.2 and Proposition 3.4, there exists a neighborhood 𝑊0 ⊂ 𝑊 of 
(𝜆∗, 0) such that S(𝑎) ∩ 𝑊0 consists precisely of the local curve Cloc (𝑎). Then for 
𝑎1, 𝑎2 ∈ 𝐴∗ 

dist𝐻( S(𝑎1) ∩ 𝑊0, S(𝑎2) ∩ 𝑊0) ≤ 𝐶‖𝑎1 − 𝑎2‖.         − − − (4.3) 

Proof: Parametrize S(𝑎) ∩ 𝑊0 by 𝑠 ↦ (𝜆(𝑠, 𝑎), 𝑢(𝑠, 𝑎)) with |𝑠| < 𝛿. The 
uniform 𝐶1 bounds (3.5)-(3.9) yield |𝜆(𝑠, 𝑎1) − 𝜆(𝑠, 𝑎2)| + ‖𝑢(𝑠, 𝑎1) −

𝑢(𝑠, 𝑎2)‖ ≤ 𝐶‖𝑎1 − 𝑎2‖ by mean-value estimates, giving (4.3). 

Theorem 4.4 (Hausdorff-Lipschitz stability on bounded windows) 

Assume H1-H6 and suppose in addition that 𝐷𝑢𝐹 is Lipschitz in 𝑎 on 𝑊 × 𝐴 with 
constant 𝐿𝑎, and ‖𝐿(𝜆, 𝑎)−1‖ ≤ 𝑀 on 𝑊 for all 𝑎 ∈ 𝐴. Then for any 𝑎1, 𝑎2 ∈ 𝐴, 

dist𝐻( S(𝑎1) ∩ 𝑊, S(𝑎2) ∩ 𝑊) ≤ 𝐶𝑊‖𝑎1 − 𝑎2‖,          − − − (4.4) 

where 𝐶𝑊 depends only on 𝑊, 𝐿𝑎 , 𝑀, and bounds in 𝐇𝟓-H6. 

Proof: Let (𝜆1, 𝑢1) ∈ S(𝑎1) ∩ 𝑊. Consider the map 

Ψ(𝜆, 𝑢; 𝑎): = 𝑢 − 𝐿(𝜆, 𝑎)−1𝑁(𝜆, 𝑢, 𝑎) .          − − − (4.5) 

At ( 𝜆1, 𝑢1; 𝑎1 ) we have Ψ = 0 and 
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𝐷(𝜆,𝑢)Ψ = 𝐼 − 𝐿−1𝐷𝑢𝑁 − (𝐷𝜆𝐿−1)𝑁,              − − − (4.6) 

which is invertible by the assumed 𝑀 and smallness on 𝑊 (choose 𝑊 such that 
‖𝐿−1𝐷𝑢𝑁‖ < 1/2 ). The implicit function theorem with Lipschitz parameter 
dependence in 𝑎 yields a unique zero ( 𝜆2, 𝑢2 ) for parameter 𝑎2 with 

‖(𝜆2 − 𝜆1, 𝑢2 − 𝑢1)‖ ≤ 𝐶𝑊‖𝑎2 − 𝑎1‖. 

This gives the one-sided Hausdorff bound; symmetry gives (4.4). 

Corollary 4.5 (Convergence as the band shrinks). 

If 𝐴𝑟: = {𝑎: ‖𝑎 − 𝑎‾‖ ≤ 𝑟} and 𝑟 ↓ 0, then 

dist𝐻 ( ∪
𝑎∈𝐴𝑟

 S(𝑎) ∩ 𝑊, S(𝑎‾) ∩ 𝑊) → 0.         − − − (4.7) 

Proof: Immediate from (4.4) and sup
𝑎∈𝐴𝑟

 ‖𝑎 − 𝑎‾‖ = 𝑟. 

4.2 Quantitative radius-to-extent bounds 

We now relate the band radius rad(𝐴) to the "extent" of the union of continua 
inside 𝑊. 

Define the projection length in 𝜆 of a set 𝐸 ⊂ R × 𝑋 over 𝑊 by 

L𝜆(𝐸; 𝑊): =  meas {𝜆 ∈ R: ∃𝑢 ∈ 𝑋 with (𝜆, 𝑢) ∈ 𝐸 ∩ 𝑊}.          − − − (4.8) 

Lemma 4.6 (Local Lipschitz control of 𝜆-projection) 

Under the assumptions of Theorem 4.4, 

|L𝜆(S(𝑎1); 𝑊) − L𝜆(S(𝑎2); 𝑊)| ≤ 𝐶𝑊
′ ‖𝑎1 − 𝑎2‖.        − − − (4.9) 

Proof: Cover 𝑊 by finitely many neighborhoods where the implicit function 
theorem produces solution graphs 𝜆 ↦ 𝑢(𝜆, 𝑎) or 𝑠 ↦ (𝜆(𝑠, 𝑎), 𝑢(𝑠, 𝑎)) with 
Lipschitz dependence on 𝑎. The boundary in 𝜆 moves by at most 𝐶‖𝑎1 − 𝑎2‖; add 
the contributions [13]. 

Theorem 4.7 (Radius-to-extent inequality) 

Let 𝐴 ⊂ R𝑚 be compact and assume the hypotheses of Theorem 4.4. Then on any 
bounded window 𝑊, 

L𝜆(∪𝑎∈𝐴  S(𝑎); 𝑊) ≤ L𝜆(S(𝑎‾); 𝑊) + 𝐶𝑊
′′ rad(𝐴)          − − − (4.10) 

Proof: Pick 𝑎 ∈ 𝐴. By Lemma 4.6, 

L𝜆(S(𝑎); 𝑊) ≤ L𝜆(S(𝑎‾); 𝑊) + 𝐶𝑊
′ ‖𝑎 − 𝑎‾‖ 

Taking the supremum over 𝑎 ∈ 𝐴 yields (4.10) with 𝐶𝑊
′′ = 𝐶𝑊

′ . 

Remark 4.8 (Practical implication): Inequality (4.10) quantifies that widening the 
uncertainty band by Δ𝑟 can enlarge the observed 𝜆-extent of the union of continua 
in 𝑊 by at most 𝑂(Δ𝑟). This underpins robust continuation algorithms that 
sample a finite set of ancillary parameters and take the outer envelope (Section 7). 
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5 Global bifurcation alternative and degree argument 

We now give a full, self-contained global argument for each fixed 𝑎 ∈ 𝐴 and then 
pass to the band-union [9]. The setting and notation are those of Sections 1-4. 
Recall 𝑁(𝜆, 𝑢, 𝑎) = 𝐹(𝜆, 𝑢, 𝑎) − 𝐿(𝜆, 𝑎)𝑢. 

5.1 Degree set-up on a bounded window 

Fix 𝑎 ∈ 𝐴∗. Choose 𝜆− < 𝜆∗ < 𝜆+inside the neighborhood 𝐼 from Lemma 3.1 and 
a radius 𝑟 > 0 so that 

𝐹(𝜆±, 𝑢, 𝑎) = 0  for all ‖𝑢‖𝑋 = 𝑟.        − − − (5.1) 

Define the compact perturbations of the identity 

Φ±(𝑢): = 𝑢 − 𝐿(𝜆±, 𝑎)−1𝑁(𝜆±, 𝑢, 𝑎)           − − − (5.2) 

By 𝐇𝟓, Φ±are well defined and completely continuous on 𝐵𝑋(𝑟); by (5.1), 0 ∉

Φ±(𝜕𝐵𝑋(𝑟)). Hence the Leray-Schauder degrees 
𝑑±: = deg(Φ±, 𝐵𝑋(𝑟),0)               − − − (5.3) 

are defined [14, 15]. (We suppress the parameter 𝑎 here.) 

Lemma 5.1 (Local index computation) 

Under 𝐇𝟑 − 𝐇𝟒, there exists 𝑟 > 0 and 𝜀 > 0 such that for all |𝜆 − 𝜆∗| < 𝜀, 

deg(Φ𝜆, 𝐵𝑋(𝑟),0) = {
𝑑− if 𝜆 < 𝜆∗

𝑑− ∓ 1  if 𝜆 > 𝜆∗
           − − − (5.4) 

with the sign determined by sign⟨𝜓∗, 𝐷𝜆𝐿(𝜆∗, 𝑎)𝑣∗⟩. 

Proof: Reduce to the scalar equation 𝑔(𝜆, 𝑠, 𝑎) = 0 (Lemma 3.2). Inside ‖𝑢‖ ≤ 𝑟, 
every solution is on the Lyapunov-Schmidt manifold 𝑢 = 𝑠𝑣∗ + 𝑤(𝜆, 𝑠, 𝑎). The 
onedimensional crossing flips the Brouwer degree of the reduced map by ±1, 
which lifts to Leray-Schauder degree because the complement equation has a 
unique solution for each ( 𝜆, 𝑠 ) and the projection is an isomorphism (Lemma 3.1). 

Lemma 5.2 (Nontrivial connected set) 

Let 

Z: = {(𝜆, 𝑢) ∈ [𝜆−, 𝜆+] × 𝐵𝑋(𝑟): 𝐹(𝜆, 𝑢, 𝑎) = 0}           − − − (5.5) 

If 𝑑− = 𝑑+, then Z contains a connected component K intersecting both slices 
{𝜆 = 𝜆−}and {𝜆 = 𝜆+}. 

Proof: Consider the homotopy H(𝑡, 𝑢) = Φ𝜆−+𝑡(𝜆+−𝜆−)(𝑢). The degree change 
implies 0 lies in the image of H for all 𝑡 ∈ [0,1]. Compactness (H5-H6) shows the 
set of zeros is compact; the Whyburn lemma (connectedness of the set joining 
boundary slices) yields a component intersecting both ends; see [10, Lemma 2.4] or 
[12, Thm. 9.2]. 

5.2 Unboundedness or a secondary trivial point 
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Let C(𝑎) be the connected component of S(𝑎) = {𝐹(𝜆, 𝑢, 𝑎) = 0} that contains 
(𝜆∗, 0) 

Theorem 5.3 (Rabinowitz alternative at fixed  𝑎 ∈ 𝐴) 

Either 
(i) C (a) is unbounded in R × 𝑋, or 

(ii) there exists 𝜆̂ ∈ R with ker𝐿(𝜆̂, 𝑎) = {0} such that (𝜆̂, 0) ∈ C(𝑎). 

Proof: Suppose (i) fails. Then there exists a bounded open set 𝑊 ⊂ R × 𝑋 with 
C(𝑎) ⊂ 𝑊. By Lemma 5.2 the component K ⊂ Z joins the two faces 𝜆±. If K did 
not meet (𝜆, 0) with nontrivial kernel, we could contract K within a region where 
𝐿(𝜆, 𝑎) stays invertible, contradicting the degree jump (5.4) via homotopy 
invariance. Hence 

(ii). This is the standard Rabinowitz global argument [1], adapted to our 

Fredholm/degree setting; cf. [10, Section 3], [11, Section 2]. 

Corollary 5.4 (Isolation yields unboundedness) 

If 𝜆∗ is the unique parameter with ker𝐿(𝜆, 𝑎) ≠ {0} for the given 𝑎, then only (i) 
occurs. 

Proof: Exclude (ii). 

5.3 Band-robust global alternative 

Let C = U𝑎∈𝐴C(𝑎). 

Theorem 5.5 (Band-union alternative) 

Either 
(i) C is unbounded in R × 𝑋, or 

(ii) there exist 𝜆̂ and a sequence 𝑎𝑛 ∈ 𝐴 with ker𝐿(𝜆̂, 𝑎𝑛) = {0} and (𝜆̂, 0) ∈

∪𝑛 C(𝑎𝑛) If, for all 𝑎 ∈ 𝐴, the only simple crossing is at 𝜆∗, then only (i) occurs. 

Proof: Apply Theorem 5.3 to each 𝑎. If (i) fails for the union, extract from 
boundedness a subsequence 𝑎𝑛 for which the alternatives (ii) must occur; 
compactness (H6) and upper semicontinuity (Lemma 4.2) give the stated 
accumulation. The isolation statement eliminates (ii).  

5.4 A priori bounds and avoidance of blow-up (model toolkit) 

We record a convenient criterion for ruling out case (ii) in semi-linear models. 

Lemma 5.6 (A priori bound via subcritical growth) 

Let 𝑋 = 𝐻0
1(Ω), 𝑌 = 𝐻−1(Ω), Ω ⊂ R𝑁 bounded Lipschitz, and 

𝐹(𝜆, 𝑢, 𝑎) = −Δ𝑢 − 𝜆𝑢 − 𝑓(𝑢; 𝑎)          − − − (5.6) 

with 𝑓(⋅; 𝑎) Carathéodory, 𝑓𝑢(0; 𝑎) = 0, and for some 2 < 𝑝 < 2∗ (Sobolev 
critical exponent), |𝑓(𝑢; 𝑎)| ≤ 𝐶1|𝑢| + 𝐶2|𝑢|𝑝−1 uniformly in 𝑎. Then on 
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rectangles 𝑊 = [ 𝜆1, 𝜆2 ] × 𝐵𝑋(𝑅), the set of solutions is bounded in 𝐻0
1(Ω) 

uniformly in 𝑎. 

Proof: Test the weak form with 𝑢 and use Poincaré-Sobolev: 

‖∇𝑢‖2
2 − 𝜆‖𝑢‖2

2 = ∫  
Ω

𝑓(𝑢; 𝑎)𝑢𝑑𝑥 ≤ 𝐶1‖𝑢‖2
2 + 𝐶2‖𝑢‖𝑝

𝑝 ≤ 𝐶1
′‖𝑢‖2

2 + 𝐶2
′‖𝑢‖

𝐻0
1

𝑝 . 

Absorb ‖𝑢‖𝐻0
1

2  to the left for 𝜆 in a compact interval, and use 𝑝 > 2 to bound 

‖𝑢‖𝐻0
1 by a constant depending only on 𝑊.: 

Consequences: With Lemma 5.6 and simplicity of the first eigenvalue, case (ii) is 
excluded for 𝜆 in a neighborhood of 𝜆1(Ω), so the component must be unbounded; 
compare. 

6 Applications and examples 

We verify the hypotheses 𝐇𝟏 − 𝐇𝟔 and instantiate the main theorems for three 
standard model classes. Each subsection ends with an explicit "Checklist" 
summarizing which hypotheses are met and why [16]. 

6.1 Semilinear elliptic equations 

Let Ω ⊂ R𝑁 be bounded Lipschitz, 𝑋 = 𝐻0
1(Ω), 𝑌 = 𝐻−1(Ω), and 

𝐹(𝜆, 𝑢, 𝑎) = −Δ𝑢 − 𝜆𝑢 − 𝑓(𝑢; 𝑎)               − − − (6.1) 
Assume: 

 𝑓(⋅; 𝑎) is Carathéodory and 𝐶1 in 𝑢; 𝑓𝑢(0; 𝑎) = 0 uniformly in 𝑎 ∈ 𝐴; 

 Subcritical growth: |𝑓(𝑢; 𝑎)| ≤ 𝐶(1 + |𝑢|𝑝−1) with 2 < 𝑝 < 2∗ 
uniformly in 𝑎; 

 𝑓(⋅; 𝑎) is locally Lipschitz in 𝑢 uniformly in 𝑎. 

Verification of H1. Standard Nemytskii theory gives 𝐹 ∈ 𝐶1(R × 𝑋, 𝑌). 

H2: 𝐿(𝜆, 𝑎) = −Δ − 𝜆𝐼 is Fredholm of index 0, ker𝐿 ≡ {0} iff 𝜆 is a Dirichlet 
eigenvalue. 
H3: Take 𝜆∗ = 𝜆1(Ω), the simple first eigenvalue, with eigenfunction 𝑣∗ > 0. 
H4: 𝐷𝜆𝐿(𝜆∗, 𝑎)𝑣∗ = −𝑣∗ ∉ Range𝐿(𝜆∗, 𝑎) since 𝜓∗ is the first adjoint 
eigenfunction and ⟨𝜓∗, 𝑣∗⟩ = 0. 
H5: 𝑁(𝜆, 𝑢, 𝑎) = −𝑓(𝑢; 𝑎) is compact 𝑋 → 𝑌 on bounded sets via Rellich-
Kondrachov 𝐻0

1(Ω) ↪ 𝐿𝑝(Ω) and subcritical growth. 
H6: Properness on bounded sets follows from Lemma 5.6 and weak sequential 
compactness in 𝐻0

1. 

Model theorem 6.1 (Global alternative for (6.1)) 

For every 𝑎 ∈ 𝐴, the component C(𝑎) issuing from ( 𝜆1(Ω),0 ) satisfies Theorem 
5.3. If 𝜆1(Ω) is the only eigenvalue met in 𝑊 and 𝑓 satisfies the bounds of Lemma 
5.6, then C (a) is unbounded. Moreover, on any bounded window 𝑊, the solution 
sets satisfy the Hausdorff-Lipschitz estimate (4.4) with a constant depending on 𝑊 
and the data bounds. 

Proof: Combine the verifications of H1-H6, Theorems 5.3 and 4.4, and Lemma 
5.6. 
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Checklist 6.1 (Assumptions for (6.1)). 

 Spaces: 𝑋 = 𝐻0
1(Ω), 𝑌 = 𝐻−1(Ω). 

 Crossing: simple at 𝜆1(Ω). 

 Compactness: yes, via subcritical growth. 

 Properness: yes, by a priori bound. 

 Band stability: (4.4) holds if 𝑓𝑢 is Lipschitz in 𝑎. 

6.2 𝑝-Laplacian type equations 

Let 1 < 𝑝 < ∞, 𝑋 = 𝑊0
1,𝑝(Ω), 𝑌 = 𝑊−1,𝑝′

(Ω), and 

𝐹(𝜆, 𝑢, 𝑎) = −div(|∇𝑢|𝑝−2∇𝑢) − 𝜆𝜚(𝑎)|𝑢|𝑝−2𝑢 − 𝑔(𝑢; 𝑎) ,         − − − (6.2) 

where 𝜚(𝑎) is positive and bounded above/below uniformly on 𝐴, and 𝑔(⋅; 𝑎) is 
Carathéodory with |𝑔(𝑢; 𝑎)| ≤ 𝐶(1 + |𝑢|𝑞−1), 𝑝 ≤ 𝑞 < 𝑝∗. 

H1: 𝐹 is 𝐶1 as a mapping 𝑋 → 𝑌 away from 𝑢 = 0; for bifurcation at 𝑢 = 0, the 
linearized operator is 

𝐿(𝜆, 𝑎)𝜙 = −div((𝑝 − 1)|∇0|𝑝−2∇𝜙) − 𝜆𝜚(𝑎)(𝑝 − 1)|0|𝑝−2𝜙

= −Δ𝑝
′ 𝜙 − 𝜆𝜚(𝑎)𝜙 

which reduces to the weighted 𝑝-Laplacian linearization at zero (well-defined in the 
sense of the first eigenpair). 

H2-H4: The first eigenvalue of −Δ𝑝 with weight 𝜚(𝑎) is simple; transversality 

follows from ⟨𝜓∗, 𝐷𝜆𝐿(𝜆∗, 𝑎)𝑣∗⟩ = −⟨𝜓∗, 𝜚(𝑎)𝑣∗⟩ = 0. 

H5-H6: Compactness and properness use monotonicity and the (𝑆)+property for 
the 𝑝 -Laplacian, plus subcritical growth of 𝑔. 

Model theorem 6.2 (Global alternative for (6.2)) 

For each 𝑎 ∈ 𝐴, a global continuum bifurcates from the first weighted 𝑝-eigenvalue 
𝜆∗(𝑎) and satisfies the Rabinowitz alternative; if 𝜆∗(𝑎) is isolated in 𝑊 and data 
are subcritical, the branch is unbounded. Hausdorff-Lipschitz stability in 𝑎 holds 
on bounded windows provided 𝑔𝑢 and 𝜚 are Lipschitz in 𝑎. 

Checklist 6.2. 

 Spaces: 𝑊0
1,𝑝

→ 𝑊−1,𝑝′
. 

 Crossing: simple weighted 𝑝-eigenvalue. 

 Compactness: (𝑆)+and subcritical growth. 

 Properness: a priori bounds via standard energy inequalities. 

 Band stability: needs Lipschitz control of 𝜚, 𝑔𝑢 in 𝑎. 

6.3 Discrete graph models 

Let 𝐺 = (𝑉, 𝐸) with |𝑉| = 𝑛. Set 𝑋 = 𝑌 = R𝑛 with the Euclidean norm. Consider 
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𝐹(𝜆, 𝑢, 𝑎) = 𝐿𝑢 − 𝜆𝑀𝑢 − 𝐺(𝑢; 𝑎)               − − − (6.3) 

where 𝐿 is a symmetric graph Laplacian, 𝑀 a positive definite "mass" matrix (e.g., 
diagonal vertex weights), and 𝐺(⋅; 𝑎) has Jacobian 𝐷𝑢𝐺(0; 𝑎) = 0 and 
‖𝐺(𝑢; 𝑎)‖ ≤ 𝐶‖𝑢‖2 for small ‖𝑢‖, uniformly in 𝑎. 

H1: 𝐹 ∈ 𝐶1 with 𝐷𝑢𝐹(𝜆, 0, 𝑎) = 𝐿 − 𝜆𝑀. 

H2-H4: 𝐿 − 𝜆𝑀 is a pencil with simple eigenvalues; take 𝜆∗ = 𝜆1 (smallest 
generalized eigenvalue), which is simple for connected graphs. Transversality: 
𝐷𝜆𝐿(𝜆∗, 𝑎) = −𝑀, and ⟨𝜓∗, 𝑀𝑣∗⟩ > 0. 

H5: 𝐺 is compact on bounded sets since 𝑋 is finite dimensional. 

H6: Properness is automatic in finite dimension. 

Model theorem 6.3 (Global alternative for (6.3)) 

For each 𝑎, a global continuum bifurcates from (𝜆1, 0) and satisfies Theorem 5.3; 
unboundedness occurs unless another generalized eigenvalue is met. Band stability 
(4.4) holds provided 𝐷𝑢𝐺 and 𝑀 depend Lipschitz-continuously on 𝑎. 

Checklist 6.3. 

 Spaces: R𝑛. 

 Crossing: simple smallest generalized eigenvalue. 

 Compactness & properness: automatic. 

 Band stability: Lipschitz in 𝑎 for 𝑀, 𝐷𝑢𝐺. 

7 Concluding remarks 

We established a band-robust version of global bifurcation for compact 
perturbations of Fredholm index-zero maps 

𝐹(𝜆, 𝑢, 𝑎) = 0, (𝜆, 𝑢, 𝑎) ∈ R × 𝑋 × 𝐴, 

where 𝐴 encodes an ancillary uncertainty band. Under a simple spectral crossing 
and a transversality condition uniform on a neighborhood 𝐴∗ ⊂ 𝐴, we proved: 

(i) a uniform local theorem via Lyapunov-Schmidt reduction with constants 
independent of 𝑎 ∈ 𝐴∗; 

(ii) a degree jump constant on 𝐴∗ yielding a Rabinowitz-type global alternative 

for every 𝑎 and for the band-union continuum C = U𝑎∈𝐴C(𝑎); 

(iii) Hausdorff-Lipschitz stability of solution sets with respect to 𝑎 on bounded 
windows; 

(iv) radius-to-extent inequalities showing 𝜆-projection growth of ∪𝑎∈𝐴  S(𝑎) is 
𝑂(rad(𝐴)). 

Limitations: Our compactness/properness hypotheses ( H5 − H6 ) exclude certain 
quasilinear or noncompact settings (e.g., critical growth without compact 
embeddings, nonlocal operators with essential spectrum touching zero). The simple 
crossing assumption excludes multiple or defective eigenvalues and Turning-Hopf 
interactions. 
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Future directions. 

(i) Multiple crossings and equivariance: Extend to finite multiplicity using the 
equivariant degree and crossing numbers on isotypic components. 

(ii) Noncompact perturbations: Replace (H5) by condensing or measure of 
noncompactness assumptions. 

(iii) Random-set bands: Treat 𝐴 as a random compact set and derive almost-
sure statements on C. 

(iv) Validated numeric: Combine pseudo-arclength continuation with 
aposteriori radii-polynomial certificates uniform in 𝑎 to produce computer 
assisted proofs. 

This work establishes a band-robust framework for global bifurcation in nonlinear 
operator equations 𝐹(𝜆, 𝑢, 𝑎) = 0 on Banach spaces when ancillary parameters 
vary within a compact uncertainty set 𝐴. Building on a uniform Lyapunov-Schmidt 
reduction around a simple spectral crossing and a transversality condition holding 
for all 𝑎 in a neighborhood of the crossing, we proved existence and uniqueness of 
a 𝐶1 local branch with constants independent of 𝑎, quantified the associated degree 
jump, and lifted Rabinowitz's global alternative from individual parameters to the 

band-union continuum 𝒞 = ⋃𝑎∈𝐴  𝒞(𝑎). We further derived Hausdorff-Lipschitz 
stability of solution sets with respect to 𝑎 on bounded windows and a radius-to-
extent inequality showing that the 𝜆-projection of 𝒞 grows at most linearly with 
rad(𝐴). 
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