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Abstract. We study solution sets of nonlinear operator equations F(4,u, a) = 0 on Banach spaces, where A € R
is the primary parameter and a ranges over a compact ancillary set modelling uncertainty bands. Assuming F €
C*, Fredholm index zero on the trivial branch, a simple spectral crossing and a band-uniform transversality, we
develop a uniform Lyapunov-Schmidt reduction yieldinga C* local curve with constants independent of a. Using
Leray-Schauder degree, we prove a band-robust Rabinowitz alternative: for each a and for the band-union

continuum C =U, C(a), either the component is unbounded in R X X or it impinges on another trivial point;
if the simple crossing is isolated for all @, only unboundedness can occur. Quantitatively, we establish Hausdorff-
Lipschitz stability of solution sets with respect to @ on bounded windows and derive radius-to-extent inequalities
that bound the growth of the A projection of C by O(rad(A)). The results furnish a compact toolkit for global

bifurcation under parametric uncertainty with explicit stability constants and verifiable hypotheses.

Keywords: global bifurcation; uncertainty bands; Fredholm index zero; Lyapunov Schmidt reduction; topological
degree; Rabinowitz alternative; Hausdorff stability.

1 Introduction

Let X,Y be real Banach spaces and let A € R denote a primary bifurcation

parameter. We study nonlinear operator equations
F(A,u,a)=0,(Lu,a) ERXX XA, -—-—(11

where A € R™ is a compact set of ancillary parameters modelling an uncertainty
band. For each a € A, the map F(-,-,a):RX X = Y is assumed to be C! and
Fredholm of index zero at the linearized level along the trivial branch u = 0. Our
goal is to establish a band-robust global bifurcation alternative for the union of
continua of nontrivial solutions C = U,¢,C(a) that emanate from a simple spectral
crossing (4,, 0, a ) and to quantify how C deforms as the band radius rad(A) varies.

Classically, for a single operator F (4, u), existence of an unbounded continuum or
a continuum reaching another trivial point is guaranteed by the global bifurcation
theorem of Rabinowitz based on topological degree and index jumps [1]. Local
branches near simple eigenvalue crossings are provided by the Crandall-Rabinowitz
theorem using Lyapunov-Schmidt reduction [2]. Comprehensive treatments appear
in Kielhofer's monograph [3] and in Zeidler's nonlinear functional analysis [4]. The
present work extends these conclusions uniformly across a set of ancillary
parameters: we show that the degree jump persists on a neighborhood A, c A of
the crossing point, that the local curve exists with constants independent of a €
A,, and that the resulting global alternative holds for the band-union continuum
C. In addition, we provide quantitative Hausdorff-Lipschitz stability of solution sets

with respect to @ under mild continuity of D, F.

Guiding example: Consider a semilinear elliptic model on a bounded Lipschitz
domain Q c RY,

F(ALua)=—-Au—Au—f(u;a) € H1(Q),u € H}()), ———(1.2)
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with Carathéodory nonlinearity f subcritical and f;,(0; @) = 0 uniformly in a. The
linearization L(4,a) = —A — Al has a simple spectral crossing at 4, = 1, (),
independent of a. For each a, a local branch C,.. (@) bifurcates from ( 4,,0 ); our
results show that the family {C(a)},eq forms an uncertainty band of continua
whose union obeys the classical global alternative and varies Lipschitz-continuously
(in a bounded window) with respect to a.

Geometry at a glance

See the visual schematic figure 1 below; it depicts ||u|x versus A for a few's in A. A
simple eigenvalue crossing at A, generates local branches that collectively form a
"tube" across @ and the global alternative applies to the outer envelope of this tube.
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Figure 1 - Band-robust global bifurcation geometry.

Curves above in figure 1 show representative continua C(a) in the (4, ||u||x)-plane
for several @ € A. The dashed axis is the trivial branch ||u||x = 0; the marked point
is the crossing ( A,,0 ). The union of curves forms an uncertainty band; our
theorems assert a Rabinowitztype global alternative for the union and give stability
bounds with respect to rad(A4).

Contributions

e A uniform local theorem ensuring existence and uniqueness of a C* local
branch with constants independent of a in a neighborhood A, € A of

the crossing.

e A band-robust global alternative: the union continuum C is unbounded
in R X X or meets another trivial point for every a € A; if the crossing is
isolated for all a, only the unbounded alternative can occur, adapting

Rabinowitz's degree jump.

e  Quantitative stability: on any bounded window W, the Hausdorff
distance between C(a;) N W and C(a,) N W is O(|la; — a,||) under
Lipschitz continuity of D,F in a (proof strategy follows graph

convergence and degree continuity).

e  Model classes including semilinear elliptic, p-Laplacian, and discrete

graph operators illustrate the assumptions and deliver explicit constants.
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2 Notation and standing assumptions

We collect symbols and hypotheses used throughout. Let {-,-} denote the duality
pairing between Y and Y’ when needed.

2.1 Spaces, parameters, and basic objects
e X, Y :real Banach spaces; X reflexive when compactness is needed.
e 1 € R: primary parameter; u € X : state.
e A c R™: compact uncertainty band with center @ € A and radius

rad(4): = sup|la — al|gm -——(21
a€A

e  Operator F:RX X X A - Y, with trivial branch F(4,0,a) = 0 for all
4,a).

Linearization: L(4,a): = D,F(4,0,a) € L(X,Y).
Fredholm index: nd L = dimkerL — codimRangeL .
Solution sets. For each a € A4,
S(a) ={(L,u) ERxX:F(4,u,a) = 0} -—-—(02.2)
Let C(a) < S(a) be the connected component containing ( 4,0 ).
Hausdorff distance. For sets E, F € R X X and a bounded window W c R X X,
disty(ENW,F nW)

= maxJ su inf |[lx— su inf ||x — - —
{errgwyemWII yII.yGFrgerEnWII yll}

—(23)

Table 1 - Core symbols.

Symbol Meaning
F(A,u,a) | Nonlinear operator RX X X A - Y
L(4,a) Linearization D, F (4,0, a)

A, Spectral crossing parameter
C(a) Continuum of nontrivial solutions for fixed a
C Band-union continuum U,¢4 C(a)

rad(4) Band radius defined in (2.1)

2.2 Hypotheses

We impose assumptions HI-H6; all constants are uniform on the relevant

neighborhoods.

H1 (Regularity): For each a € A, the map F(:,,a) € C}(RXX,Y), and
(4, u,a) » D,F(4,u,a) is continuous.

H2 (Fredholm index zero): The linearization

L(A,a) = D,F(A,0,a) is Fredholm of index 0 for all (1, a)
ERXA ———-(24)
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H3 (Simple crossing): There exists (A, a,) € R X A such that
dim kerL(4,,a,) = codimRangeL(4,,a,) = 1. - ——(25)
Letv, € X \ {0} span kerL(4,,a,) and i, € Y'\ {0} annihilate Range L(4,, a,).

H4 (Transversality in a band): There exists a neighborhood A, € A of a, such
that, foralla € A4,,

D,L(A,,a)v, &€ Range L(A,,a). ———(2.6)
Equivalently, (i, D;L(4,, a)v,) = 0 with sign fixed on 4,.

H5 (Compactness): Writing N(4,u, a): = F(4,u,a) — L(4, a)u, the map N is L
compact on bounded sets uniformly in @ € A (e.g., N compact or completely

continuous on bounded sets).
H6 (Properness on bounded sets): For any bounded € R X X, the set

{AQu,a) e xA:F(Au,a) =0} -——02.7

is compact.

Remark 2.1 (Why index zero): Index zero allows use of Leray-Schauder degree for
I — K with K compact after a suitable isomorphism and ensures homotopy

invariance needed for the degree jump across 4,.

2.3 Uniform Lyapunov-Schmidt reduction

By H2 — H4 there exist algebraic splittings X = span{v,} @ Z,Y = span{y,} @
W and neighborhoods I 3 A,,U 3 0, A, 3 a, such that the equation F(4,sv +
w, a) = 0 with v = v, uniquely determines w = w(4, s,a) € Z for |s| small and
(4, a) €1 X A,. The remaining scalar reduced equation is

g4 s, a):= W, F(4,sv, +w(4,s,a),a)) =0. - ——(2.8)

Differentiating gives

9;9(A.,0,a) = (., D,F(4,,0,a)v,) = 0,0,9(1.,0,a)
= ('ll}*, DAL(A*,Q)V*> :/t 0 - - - (29)

and the nondegenerate slope condition 9;g(4,,0,a)d,9(4,,0,a) <0 (or an
equivalent sign condition) holds uniformly in a € A, by H 4. Therefore, by the
implicit function theorem on the reduced problem, there exist § > 0 and a C*?

curve

Cioc(@) = {(A(s, a),u(s, a)): |s| < 5},u(s, a)
=sv, + w(A(s,a),s, a), ———(2.10)

with bounds
[A(s,a) — A | < c]s|, ||u(s,a)]||x <c]s]|. - ——(211)

where ¢ > 0 is independent of a € A,. This uniform control is the key input for
the band-robust global alternative developed later, paralleling the single-parameter
theory in [1]-{3].
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2.4 Degree jump across the band

Fix A7 <A, < A*in I and a ball B € X so that F(4,,a) =0 on dB for 1 €
{A7,2*}and all a € A,. Define Leray-Schauder degrees

d*(a):= deg(l — L(A*,a)"*N(A%,,a), B, 0). -——(212)
Under H1 — H6 and the simple crossing (2.5) with transversality (2.6), one has
d (a)—d*(a)=+1 foralla € A,, ———(213)

i.e., the degree jump is constant across the band. Consequently, each C(a) satisfies

the Rabinowitz global alternative [1], and the band-union continuum C =

UgeaC(a) inherits the same dichotomy; the quantitative stability estimates rely on

continuity of solution sets and degree with respect to parameters [3], [4].

3 Problem formulation and main results

We consider the operator equation
F(ALu,a) =0,(Lu,a) ERXX XA, -—-——(3.1)

under assumptions H1-H6 of Section 2. Recall L(4, @) = D,F(4,0, a), the simple
crossing (4,, a,) with eigenvector v, and cokernel vector 1,, and the splittings X =

Span{v*} @ Z: Y= Span‘ﬁ/}*} @ w.

3.1 Uniform Lyapunov-Schmidt reduction and local branch

We first produce a reduced scalar equation that is uniform for a in a neighborhood
of a,.

Lemma 3.1 (Uniform invertibility on the complement)

There exist neighborhoods I 3 4,,4, € A of a,, and U € X with 0 € U such that
for all (4, a) € I X A, the restriction
sz(/’{,a):zPWOL(A,a)|2:Z_>W. ___(3.2)

is a bounded linear isomorphism with

sup  |ILyz(4a)7H| < €y < oo. -—-=(33)
(Aa)eIxA.

Proof: By H2 and the simple crossing at (4,,a,), kerL(A,,a,) = span{v,} and
Range L(4,,a,) is complemented by W = span{i, }*. Continuity of L(4,a) in
(4, a) (H1) and stability of Fredholm index imply that for (4,a) near (1,,a,),
kerL(A, a) is one-dimensional and transversal to Z. Hence Ly, (4, @) is bijective.
A uniform bound (3.3) follows from continuity of the inverse map on a compact
neighborhood by the bounded inverse theorem; see, e.g., [5, Thm. 9.3] or [6,
Section 15].

Lemma 3.2 (Uniform LS reduction)

There exist neighborhoods I 3 A,,A4, € A,and N € R X R X A, such that for each
(4,5,a) € N there is a unique w = w(4,s,a) € Z solving

PyF(A,sv, +w,a) = 0. - ——(34)
and w is C* with uniform bounds
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w4, s, a)|| < Cylsl, ||D(,1,S)W(A, s, a)|| <C, ———(3.5)
where C;, C, depend only on I, A,.

Proof: Write G(4,s,w, a):= Py, F(4,sv, + w,a). Then
D,G(A,,0,0,a,) = PyL(A,,a)|; = Lyz(A,,a,)

invertible by Lemma 3.1. By the uniform inverse bound and C-regularity (H1), the
implicit function theorem yields a C* map w(4, s, a) on a product neighborhood,
with the stated estimates (e.g., by the standard fixed-point proof with a contraction

whose Lipschitz constants are uniform on I X A,).
Define the reduced equation
g4 s, a):= W, F(4,sv, +w(4,s,a),a)) = 0. ———(3.6)

Lemma 3.3 (Nondegenerate slope and sign persistence)

On 1 x {0} x A,,
d,9(1,,0,a) = 0,0,9(4,,0,a) = (., D;L(A,,a)v,) # 0. -—-——@3.7)

and the sign of d;g(4,,0, a) is constant for a € A,.

Proof. The first identity is (., L(4,,a)v,) = 0. The second follows from H4.

Continuity in a gives sign constancy on a small neighborhood.

Proposition 3.4 (Uniform local branch)

There exist § > 0 and € > 0 such that for each a € A, there is a unique C! curve

Cioc(@) = {(A(s, @), u(s, @)):|s| < 8}, u(s, a)
= sv, + w(A(s,a),s,a), -—-—(3.8)

satisfying g(A(s,a), s,a) = 0 and the bounds
[A(s,a) — A,| < Cls|, llu(s, d)||x < Cls]. --—39

Proof: Apply the implicit function theorem to g(4,s,a) = 0 with respect to 4 at
(44,0, @) using Lemma 3.3; bounds (3.9) follow from (3.5) and smooth dependence.
Uniqueness stems from the reduction: any solution near (4,,0) has w uniquely
defined by (3.4), so two solution curves must coincide.

3.2 Degree jump and the band-robust global alternative

Fix A~ < A, < A%inside I and a ball B € X with 0 € B such that, for all a € A4,,
F(A%,u,a) # 0 for every u € 9B. ———(3.10)
Define compact perturbations of the identity

df(w):=u— LA, a) " 'N(AE,u,a), N(A,u, a):
=F(Au,a) — LA a)u. -—-——(311)

well-defined by H2 and H5, and consider the Leray-Schauder degree
deg(®%,B,0).
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Lemma 3.5 (Degree constancy in the band)

There exists AT € A, open such that deg(®Z, B, 0) is constant for a € AT.

Proof: By H1-H6, ®Fis a compact perturbation of the identity depending
continuously on a in the operator norm, and 0 € ®Z(9B) uniformly by (3.10).
Apply homotopy invariance of the Leray-Schauder degree with parameter a.

Lemma 3.6 (Parity of the jump)

Foralla € 4.,
deg(®;,B,0) — deg(®},B,0) =+1. ———(3.12)

Proof: In the reduced equation (3.6), the change of index across A, is governed by
the sign of d;g(4,,0,a) and the multiplicity of the crossing. Since the crossing is
simple (H3) and transversal with sign fixed on A, (Lemma 3.3), the local additivity
of degree shows a unit jump; see the classical argument of Rabinowitz adapted to
the parameterized family.

Theorem 3.7 (Global alternative for each fixed a)

For every a € A sufficiently close to a, (hence for all € A, ), the connected
component C(a) € S(a) of solutions containing ( A,,0 ) satisfies the global
alternative: either

(i) C (a) is unbounded in R X X, or
(i) C(a) meets another trivial point (4, 0) with kerL(4,a) = {0}.

Proof: This is Rabinowitz's global theorem for compact perturbations of Fredholm
index-zero maps applied at fixed a, with the degree jump (3.12) ensuring nontrivial

continuation.

Theorem 3.8 (Band-robust global alternative)

Let C = UgzeusC(a). Under HI-H6, either

(i) CisunboundedinR X X, or
(i) for some A€R and a sequence a, € 4,(4,0) €U, C(a,) with
kerL(/i, an) = {0} for infinitely many n.

If, in addition, A, is the only simple crossing for all a € A, then only (i) can occur.

Proof: For each a € A, Theorem 3.7 yields (i) or (ii). If (ii) were to happen
uniformly with trivial points different from A,, we would obtain a second crossing
for some a contradicting the isolation assumption. Taking closures and using

compactness H6 yields the band-union statement.

4 Local bifurcation uniform in uncertainty bands

We sharpen Section 3 in two directions: (i) continuity and stability of solution sets
with respect to the ancillary parameter a, and (ii) quantitative control of the "extent”

of the band-union continuum inside bounded windows [7], [8].

Throughout, let W < R X X be a fixed bounded window (e.g., [11,4;] X Bx(R) ).
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4.1 Continuity of solution sets and Hausdorff stability

Lemma 4.1 (Graph continuity of solution sets)

Suppose H1 holds and F is jointly continuous in (4, u, a). Then for any (4, U, a,,)
- Ly a),

IF (A up, @) = F(Au, @)|ly = 0. ———(41)

Proof: Immediate from joint continuity; used to transfer convergence along zero-
sets.

We use Painlevé-Kuratowski convergence of sets and Hausdorff distance on W
(Section 2).

Lemma 4.2 (Upper semi continuity of solution sets)
Assume H1,H5,H6. If a,, = a in A, then every limit point of S(a,) N W lies in
S(@)NW;ie.,

limsup(S(a,) NW) cS(a)nW. -—-—(42)

n—-oo

Proof: Let (1,,u,) € S(a,)NW with (A,,u,) > (A, u) € W. By H6, the
sequence has convergent subsequences remaining in W. By Lemma 4.1,
F (A Up, a,) = F(A,u, a). Since each term is zero, the limit is zero and (4,u) €

S(a).

Lemma 4.3 (Local uniqueness implies Hausdorff continuity)

Under Lemma 3.2 and Proposition 3.4, there exists a neighborhood W, € W of
(4, 0) such that S(a) N W, consists precisely of the local curve C,,. (a). Then for
a,,a, €A,

disty(S(a) N Wo, S(az) N Wp) < Clla, —axll. ———(43)
Proof: Parametrize S(a) "W, by s+~ (A(s,a),u(s,a)) with |s| <d. The

uniform €' bounds (3.5)3.9) yield [A(s,a;) —A(s,ay)| + |lu(s,a;) —
u(s, a,)|| < Clla; — a,|| by mean-value estimates, giving (4.3).

Theorem 4.4 (Hausdorff-Lipschitz stability on bounded windows)

Assume H1-H6 and suppose in addition that D, F is Lipschitz in @ on W X A with
constant Lg, and ||[L(A,a)™2|| £ M on W for all a € A. Then forany a,,a, € A4,

dist, (S(a,) N W, S(a,) NW) < Cylla; — ayll, -——(44
where Cy, depends only on W, L,, M, and bounds in H5-H6.
Proof: Let (1;,u,) € S(a,;) N W. Consider the map
YA u;a):=u—LAa) 'NAu,a). ———(4.5)
At (Aq,uy;a, ) we have W = 0 and
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Daw¥ =1 — LD N — (D,L")N, ———(46)

which is invertible by the assumed M and smallness on W (choose W such that
IL*D,N|| < 1/2 ). The implicit function theorem with Lipschitz parameter
dependence in a yields a unique zero ( A,,u, ) for parameter a, with

(A2 = A1, u; —u)|l < Cyllaz — aqll.

This gives the one-sided Hausdorff bound; symmetry gives (4.4).
Corollary 4.5 (Convergence as the band shrinks).

IfA.:={a:|la—al|]| <r}andr !0, then
dist,, ( U S(@nW,5(@n W) 50, ———(47)
agAy

Proof: Immediate from (4.4) and sup|la — a|| = r.
a€h,

4.2 Quantitative radius-to-extent bounds

We now relate the band radius rad(A) to the "extent" of the union of continua
inside W.

Define the projection length in 1 of aset E € R X X over W by
Ly(E; W):= meas {A € R:3u € X with (L, u) EENW}. ———(498)
Lemma 4.6 (Local Lipschitz control of A-projection)
Under the assumptions of Theorem 4.4,
[La(S(a); W) — La(S(az); W)| < Cwllay — aqll.  ———(4.9)

Proof: Cover W by finitely many neighborhoods where the implicit function
theorem produces solution graphs 4 = u(4,a) or s+ (A(s,a),u(s, a)) with
Lipschitz dependence on a. The boundary in A moves by at most Cl||la; — a,||; add
the contributions [13].

Theorem 4.7 (Radiusto-extent inequality)

Let A € R™ be compact and assume the hypotheses of Theorem 4.4. Then on any
bounded window W,

Li(Ugea S(a); W) < Ly (S(a); W) + Cyrad(4) ———(410)
Proof: Pick a € A. By Lemma 4.6,
Li(S(@); W) < Ly(S@; W) + Cilla — al
Taking the supremum over a € A yields (4.10) with Cy, = Cyy.

Remark 4.8 (Practical implication): Inequality (4.10) quantifies that widening the
uncertainty band by Ar can enlarge the observed A-extent of the union of continua
in W by at most O(Ar). This underpins robust continuation algorithms that

sample a finite set of ancillary parameters and take the outer envelope (Section 7).
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5 Global bifurcation alternative and degree argument

We now give a full, self-contained global argument for each fixed a € A and then

pass to the band-union [9]. The setting and notation are those of Sections 1-4.

Recall N(A4,u,a) = F(4,u,a) — L(4, a)u.

5.1 Degree set-up on a bounded window

Fixa € A,. Choose 1~ < A, < Atinside the neighborhood I from Lemma 3.1 and
a radius 7 > 0 so that
F(A%u,a) =0 forall |[u]ly = 7. ———(51)

Define the compact perturbations of the identity
dE(u):=u— LA, a)'N(At,u, a) -——=(52)

By H5, ®*are well defined and completely continuous on By (r); by (5.1), 0 &
®%(9By (1)). Hence the Leray-Schauder degrees
d*: = deg(®, By (1),0) ———(5.3)

are defined [14, 15]. (We suppress the parameter a here.)

Lemma 5.1 (Local index computation)

Under H3 — H4, there exists 7 > 0 and € > 0 such that forall |2 — 4, < g,

d- ifA<A,

with the sign determined by sign{y,, D,L(4,, a)v,).

Proof: Reduce to the scalar equation g(4,s,a) = 0 (Lemma 3.2). Inside ||u|| < 7,
every solution is on the Lyapunov-Schmidt manifold u = sv, + w(4,s,a). The
onedimensional crossing flips the Brouwer degree of the reduced map by +1,
which lifts to Leray-Schauder degree because the complement equation has a

unique solution for each ( 4, s ) and the projection is an isomorphism (Lemma 3.1).

Lemma 5.2 (Nontrivial connected set)

Let
Z:={(Aw) € [A,A*] X By(r): F(Lu,a) = 0} ———(5.5)

If d =d*, then Z contains a connected component K intersecting both slices

{A=2"}and {1 = 1*}.

Proof: Consider the homotopy H(t,u) = CD)”_”(ﬁ_r)(u). The degree change
implies O lies in the image of H for all t € [0,1]. Compactness (H5-H6) shows the
set of zeros is compact; the Whyburn lemma (connectedness of the set joining

boundary slices) yields a component intersecting both ends; see [10, Lemma 2.4] or

(12, Thm. 9.2].

5.2 Unboundedness or a secondary trivial point
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Let C(a) be the connected component of S(a) = {F(4,u,a) = 0} that contains
(1.,0)

Theorem 5.3 (Rabinowitz alternative at fixed a € A)

Either
(i) C (a) is unbounded in R X X, or

(ii) there exists A € R with kerL(4, a) = {0} such that (4,0) € C(a).

Proof: Suppose (i) fails. Then there exists a bounded open set W < R X X with
C(a) € W. By Lemma 5.2 the component K € Z joins the two faces A*. If K did
not meet (4, 0) with nontrivial kernel, we could contract K within a region where
L(A,a) stays invertible, contradicting the degree jump (5.4) via homotopy

invariance. Hence
(ii). This is the standard Rabinowitz global argument [1], adapted to our

Fredholm/degree setting; cf. [10, Section 3], [11, Section 2].

Corollary 5.4 (Isolation yields unboundedness)

If A, is the unique parameter with kerL(4, a) # {0} for the given a, then only (i)

occurs.
Proof: Exclude (ii).

5.3 Band-robust global alternative

Let C = UgesCa).

Theorem 5.5 (Band-union alternative)

Either
(i) C is unbounded in R X X, or
(ii) there exist A and a sequence a, € A4 with kerL()t, an) = {0} and (1,0) €

U,, C(ay,) If, for all a € A, the only simple crossing is at A,, then only (i) occurs.

Proof: Apply Theorem 5.3 to each a. If (i) fails for the union, extract from
boundedness a subsequence a, for which the alternatives (ii) must occur;
compactness (H6) and upper semicontinuity (Lemma 4.2) give the stated

accumulation. The isolation statement eliminates (ii).
5.4 A priori bounds and avoidance of blow-up (model toolkit)

We record a convenient criterion for ruling out case (ii) in semi-linear models.

Lemma 5.6 (A priori bound via subcritical growth)
Let X = H3(Q),Y = H1(Q),Q c R" bounded Lipschitz, and
F(Au,a) =—-Au—Au—f(u;a) ———(5.6)

with f(;a) Carathéodory, f,(0;a) =0, and for some 2 < p < 2" (Sobolev
critical exponent), |f(u; a)| < C;|u| + C;|u|’~* uniformly in a. Then on
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rectangles W = [ 41,4, | X Bx(R), the set of solutions is bounded in HZ(Q)
uniformly in a.

Proof: Test the weak form with u and use Poincaré-Sobolev:
1Vull3 — Allullz = f fw @yudx < C|Jull3 + Cyllully, < Cillull + C2’||u||f101.
Q

Absorb ||u||f101 to the left for A in a compact interval, and use p > 2 to bound

llull 2 by a constant depending only on W

Consequences: With Lemma 5.6 and simplicity of the first eigenvalue, case (ii) is
excluded for A in a neighborhood of 4, (), so the component must be unbounded;

compare.

6 Applications and examples

We verify the hypotheses H1 — H6 and instantiate the main theorems for three
standard model classes. Each subsection ends with an explicit "Checklist"

summarizing which hypotheses are met and why [16].

6.1 Semilinear elliptic equations

Let @ © RY be bounded Lipschitz, X = H:(Q),Y = H™1(Q), and

F(Au,a) =—-Au—u—f(u;a) -——(6.1)

Assume:

e f(s;a) is Carathéodory and C* in u; £, (0; @) = 0 uniformly in a € 4;

e Subcritical growth: |f(w;a)| < C(1+ |ulP™) with 2<p<2*

uniformly in a;
e f(:; a) islocally Lipschitz in « uniformly in a.

Verification of H1. Standard Nemytskii theory gives F € C1(R X X, Y).

H2: L(A4,a) = —A — Al is Fredholm of index 0,kerL = {0} iff 1 is a Dirichlet
eigenvalue.

H3: Take A, = 4, (), the simple first eigenvalue, with eigenfunction v, > 0.

H4: D,L(A,,a)v, = —v, € RangeL(4,,a) since Y, is the first adjoint
eigenfunction and (i,, v,) = 0.

H5: N(Au,a) = —f(u;a) is compact X - Y on bounded sets via Rellich-
Kondrachov H3 (Q) & LP (Q) and subcritical growth.

H6: Properness on bounded sets follows from Lemma 5.6 and weak sequential

compactness in H.

Model theorem 6.1 (Global alternative for (6.1))

For every a € A, the component C(a) issuing from ( 4, (£2),0 ) satisfies Theorem
5.3. If A, () is the only eigenvalue met in W and f satisfies the bounds of Lemma
5.6, then C (a) is unbounded. Moreover, on any bounded window W, the solution
sets satisfy the Hausdorff-Lipschitz estimate (4.4) with a constant depending on W
and the data bounds.

Proof: Combine the verifications of H1-H6, Theorems 5.3 and 4.4, and Lemma
5.6.
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Checklist 6.1 (Assumptions for (6.1)).
e  Spaces: X = HY(Q),Y = H1(Q).
e Crossing: simple at A, ().
e Compactness: yes, via subcritical growth.

e  Properness: yes, by a priori bound.

e  Band stability: (4.4) holds if £, is Lipschitz in a.

6.2 p-Laplacian type equations

Let1<p < 0,X = W, (Q),Y = W' (Q), and
F(4u,a) = —div(|Vu|P~2Vu) — do(a) |ulP~*u— g(u; a), ———(6.2)

where g(a) is positive and bounded above/below uniformly on A, and g(-; a) is
Carathéodory with |g(w; @) < C(1 + |u|?™Y),p < g <p".

HI1: F is C* as a mapping X — Y away from u = 0; for bifurcation at u = 0, the

linearized operator is

L(4 )¢ = —div((p — D)|VO|P?V¢) — Ae(a) (p — DI0]"*¢
= =0y — Ae())¢

which reduces to the weighted p-Laplacian linearization at zero (well-defined in the

sense of the first eigenpair).

H2-H4: The first eigenvalue of —A, with weight o(a) is simple; transversality
follows from (i, D,L(A,, @)v,) = —(,, o(a)v,) = 0.

H5-H6: Compactness and properness use monotonicity and the (S), property for
the p -Laplacian, plus subcritical growth of g.

Model theorem 6.2 (Global alternative for (6.2))

For each a € A, a global continuum bifurcates from the first weighted p-eigenvalue
A.(a) and satisfies the Rabinowitz alternative; if A,(a) is isolated in W and data
are subcritical, the branch is unbounded. Hausdorff-Lipschitz stability in a holds

on bounded windows provided g,, and g are Lipschitz in a.
Checklist 6.2.

e  Spaces: VI/OI’p > W

e  Crossing: simple weighted p-eigenvalue.

o Compactness: (S)and subcritical growth.

e  Properness: a priori bounds via standard energy inequalities.

e Band stability: needs Lipschitz control of g, g, in a.

6.3 Discrete graph models
Let G = (V,E) with |[V| = n. Set X = Y = R" with the Euclidean norm. Consider
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F(A,u,a) =Lu— AMu— G(u;a) ———(63)

where L is a symmetric graph Laplacian, M a positive definite "mass" matrix (e.g.,
diagonal vertex weights), and G(:;a) has Jacobian D,G(0;a) =0 and
|G (w; @)|| < C|lu||? for small |Ju||, uniformly in a.

H1: F € C! with D,F(4,0,a) = L — AM.

H2-H4: L —AM is a pencil with simple eigenvalues; take A, = A; (smallest
generalized eigenvalue), which is simple for connected graphs. Transversality:

D,L(A,,a) = —M, and (3,, Mv,) > 0.
H5: G is compact on bounded sets since X is finite dimensional.

H6: Properness is automatic in finite dimension.

Model theorem 6.3 (Global alternative for (6.3))

For each a, a global continuum bifurcates from (4;,0) and satisfies Theorem 5.3;
unboundedness occurs unless another generalized eigenvalue is met. Band stability
(4.4) holds provided D,,G and M depend Lipschitz-continuously on a.

Checklist 6.3.
e Spaces: R™.
e  Crossing: simple smallest generalized eigenvalue.
e  Compactness & properness: automatic.

e  Band stability: Lipschitz in a for M, D,,G.

7 Concluding remarks

We established a band-robust version of global bifurcation for compact
perturbations of Fredholm index-zero maps
F(l,u,a)=0,(L,u,a) ERX X X A4,

where A encodes an ancillary uncertainty band. Under a simple spectral crossing

and a transversality condition uniform on a neighborhood A, € A, we proved:

(i) a uniform local theorem via Lyapunov-Schmidt reduction with constants
independent of a € A,;

(if) a degree jump constant on A, yielding a Rabinowitztype global alternative

for every a and for the band-union continuum C = U,¢,C(a);

(iii) Hausdorff-Lipschitz stability of solution sets with respect to @ on bounded

windows;

(iv) radius-to-extent inequalities showing A-projection growth of Uses S(a) is

O(rad(4)).

Limitations: Our compactness/properness hypotheses ( H5 — H6 ) exclude certain
quasilinear or noncompact settings (e.g., critical growth without compact
embeddings, nonlocal operators with essential spectrum touching zero). The simple
crossing assumption excludes multiple or defective eigenvalues and Turning-Hopf
interactions.
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Future directions.

(i)  Multiple crossings and equivariance: Extend to finite multiplicity using the
equivariant degree and crossing numbers on isotypic components.

(ii) Noncompact perturbations: Replace (H5) by condensing or measure of
noncompactness assumptions.

(iii) Random-set bands: Treat A as a random compact set and derive almost-
sure statements on C.

(iv) Validated numeric Combine pseudo-arclength continuation with
aposteriori radii-polynomial certificates uniform in a to produce computer

assisted proofs.

This work establishes a band-robust framework for global bifurcation in nonlinear
operator equations F(4,u,a) = 0 on Banach spaces when ancillary parameters
vary within a compact uncertainty set A. Building on a uniform Lyapunov-Schmidt
reduction around a simple spectral crossing and a transversality condition holding
for all @ in a neighborhood of the crossing, we proved existence and uniqueness of
a C* local branch with constants independent of a, quantified the associated degree
jump, and lifted Rabinowitz's global alternative from individual parameters to the
band-union continuum € = Uge,C(a). We further derived Hausdorff-Lipschitz
stability of solution sets with respect to @ on bounded windows and a radius-to-

extent inequality showing that the A-projection of C grows at most linearly with

rad(4).
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