

GLOBAL BIFURCATION FOR NONLINEAR OPERATORS WITH UNCERTAINTY BANDS

YOGEEESH N^{1,2*}, MARKALA KARTHIK³, ASOKAN VASUDEVAN^{4,5,6}, CHETHANA N S⁷, SOON EU HUI⁸, MAYIBONGWE TAFARA MUDZENGI⁹, SHANKARALINGAPPA B M¹⁰

Abstract. We study solution sets of nonlinear operator equations $F(\lambda, u, a) = 0$ on Banach spaces, where $\lambda \in \mathbb{R}$ is the primary parameter and a ranges over a compact ancillary set modelling uncertainty bands. Assuming $F \in C^1$, Fredholm index zero on the trivial branch, a simple spectral crossing and a band-uniform transversality, we develop a uniform Lyapunov-Schmidt reduction yielding a C^1 local curve with constants independent of a . Using Leray-Schauder degree, we prove a band-robust Rabinowitz alternative: for each a and for the band-union continuum $C = \overline{\bigcup_{a \in A} C(a)}$, either the component is unbounded in $\mathbb{R} \times X$ or it impinges on another trivial point; if the simple crossing is isolated for all a , only unboundedness can occur. Quantitatively, we establish Hausdorff-Lipschitz stability of solution sets with respect to a on bounded windows and derive radius-to-extent inequalities that bound the growth of the λ projection of C by $O(\text{rad}(A))$. The results furnish a compact toolkit for global bifurcation under parametric uncertainty with explicit stability constants and verifiable hypotheses.

Keywords: global bifurcation; uncertainty bands; Fredholm index zero; Lyapunov Schmidt reduction; topological degree; Rabinowitz alternative; Hausdorff stability.

1 Introduction

Let X, Y be real Banach spaces and let $\lambda \in \mathbb{R}$ denote a primary bifurcation parameter. We study nonlinear operator equations

$$F(\lambda, u, a) = 0, (\lambda, u, a) \in \mathbb{R} \times X \times A, \quad \dots \quad (1.1)$$

where $A \subset \mathbb{R}^m$ is a compact set of ancillary parameters modelling an uncertainty band. For each $a \in A$, the map $F(\cdot, \cdot, a): \mathbb{R} \times X \rightarrow Y$ is assumed to be C^1 and Fredholm of index zero at the linearized level along the trivial branch $u \equiv 0$. Our goal is to establish a band-robust global bifurcation alternative for the union of continua of nontrivial solutions $C = \overline{\bigcup_{a \in A} C(a)}$ that emanate from a simple spectral crossing $(\lambda_*, 0, a)$ and to quantify how C deforms as the band radius $\text{rad}(A)$ varies.

Classically, for a single operator $F(\lambda, u)$, existence of an unbounded continuum or a continuum reaching another trivial point is guaranteed by the global bifurcation theorem of Rabinowitz based on topological degree and index jumps [1]. Local branches near simple eigenvalue crossings are provided by the Crandall-Rabinowitz theorem using Lyapunov-Schmidt reduction [2]. Comprehensive treatments appear in Kielhöfer's monograph [3] and in Zeidler's nonlinear functional analysis [4]. The present work extends these conclusions uniformly across a set of ancillary parameters: we show that the degree jump persists on a neighborhood $A_* \subset A$ of the crossing point, that the local curve exists with constants independent of $a \in A_*$, and that the resulting global alternative holds for the band-union continuum C . In addition, we provide quantitative Hausdorff-Lipschitz stability of solution sets with respect to a under mild continuity of $D_u F$.

Guiding example: Consider a semilinear elliptic model on a bounded Lipschitz domain $\Omega \subset \mathbb{R}^N$,

$$F(\lambda, u, a) = -\Delta u - \lambda u - f(u; a) \in H^{-1}(\Omega), u \in H_0^1(\Omega), \quad \dots \quad (1.2)$$

with Carathéodory nonlinearity f subcritical and $f_u(0; a) = 0$ uniformly in a . The linearization $L(\lambda, a) = -\Delta - \lambda I$ has a simple spectral crossing at $\lambda_* = \lambda_1(\Omega)$, independent of a . For each a , a local branch $C_{\text{loc}}(a)$ bifurcates from $(\lambda_*, 0)$; our results show that the family $\{C(a)\}_{a \in A}$ forms an uncertainty band of continua whose union obeys the classical global alternative and varies Lipschitz-continuously (in a bounded window) with respect to a .

Geometry at a glance

See the visual schematic figure 1 below; it depicts $\|u\|_X$ versus λ for a few's in A . A simple eigenvalue crossing at λ_* generates local branches that collectively form a "tube" across a , and the global alternative applies to the outer envelope of this tube.

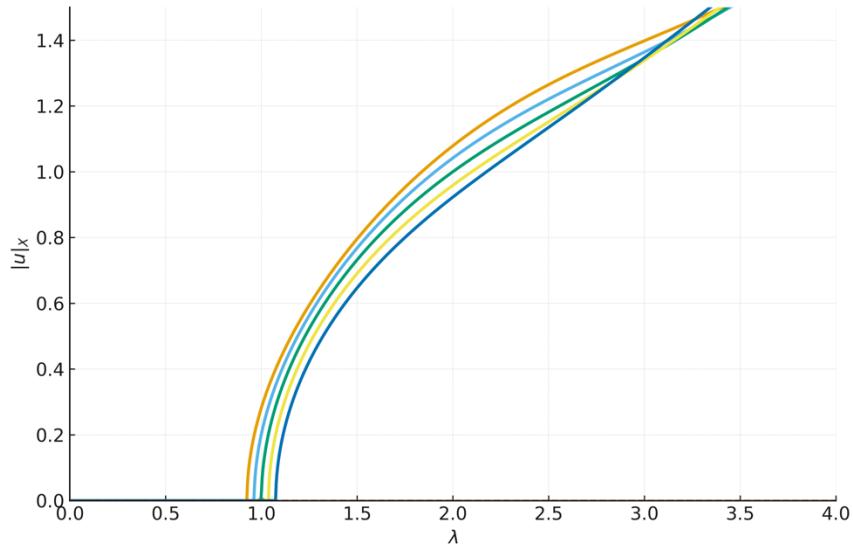


Figure 1 - Band-robust global bifurcation geometry.

Curves above in figure 1 show representative continua $C(a)$ in the $(\lambda, \|u\|_X)$ -plane for several $a \in A$. The dashed axis is the trivial branch $\|u\|_X = 0$; the marked point is the crossing $(\lambda_*, 0)$. The union of curves forms an uncertainty band; our theorems assert a Rabinowitz-type global alternative for the union and give stability bounds with respect to $\text{rad}(A)$.

Contributions

- A uniform local theorem ensuring existence and uniqueness of a C^1 local branch with constants independent of a in a neighborhood $A_* \subset A$ of the crossing.
- A band-robust global alternative: the union continuum C is unbounded in $\mathbb{R} \times X$ or meets another trivial point for every $a \in A$; if the crossing is isolated for all a , only the unbounded alternative can occur, adapting Rabinowitz's degree jump.
- Quantitative stability: on any bounded window W , the Hausdorff distance between $C(a_1) \cap W$ and $C(a_2) \cap W$ is $O(\|a_1 - a_2\|)$ under Lipschitz continuity of $D_u F$ in a (proof strategy follows graph convergence and degree continuity).
- Model classes including semilinear elliptic, p -Laplacian, and discrete graph operators illustrate the assumptions and deliver explicit constants.

2 Notation and standing assumptions

We collect symbols and hypotheses used throughout. Let $\langle \cdot, \cdot \rangle$ denote the duality pairing between Y and Y' when needed.

2.1 Spaces, parameters, and basic objects

- X, Y : real Banach spaces; X reflexive when compactness is needed.
- $\lambda \in \mathbb{R}$: primary parameter; $u \in X$: state.
- $A \subset \mathbb{R}^m$: compact uncertainty band with center $\bar{a} \in A$ and radius

$$\text{rad}(A) := \sup_{a \in A} \|a - \bar{a}\|_{\mathbb{R}^m} \quad \text{--- (2.1)}$$

- Operator $F: \mathbb{R} \times X \times A \rightarrow Y$, with trivial branch $F(\lambda, 0, a) = 0$ for all (λ, a) .

Linearization: $L(\lambda, a) := D_u F(\lambda, 0, a) \in \mathcal{L}(X, Y)$.

Fredholm index: $\text{nd } L = \dim \ker L - \text{codim} \text{Range } L$.

Solution sets. For each $a \in A$,

$$S(a) = \{(\lambda, u) \in \mathbb{R} \times X : F(\lambda, u, a) = 0\} \quad \text{--- (2.2)}$$

Let $C(a) \subset S(a)$ be the connected component containing $(\lambda_*, 0)$.

Hausdorff distance. For sets $E, F \subset \mathbb{R} \times X$ and a bounded window $W \subset \mathbb{R} \times X$,

$$\begin{aligned} \text{dist}_H(E \cap W, F \cap W) \\ = \max \left\{ \sup_{x \in E \cap W} \inf_{y \in F \cap W} \|x - y\|, \sup_{y \in F \cap W} \inf_{x \in E \cap W} \|x - y\| \right\} \quad \text{---} \\ - (2.3) \end{aligned}$$

Table 1 - Core symbols.

Symbol	Meaning
$F(\lambda, u, a)$	Nonlinear operator $\mathbb{R} \times X \times A \rightarrow Y$
$L(\lambda, a)$	Linearization $D_u F(\lambda, 0, a)$
λ_*	Spectral crossing parameter
$C(a)$	Continuum of nontrivial solutions for fixed a
C	Band-union continuum $\overline{\bigcup_{a \in A} C(a)}$
$\text{rad}(A)$	Band radius defined in (2.1)

2.2 Hypotheses

We impose assumptions H1-H6; all constants are uniform on the relevant neighborhoods.

H1 (Regularity): For each $a \in A$, the map $F(\cdot, a) \in C^1(\mathbb{R} \times X, Y)$, and $(\lambda, u, a) \mapsto D_u F(\lambda, u, a)$ is continuous.

H2 (Fredholm index zero): The linearization

$$\begin{aligned} L(\lambda, a) = D_u F(\lambda, 0, a) \text{ is Fredholm of index 0 for all } (\lambda, a) \\ \in \mathbb{R} \times A. \quad \text{--- (2.4)} \end{aligned}$$

H3 (Simple crossing): There exists $(\lambda_*, a_*) \in \mathbf{R} \times A$ such that

$$\dim \ker L(\lambda_*, a_*) = \text{codimRange} L(\lambda_*, a_*) = 1. \quad \text{--- (2.5)}$$

Let $v_* \in X \setminus \{0\}$ span $\ker L(\lambda_*, a_*)$ and $\psi_* \in Y' \setminus \{0\}$ annihilate $\text{Range } L(\lambda_*, a_*)$.

H4 (Transversality in a band): There exists a neighborhood $A_* \subset A$ of a_* such that, for all $a \in A_*$,

$$D_\lambda L(\lambda_*, a)v_* \notin \text{Range } L(\lambda_*, a). \quad \text{--- (2.6)}$$

Equivalently, $\langle \psi_*, D_\lambda L(\lambda_*, a)v_* \rangle = 0$ with sign fixed on A_* .

H5 (Compactness): Writing $N(\lambda, u, a) := F(\lambda, u, a) - L(\lambda, a)u$, the map N is L compact on bounded sets uniformly in $a \in A$ (e.g., N compact or completely continuous on bounded sets).

H6 (Properness on bounded sets): For any bounded $\Omega \subset \mathbf{R} \times X$, the set

$$\{(\lambda, u, a) \in \Omega \times A : F(\lambda, u, a) = 0\} \quad \text{--- (2.7)}$$

is compact.

Remark 2.1 (Why index zero): Index zero allows use of Leray-Schauder degree for $I - K$ with K compact after a suitable isomorphism and ensures homotopy invariance needed for the degree jump across λ_* .

2.3 Uniform Lyapunov-Schmidt reduction

By H2 – H4 there exist algebraic splittings $X = \text{span}\{v_*\} \oplus Z, Y = \text{span}\{\psi_*\} \oplus W$ and neighborhoods $I \ni \lambda_*, U \ni 0, A_* \ni a_*$ such that the equation $F(\lambda, sv + w, a) = 0$ with $v = v_*$ uniquely determines $w = w(\lambda, s, a) \in Z$ for $|s|$ small and $(\lambda, a) \in I \times A_*$. The remaining scalar reduced equation is

$$g(\lambda, s, a) := \langle \psi_*, F(\lambda, sv_* + w(\lambda, s, a), a) \rangle = 0. \quad \text{--- (2.8)}$$

Differentiating gives

$$\begin{aligned} \partial_s g(\lambda_*, 0, a) &= \langle \psi_*, D_u F(\lambda_*, 0, a)v_* \rangle = 0, \partial_\lambda g(\lambda_*, 0, a) \\ &= \langle \psi_*, D_\lambda L(\lambda_*, a)v_* \rangle \neq 0 \end{aligned} \quad \text{--- (2.9)}$$

and the nondegenerate slope condition $\partial_\lambda g(\lambda_*, 0, a)\partial_{ss}g(\lambda_*, 0, a) < 0$ (or an equivalent sign condition) holds uniformly in $a \in A_*$ by H 4. Therefore, by the implicit function theorem on the reduced problem, there exist $\delta > 0$ and a C^1 curve

$$\begin{aligned} C_{\text{loc}}(a) &= \{(\lambda(s, a), u(s, a)) : |s| < \delta\}, u(s, a) \\ &= sv_* + w(\lambda(s, a), s, a), \end{aligned} \quad \text{--- (2.10)}$$

with bounds

$$|\lambda(s, a) - \lambda_*| \leq c|s|, \|u(s, a)\|_X \leq c|s|. \quad \text{--- (2.11)}$$

where $c > 0$ is independent of $a \in A_*$. This uniform control is the key input for the band-robust global alternative developed later, paralleling the single-parameter theory in [1]-[3].

2.4 Degree jump across the band

Fix $\lambda^- < \lambda_* < \lambda^+$ in I and a ball $B \subset X$ so that $F(\lambda, \cdot, a) = 0$ on ∂B for $\lambda \in \{\lambda^-, \lambda^+\}$ and all $a \in A_*$. Define Leray-Schauder degrees

$$d^\pm(a) := \deg(I - L(\lambda^\pm, a)^{-1}N(\lambda^\pm, \cdot, a), B, 0). \quad \text{--- (2.12)}$$

Under H1 – H6 and the simple crossing (2.5) with transversality (2.6), one has

$$d^-(a) - d^+(a) = \pm 1 \text{ for all } a \in A_*, \quad \text{--- (2.13)}$$

i.e., the degree jump is constant across the band. Consequently, each $C(a)$ satisfies the Rabinowitz global alternative [1], and the band-union continuum $C = \overline{\bigcup_{a \in A} C(a)}$ inherits the same dichotomy; the quantitative stability estimates rely on continuity of solution sets and degree with respect to parameters [3], [4].

3 Problem formulation and main results

We consider the operator equation

$$F(\lambda, u, a) = 0, (\lambda, u, a) \in R \times X \times A, \quad \text{--- (3.1)}$$

under assumptions H1-H6 of Section 2. Recall $L(\lambda, a) = D_u F(\lambda, 0, a)$, the simple crossing (λ_*, a_*) with eigenvector v_* and cokernel vector ψ_* , and the splittings $X = \text{span}\{v_*\} \oplus Z, Y = \text{span}\{\psi_*\} \oplus W$.

3.1 Uniform Lyapunov-Schmidt reduction and local branch

We first produce a reduced scalar equation that is uniform for a in a neighborhood of a_* .

Lemma 3.1 (Uniform invertibility on the complement)

There exist neighborhoods $I \ni \lambda_*, A_* \subset A$ of a_* , and $U \subset X$ with $0 \in U$ such that for all $(\lambda, a) \in I \times A_*$ the restriction

$$L_{WZ}(\lambda, a) := P_W \circ L(\lambda, a)|_Z : Z \rightarrow W. \quad \text{--- (3.2)}$$

is a bounded linear isomorphism with

$$\sup_{(\lambda, a) \in I \times A_*} \|L_{WZ}(\lambda, a)^{-1}\| \leq C_0 < \infty. \quad \text{--- (3.3)}$$

Proof: By H2 and the simple crossing at (λ_*, a_*) , $\ker L(\lambda_*, a_*) = \text{span}\{v_*\}$ and $\text{Range } L(\lambda_*, a_*)$ is complemented by $W = \text{span}\{\psi_*\}^\perp$. Continuity of $L(\lambda, a)$ in (λ, a) (H1) and stability of Fredholm index imply that for (λ, a) near (λ_*, a_*) , $\ker L(\lambda, a)$ is one-dimensional and transversal to Z . Hence $L_{WZ}(\lambda, a)$ is bijective. A uniform bound (3.3) follows from continuity of the inverse map on a compact neighborhood by the bounded inverse theorem; see, e.g., [5, Thm. 9.3] or [6, Section 15].

Lemma 3.2 (Uniform LS reduction)

There exist neighborhoods $I \ni \lambda_*, A_* \subset A$, and $N \subset R \times R \times A_*$ such that for each $(\lambda, s, a) \in N$ there is a unique $w = w(\lambda, s, a) \in Z$ solving

$$P_W F(\lambda, s v_* + w, a) = 0. \quad \text{--- (3.4)}$$

and w is C^1 with uniform bounds

$$\|w(\lambda, s, a)\| \leq C_1 |s|, \|D_{(\lambda, s)} w(\lambda, s, a)\| \leq C_2 \quad \dots \quad (3.5)$$

where C_1, C_2 depend only on I, A_* .

Proof: Write $G(\lambda, s, w, a) := P_W F(\lambda, s v_* + w, a)$. Then

$$D_w G(\lambda_*, 0, 0, a_*) = P_W L(\lambda_*, a_*)|_Z = L_{WZ}(\lambda_*, a_*)$$

invertible by Lemma 3.1. By the uniform inverse bound and C^1 -regularity (H1), the implicit function theorem yields a C^1 map $w(\lambda, s, a)$ on a product neighborhood, with the stated estimates (e.g., by the standard fixed-point proof with a contraction whose Lipschitz constants are uniform on $I \times A_*$).

Define the reduced equation

$$g(\lambda, s, a) := \langle \psi_*, F(\lambda, s v_* + w(\lambda, s, a), a) \rangle = 0. \quad \dots \quad (3.6)$$

Lemma 3.3 (Nondegenerate slope and sign persistence)

On $I \times \{0\} \times A_*$,

$$\partial_s g(\lambda_*, 0, a) = 0, \partial_\lambda g(\lambda_*, 0, a) = \langle \psi_*, D_\lambda L(\lambda_*, a) v_* \rangle \neq 0. \quad \dots \quad (3.7)$$

and the sign of $\partial_\lambda g(\lambda_*, 0, a)$ is constant for $a \in A_*$.

Proof. The first identity is $\langle \psi_*, L(\lambda_*, a) v_* \rangle = 0$. The second follows from H4. Continuity in a gives sign constancy on a small neighborhood.

Proposition 3.4 (Uniform local branch)

There exist $\delta > 0$ and $C > 0$ such that for each $a \in A_*$ there is a unique C^1 curve

$$\begin{aligned} C_{\text{loc}}(a) &= \{(\lambda(s, a), u(s, a)): |s| < \delta\}, u(s, a) \\ &= s v_* + w(\lambda(s, a), s, a), \end{aligned} \quad \dots \quad (3.8)$$

satisfying $g(\lambda(s, a), s, a) = 0$ and the bounds

$$|\lambda(s, a) - \lambda_*| \leq C |s|, \|u(s, a)\|_X \leq C |s|. \quad \dots \quad (3.9)$$

Proof: Apply the implicit function theorem to $g(\lambda, s, a) = 0$ with respect to λ at $(\lambda_*, 0, a)$ using Lemma 3.3; bounds (3.9) follow from (3.5) and smooth dependence. Uniqueness stems from the reduction: any solution near $(\lambda_*, 0)$ has w uniquely defined by (3.4), so two solution curves must coincide.

3.2 Degree jump and the band-robust global alternative

Fix $\lambda^- < \lambda_* < \lambda^+$ inside I and a ball $B \subset X$ with $0 \in B$ such that, for all $a \in A_*$,

$$F(\lambda^\pm, u, a) \neq 0 \text{ for every } u \in \partial B. \quad \dots \quad (3.10)$$

Define compact perturbations of the identity

$$\begin{aligned} \Phi_a^\pm(u) &:= u - L(\lambda^\pm, a)^{-1} N(\lambda^\pm, u, a), N(\lambda, u, a): \\ &= F(\lambda, u, a) - L(\lambda, a)u. \end{aligned} \quad \dots \quad (3.11)$$

well-defined by **H2** and **H5**, and consider the Leray-Schauder degree $\deg(\Phi_a^\pm, B, 0)$.

Lemma 3.5 (Degree constancy in the band)

There exists $A^\dagger \subseteq A_*$ open such that $\deg(\Phi_a^\pm, B, 0)$ is constant for $a \in A^\dagger$.

Proof: By H1-H6, Φ_a^\pm is a compact perturbation of the identity depending continuously on a in the operator norm, and $0 \notin \Phi_a^\pm(\partial B)$ uniformly by (3.10). Apply homotopy invariance of the Leray-Schauder degree with parameter a .

Lemma 3.6 (Parity of the jump)

For all $a \in A_*$,

$$\deg(\Phi_a^-, B, 0) - \deg(\Phi_a^+, B, 0) = \pm 1. \quad \text{--- (3.12)}$$

Proof: In the reduced equation (3.6), the change of index across λ_* is governed by the sign of $\partial_\lambda g(\lambda_*, 0, a)$ and the multiplicity of the crossing. Since the crossing is simple (H3) and transversal with sign fixed on A_* (Lemma 3.3), the local additivity of degree shows a unit jump; see the classical argument of Rabinowitz adapted to the parameterized family.

Theorem 3.7 (Global alternative for each fixed a)

For every $a \in A$ sufficiently close to a_* (hence for all $a \in A_*$), the connected component $C(a) \subset S(a)$ of solutions containing $(\lambda_*, 0)$ satisfies the global alternative: either

- (i) $C(a)$ is unbounded in $\mathbb{R} \times X$, or
- (ii) $C(a)$ meets another trivial point $(\hat{\lambda}, 0)$ with $\ker L(\hat{\lambda}, a) = \{0\}$.

Proof: This is Rabinowitz's global theorem for compact perturbations of Fredholm index-zero maps applied at fixed a , with the degree jump (3.12) ensuring nontrivial continuation.

Theorem 3.8 (Band-robust global alternative)

Let $C = \overline{\bigcup_{a \in A} C(a)}$. Under H1-H6, either

- (i) C is unbounded in $\mathbb{R} \times X$, or
- (ii) for some $\hat{\lambda} \in \mathbb{R}$ and a sequence $a_n \in A, (\hat{\lambda}, 0) \in \overline{\bigcup_n C(a_n)}$ with $\ker L(\hat{\lambda}, a_n) = \{0\}$ for infinitely many n .

If, in addition, λ_* is the only simple crossing for all $a \in A$, then only (i) can occur.

Proof: For each $a \in A$, Theorem 3.7 yields (i) or (ii). If (ii) were to happen uniformly with trivial points different from λ_* , we would obtain a second crossing for some a contradicting the isolation assumption. Taking closures and using compactness H6 yields the band-union statement.

4 Local bifurcation uniform in uncertainty bands

We sharpen Section 3 in two directions: (i) continuity and stability of solution sets with respect to the ancillary parameter a , and (ii) quantitative control of the "extent" of the band-union continuum inside bounded windows [7], [8].

Throughout, let $W \subset \mathbb{R} \times X$ be a fixed bounded window (e.g., $[\lambda_1, \lambda_2] \times B_X(R)$).

4.1 Continuity of solution sets and Hausdorff stability

Lemma 4.1 (Graph continuity of solution sets)

Suppose **H1** holds and F is jointly continuous in (λ, u, a) . Then for any $(\lambda_n, u_n, a_n) \rightarrow (\lambda, u, a)$,

$$\|F(\lambda_n, u_n, a_n) - F(\lambda, u, a)\|_Y \rightarrow 0. \quad \text{--- (4.1)}$$

Proof: Immediate from joint continuity; used to transfer convergence along zero-sets.

We use Painlevé-Kuratowski convergence of sets and Hausdorff distance on W (Section 2).

Lemma 4.2 (Upper semi continuity of solution sets)

Assume **H1, H5, H6**. If $a_n \rightarrow a$ in A , then every limit point of $S(a_n) \cap W$ lies in $S(a) \cap W$; i.e.,

$$\limsup_{n \rightarrow \infty} (S(a_n) \cap W) \subseteq S(a) \cap W. \quad \text{--- (4.2)}$$

Proof: Let $(\lambda_n, u_n) \in S(a_n) \cap W$ with $(\lambda_n, u_n) \rightarrow (\lambda, u) \in W$. By H6, the sequence has convergent subsequences remaining in W . By Lemma 4.1, $F(\lambda_n, u_n, a_n) \rightarrow F(\lambda, u, a)$. Since each term is zero, the limit is zero and $(\lambda, u) \in S(a)$.

Lemma 4.3 (Local uniqueness implies Hausdorff continuity)

Under Lemma 3.2 and Proposition 3.4, there exists a neighborhood $W_0 \subset W$ of $(\lambda_*, 0)$ such that $S(a) \cap W_0$ consists precisely of the local curve $C_{\text{loc}}(a)$. Then for $a_1, a_2 \in A_*$

$$\text{dist}_H(S(a_1) \cap W_0, S(a_2) \cap W_0) \leq C \|a_1 - a_2\|. \quad \text{--- (4.3)}$$

Proof: Parametrize $S(a) \cap W_0$ by $s \mapsto (\lambda(s, a), u(s, a))$ with $|s| < \delta$. The uniform C^1 bounds (3.5)-(3.9) yield $|\lambda(s, a_1) - \lambda(s, a_2)| + \|u(s, a_1) - u(s, a_2)\| \leq C \|a_1 - a_2\|$ by mean-value estimates, giving (4.3).

Theorem 4.4 (Hausdorff-Lipschitz stability on bounded windows)

Assume H1-H6 and suppose in addition that $D_u F$ is Lipschitz in a on $W \times A$ with constant L_a , and $\|L(\lambda, a)^{-1}\| \leq M$ on W for all $a \in A$. Then for any $a_1, a_2 \in A$,

$$\text{dist}_H(S(a_1) \cap W, S(a_2) \cap W) \leq C_W \|a_1 - a_2\|, \quad \text{--- (4.4)}$$

where C_W depends only on W, L_a, M , and bounds in **H5-H6**.

Proof: Let $(\lambda_1, u_1) \in S(a_1) \cap W$. Consider the map

$$\Psi(\lambda, u; a) := u - L(\lambda, a)^{-1}N(\lambda, u, a). \quad \text{--- (4.5)}$$

At $(\lambda_1, u_1; a_1)$ we have $\Psi = 0$ and

$$D_{(\lambda,u)} \Psi = I - L^{-1} D_u N - (D_\lambda L^{-1}) N, \quad \dots \quad (4.6)$$

which is invertible by the assumed M and smallness on W (choose W such that $\|L^{-1} D_u N\| < 1/2$). The implicit function theorem with Lipschitz parameter dependence in a yields a unique zero (λ_2, u_2) for parameter a_2 with

$$\|(\lambda_2 - \lambda_1, u_2 - u_1)\| \leq C_W \|a_2 - a_1\|.$$

This gives the one-sided Hausdorff bound; symmetry gives (4.4).

Corollary 4.5 (Convergence as the band shrinks).

If $A_r := \{a: \|a - \bar{a}\| \leq r\}$ and $r \downarrow 0$, then

$$\text{dist}_H \left(\bigcup_{a \in A_r} S(a) \cap W, S(\bar{a}) \cap W \right) \rightarrow 0. \quad \dots \quad (4.7)$$

Proof: Immediate from (4.4) and $\sup_{a \in A_r} \|a - \bar{a}\| = r$.

4.2 Quantitative radius-to-extent bounds

We now relate the band radius $\text{rad}(A)$ to the "extent" of the union of continua inside W .

Define the projection length in λ of a set $E \subset \mathbb{R} \times X$ over W by

$$L_\lambda(E; W) := \text{meas} \{ \lambda \in \mathbb{R}: \exists u \in X \text{ with } (\lambda, u) \in E \cap W \}. \quad \dots \quad (4.8)$$

Lemma 4.6 (Local Lipschitz control of λ -projection)

Under the assumptions of Theorem 4.4,

$$|L_\lambda(S(a_1); W) - L_\lambda(S(a_2); W)| \leq C'_W \|a_1 - a_2\|. \quad \dots \quad (4.9)$$

Proof: Cover W by finitely many neighborhoods where the implicit function theorem produces solution graphs $\lambda \mapsto u(\lambda, a)$ or $s \mapsto (\lambda(s, a), u(s, a))$ with Lipschitz dependence on a . The boundary in λ moves by at most $C \|a_1 - a_2\|$; add the contributions [13].

Theorem 4.7 (Radius-to-extent inequality)

Let $A \subset \mathbb{R}^m$ be compact and assume the hypotheses of Theorem 4.4. Then on any bounded window W ,

$$L_\lambda(\bigcup_{a \in A} S(a); W) \leq L_\lambda(S(\bar{a}); W) + C''_W \text{rad}(A) \quad \dots \quad (4.10)$$

Proof: Pick $a \in A$. By Lemma 4.6,

$$L_\lambda(S(a); W) \leq L_\lambda(S(\bar{a}); W) + C'_W \|a - \bar{a}\|$$

Taking the supremum over $a \in A$ yields (4.10) with $C''_W = C'_W$.

Remark 4.8 (Practical implication): Inequality (4.10) quantifies that widening the uncertainty band by Δr can enlarge the observed λ -extent of the union of continua in W by at most $O(\Delta r)$. This underpins robust continuation algorithms that sample a finite set of ancillary parameters and take the outer envelope (Section 7).

5 Global bifurcation alternative and degree argument

We now give a full, self-contained global argument for each fixed $a \in A$ and then pass to the band-union [9]. The setting and notation are those of Sections 1-4. Recall $N(\lambda, u, a) = F(\lambda, u, a) - L(\lambda, a)u$.

5.1 Degree set-up on a bounded window

Fix $a \in A_*$. Choose $\lambda^- < \lambda_* < \lambda^+$ inside the neighborhood I from Lemma 3.1 and a radius $r > 0$ so that

$$F(\lambda^\pm, u, a) = 0 \text{ for all } \|u\|_X = r. \quad \text{--- (5.1)}$$

Define the compact perturbations of the identity

$$\Phi^\pm(u) := u - L(\lambda^\pm, a)^{-1}N(\lambda^\pm, u, a) \quad \text{--- (5.2)}$$

By **H5**, Φ^\pm are well defined and completely continuous on $\overline{B_X(r)}$; by (5.1), $0 \notin \Phi^\pm(\partial B_X(r))$. Hence the Leray-Schauder degrees

$$d^\pm := \deg(\Phi^\pm, B_X(r), 0) \quad \text{--- (5.3)}$$

are defined [14, 15]. (We suppress the parameter a here.)

Lemma 5.1 (Local index computation)

Under **H3 – H4**, there exists $r > 0$ and $\varepsilon > 0$ such that for all $|\lambda - \lambda_*| < \varepsilon$,

$$\deg(\Phi_\lambda, B_X(r), 0) = \begin{cases} d^- & \text{if } \lambda < \lambda_* \\ d^- \mp 1 & \text{if } \lambda > \lambda_* \end{cases} \quad \text{--- (5.4)}$$

with the sign determined by $\text{sign}\langle \psi_*, D_\lambda L(\lambda_*, a)v_* \rangle$.

Proof: Reduce to the scalar equation $g(\lambda, s, a) = 0$ (Lemma 3.2). Inside $\|u\| \leq r$, every solution is on the Lyapunov-Schmidt manifold $u = sv_* + w(\lambda, s, a)$. The onedimensional crossing flips the Brouwer degree of the reduced map by ± 1 , which lifts to Leray-Schauder degree because the complement equation has a unique solution for each (λ, s) and the projection is an isomorphism (Lemma 3.1).

Lemma 5.2 (Nontrivial connected set)

Let

$$Z := \{(\lambda, u) \in [\lambda^-, \lambda^+] \times \overline{B_X(r)} : F(\lambda, u, a) = 0\} \quad \text{--- (5.5)}$$

If $d^- = d^+$, then Z contains a connected component K intersecting both slices $\{\lambda = \lambda^-\}$ and $\{\lambda = \lambda^+\}$.

Proof: Consider the homotopy $H(t, u) = \Phi^{\lambda^- + t(\lambda^+ - \lambda^-)}(u)$. The degree change implies 0 lies in the image of H for all $t \in [0, 1]$. Compactness (H5-H6) shows the set of zeros is compact; the Whyburn lemma (connectedness of the set joining boundary slices) yields a component intersecting both ends; see [10, Lemma 2.4] or [12, Thm. 9.2].

5.2 Unboundedness or a secondary trivial point

Let $C(a)$ be the connected component of $S(a) = \{F(\lambda, u, a) = 0\}$ that contains $(\lambda_*, 0)$

Theorem 5.3 (Rabinowitz alternative at fixed $a \in A$)

Either

- (i) $C(a)$ is unbounded in $\mathbb{R} \times X$, or
- (ii) there exists $\hat{\lambda} \in \mathbb{R}$ with $\ker L(\hat{\lambda}, a) = \{0\}$ such that $(\hat{\lambda}, 0) \in \overline{C(a)}$.

Proof: Suppose (i) fails. Then there exists a bounded open set $W \subset \mathbb{R} \times X$ with $C(a) \subset W$. By Lemma 5.2 the component $K \subset Z$ joins the two faces λ^\pm . If K did not meet $(\lambda, 0)$ with nontrivial kernel, we could contract K within a region where $L(\lambda, a)$ stays invertible, contradicting the degree jump (5.4) via homotopy invariance. Hence

(ii). This is the standard Rabinowitz global argument [1], adapted to our

Fredholm/degree setting; cf. [10, Section 3], [11, Section 2].

Corollary 5.4 (Isolation yields unboundedness)

If λ_* is the unique parameter with $\ker L(\lambda_*, a) \neq \{0\}$ for the given a , then only (i) occurs.

Proof: Exclude (ii).

5.3 Band-robust global alternative

Let $C = \overline{\bigcup_{a \in A} C(a)}$.

Theorem 5.5 (Band-union alternative)

Either

- (i) C is unbounded in $\mathbb{R} \times X$, or
- (ii) there exist $\hat{\lambda}$ and a sequence $a_n \in A$ with $\ker L(\hat{\lambda}, a_n) = \{0\}$ and $(\hat{\lambda}, 0) \in \overline{\bigcup_n C(a_n)}$. If, for all $a \in A$, the only simple crossing is at λ_* , then only (i) occurs.

Proof: Apply Theorem 5.3 to each a . If (i) fails for the union, extract from boundedness a subsequence a_n for which the alternatives (ii) must occur; compactness (H6) and upper semicontinuity (Lemma 4.2) give the stated accumulation. The isolation statement eliminates (ii).

5.4 A priori bounds and avoidance of blow-up (model toolkit)

We record a convenient criterion for ruling out case (ii) in semi-linear models.

Lemma 5.6 (A priori bound via subcritical growth)

Let $X = H_0^1(\Omega)$, $Y = H^{-1}(\Omega)$, $\Omega \subset \mathbb{R}^N$ bounded Lipschitz, and

$$F(\lambda, u, a) = -\Delta u - \lambda u - f(u; a) \quad \text{--- (5.6)}$$

with $f(\cdot; a)$ Carathéodory, $f_u(0; a) = 0$, and for some $2 < p < 2^*$ (Sobolev critical exponent), $|f(u; a)| \leq C_1|u| + C_2|u|^{p-1}$ uniformly in a . Then on

rectangles $W = [\lambda_1, \lambda_2] \times B_X(R)$, the set of solutions is bounded in $H_0^1(\Omega)$ uniformly in a .

Proof: Test the weak form with u and use Poincaré-Sobolev:

$$\|\nabla u\|_2^2 - \lambda \|u\|_2^2 = \int_{\Omega} f(u; a) u dx \leq C_1 \|u\|_2^2 + C_2 \|u\|_p^p \leq C'_1 \|u\|_2^2 + C'_2 \|u\|_{H_0^1}^p.$$

Absorb $\|u\|_{H_0^1}^2$ to the left for λ in a compact interval, and use $p > 2$ to bound $\|u\|_{H_0^1}$ by a constant depending only on W .

Consequences: With Lemma 5.6 and simplicity of the first eigenvalue, case (ii) is excluded for λ in a neighborhood of $\lambda_1(\Omega)$, so the component must be unbounded; compare.

6 Applications and examples

We verify the hypotheses **H1 – H6** and instantiate the main theorems for three standard model classes. Each subsection ends with an explicit "Checklist" summarizing which hypotheses are met and why [16].

6.1 Semilinear elliptic equations

Let $\Omega \subset \mathbb{R}^N$ be bounded Lipschitz, $X = H_0^1(\Omega)$, $Y = H^{-1}(\Omega)$, and

$$F(\lambda, u, a) = -\Delta u - \lambda u - f(u; a) \quad \dots \quad (6.1)$$

Assume:

- $f(\cdot; a)$ is Carathéodory and C^1 in u ; $f_u(0; a) = 0$ uniformly in $a \in A$;
- Subcritical growth: $|f(u; a)| \leq C(1 + |u|^{p-1})$ with $2 < p < 2^*$ uniformly in a ;
- $f(\cdot; a)$ is locally Lipschitz in u uniformly in a .

Verification of H1. Standard Nemytskii theory gives $F \in C^1(\mathbb{R} \times X, Y)$.

H2: $L(\lambda, a) = -\Delta - \lambda I$ is Fredholm of index 0, $\ker L \equiv \{0\}$ iff λ is a Dirichlet eigenvalue.

H3: Take $\lambda_* = \lambda_1(\Omega)$, the simple first eigenvalue, with eigenfunction $v_* > 0$.

H4: $D_\lambda L(\lambda_*, a)v_* = -v_* \notin \text{Range } L(\lambda_*, a)$ since ψ_* is the first adjoint eigenfunction and $\langle \psi_*, v_* \rangle = 0$.

H5: $N(\lambda, u, a) = -f(u; a)$ is compact $X \rightarrow Y$ on bounded sets via Rellich-Kondrachov $H_0^1(\Omega) \hookrightarrow L^p(\Omega)$ and subcritical growth.

H6: Properness on bounded sets follows from Lemma 5.6 and weak sequential compactness in H_0^1 .

Model theorem 6.1 (Global alternative for (6.1))

For every $a \in A$, the component $C(a)$ issuing from $(\lambda_1(\Omega), 0)$ satisfies Theorem 5.3. If $\lambda_1(\Omega)$ is the only eigenvalue met in W and f satisfies the bounds of Lemma 5.6, then $C(a)$ is unbounded. Moreover, on any bounded window W , the solution sets satisfy the Hausdorff-Lipschitz estimate (4.4) with a constant depending on W and the data bounds.

Proof: Combine the verifications of H1-H6, Theorems 5.3 and 4.4, and Lemma 5.6.

Checklist 6.1 (Assumptions for (6.1)).

- Spaces: $X = H_0^1(\Omega), Y = H^{-1}(\Omega)$.
- Crossing: simple at $\lambda_1(\Omega)$.
- Compactness: yes, via subcritical growth.
- Properness: yes, by a priori bound.
- Band stability: (4.4) holds if f_u is Lipschitz in a .

6.2 p -Laplacian type equations

Let $1 < p < \infty, X = W_0^{1,p}(\Omega), Y = W^{-1,p'}(\Omega)$, and

$$F(\lambda, u, a) = -\operatorname{div}(|\nabla u|^{p-2}\nabla u) - \lambda\varrho(a)|u|^{p-2}u - g(u; a), \quad \dots \quad (6.2)$$

where $\varrho(a)$ is positive and bounded above/below uniformly on A , and $g(\cdot; a)$ is Carathéodory with $|g(u; a)| \leq C(1 + |u|^{q-1}), p \leq q < p^*$.

H1: F is C^1 as a mapping $X \rightarrow Y$ away from $u = 0$; for bifurcation at $u = 0$, the linearized operator is

$$\begin{aligned} L(\lambda, a)\phi &= -\operatorname{div}((p-1)|\nabla 0|^{p-2}\nabla\phi) - \lambda\varrho(a)(p-1)|0|^{p-2}\phi \\ &= -\Delta_p'\phi - \lambda\varrho(a)\phi \end{aligned}$$

which reduces to the weighted p -Laplacian linearization at zero (well-defined in the sense of the first eigenpair).

H2-H4: The first eigenvalue of $-\Delta_p$ with weight $\varrho(a)$ is simple; transversality follows from $\langle \psi_*, D_\lambda L(\lambda_*, a)v_* \rangle = -\langle \psi_*, \varrho(a)v_* \rangle = 0$.

H5-H6: Compactness and properness use monotonicity and the $(S)_+$ property for the p -Laplacian, plus subcritical growth of g .

Model theorem 6.2 (Global alternative for (6.2))

For each $a \in A$, a global continuum bifurcates from the first weighted p -eigenvalue $\lambda_*(a)$ and satisfies the Rabinowitz alternative; if $\lambda_*(a)$ is isolated in W and data are subcritical, the branch is unbounded. Hausdorff-Lipschitz stability in a holds on bounded windows provided g_u and ϱ are Lipschitz in a .

Checklist 6.2.

- Spaces: $W_0^{1,p} \rightarrow W^{-1,p'}$.
- Crossing: simple weighted p -eigenvalue.
- Compactness: $(S)_+$ and subcritical growth.
- Properness: a priori bounds via standard energy inequalities.
- Band stability: needs Lipschitz control of ϱ, g_u in a .

6.3 Discrete graph models

Let $G = (V, E)$ with $|V| = n$. Set $X = Y = \mathbb{R}^n$ with the Euclidean norm. Consider

$$F(\lambda, u, a) = Lu - \lambda Mu - G(u; a) \quad \text{--- (6.3)}$$

where L is a symmetric graph Laplacian, M a positive definite "mass" matrix (e.g., diagonal vertex weights), and $G(\cdot; a)$ has Jacobian $D_u G(0; a) = 0$ and $\|G(u; a)\| \leq C\|u\|^2$ for small $\|u\|$, uniformly in a .

H1: $F \in C^1$ with $D_u F(\lambda, 0, a) = L - \lambda M$.

H2-H4: $L - \lambda M$ is a pencil with simple eigenvalues; take $\lambda_* = \lambda_1$ (smallest generalized eigenvalue), which is simple for connected graphs. Transversality: $D_\lambda L(\lambda_*, a) = -M$, and $\langle \psi_*, M \nu_* \rangle > 0$.

H5: G is compact on bounded sets since X is finite dimensional.

H6: Properness is automatic in finite dimension.

Model theorem 6.3 (Global alternative for (6.3))

For each a , a global continuum bifurcates from $(\lambda_1, 0)$ and satisfies Theorem 5.3; unboundedness occurs unless another generalized eigenvalue is met. Band stability (4.4) holds provided $D_u G$ and M depend Lipschitz-continuously on a .

Checklist 6.3.

- Spaces: \mathbb{R}^n .
- Crossing: simple smallest generalized eigenvalue.
- Compactness & properness: automatic.
- Band stability: Lipschitz in a for $M, D_u G$.

7 Concluding remarks

We established a band-robust version of global bifurcation for compact perturbations of Fredholm index-zero maps

$$F(\lambda, u, a) = 0, (\lambda, u, a) \in \mathbb{R} \times X \times A,$$

where A encodes an ancillary uncertainty band. Under a simple spectral crossing and a transversality condition uniform on a neighborhood $A_* \subset A$, we proved:

- (i) a uniform local theorem via Lyapunov-Schmidt reduction with constants independent of $a \in A_*$;
- (ii) a degree jump constant on A_* yielding a Rabinowitz-type global alternative for every a and for the band-union continuum $C = \overline{\bigcup_{a \in A} C(a)}$;
- (iii) Hausdorff-Lipschitz stability of solution sets with respect to a on bounded windows;
- (iv) radius-to-extent inequalities showing λ -projection growth of $\bigcup_{a \in A} S(a)$ is $O(\text{rad}(A))$.

Limitations: Our compactness/properness hypotheses (H5 – H6) exclude certain quasilinear or noncompact settings (e.g., critical growth without compact embeddings, nonlocal operators with essential spectrum touching zero). The simple crossing assumption excludes multiple or defective eigenvalues and Turning-Hopf interactions.

Future directions.

- (i) **Multiple crossings and equivariance:** Extend to finite multiplicity using the equivariant degree and crossing numbers on isotypic components.
- (ii) **Noncompact perturbations:** Replace (H5) by condensing or measure of noncompactness assumptions.
- (iii) **Random-set bands:** Treat A as a random compact set and derive almost-sure statements on C .
- (iv) **Validated numeric:** Combine pseudo-arc length continuation with a posteriori radii-polynomial certificates uniform in a to produce computer assisted proofs.

This work establishes a band-robust framework for global bifurcation in nonlinear operator equations $F(\lambda, u, a) = 0$ on Banach spaces when ancillary parameters vary within a compact uncertainty set A . Building on a uniform Lyapunov-Schmidt reduction around a simple spectral crossing and a transversality condition holding for all a in a neighborhood of the crossing, we proved existence and uniqueness of a C^1 local branch with constants independent of a , quantified the associated degree jump, and lifted Rabinowitz's global alternative from individual parameters to the band-union continuum $\mathcal{C} = \overline{\bigcup_{a \in A} \mathcal{C}(a)}$. We further derived Hausdorff-Lipschitz stability of solution sets with respect to a on bounded windows and a radius-to-extent inequality showing that the λ -projection of \mathcal{C} grows at most linearly with $\text{rad}(A)$.

References

- [1] P. H. Rabinowitz, "Some global results for nonlinear eigenvalue problems," *J. Funct. Anal.*, vol. 7, pp. 487–513, 1971. doi: 10.1016/0022-1236(71)90030-9.
- [2] M. G. Crandall and P. H. Rabinowitz, "Bifurcation from simple eigenvalues," *J. Funct. Anal.*, vol. 8, pp. 321–340, 1971. doi: 10.1016/0022-1236(71)90015-2.
- [3] H. Kielhöfer, *Bifurcation Theory: An Introduction with Applications to Partial Differential Equations*, 2nd ed., AMS 156. New York: Springer, 2012. doi: 10.1007/978-1-4614-0502-3.
- [4] E. Zeidler, *Nonlinear Functional Analysis and its Applications I: Fixed-Point Theorems*. New York: Springer, 1986. doi: 10.1007/978-1-4612-5020-3.
- [5] J. Mawhin, *Topological Degree Methods in Nonlinear Boundary Value Problems*, CBMS Reg. Conf. Ser. Math., vol. 40. Providence, RI: AMS, 1979. doi: 10.1090/cbms/040.
- [6] K. Deimling, *Nonlinear Functional Analysis*. Berlin: Springer, 1985. doi: 10.1007/978-3-662-00547-7.
- [7] J. Pejsachowicz and P. J. Rabier, "Degree theory for C^1 Fredholm mappings of index 0," *J. Anal. Math.*, vol. 76, pp. 289–319, 1998. doi: 10.1007/BF02786939.
- [8] R. T. Rockafellar and R. J.-B. Wets, *Variational Analysis*. Berlin: Springer, 1998. doi: 10.1007/978-3-642-02431-3.
- [9] D. Gilbarg and N. S. Trudinger, *Elliptic Partial Differential Equations of Second Order*, 2nd ed., reprint, Classics in Mathematics. Berlin: Springer, 1998. doi: 10.1007/978-3-642-61798-0.
- [10] H. Amann, "Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces," *SIAM Rev.*, vol. 18, no. 4, pp. 620–709, 1976. doi: 10.1137/1018114.

- [11] D. Henry, *Geometric Theory of Semilinear Parabolic Equations*, Lecture Notes in Mathematics, vol. 840. Berlin: Springer, 1981. doi: 10.1007/BFb0089647.
- [12] F. E. Browder, "Degree of mapping for nonlinear operators," *Proc. Natl. Acad. Sci. USA*, vol. 54, no. 6, pp. 1272-1276, 1965. doi: 10.1073/pnas.54.6.1272.
- [13] A. Ambrosetti and G. Prodi, *A Primer of Nonlinear Analysis*, Cambridge Studies in Advanced Mathematics, vol. 34. Cambridge, U.K.: Cambridge Univ. Press, 1993.
- [14] P. Drábek and J. Milota, *Methods of Nonlinear Analysis: Applications to Differential Equations*. Basel: Birkhäuser, 2007. doi: 10.1007/978-3-7643-7986-2.
- [15] J. M. Ortega and W. C. Rheinboldt, *Iterative Solution of Nonlinear Equations in Several Variables*. Philadelphia, PA: SIAM, 2000 (reprint). doi: 10.1137/1.9780898719468.
- [16] P. Deuflhard and M. Weiser, *Adaptive Numerical Solution of PDEs*. Berlin: De Gruyter, 2012. doi: 10.1515/9783110258983.

¹SR UNIVERSITY, WARANGAL, TELANGANA, 506371, INDIA

²RESEARCH FELLOW, INTI INTERNATIONAL UNIVERSITY, 71800 NILAI, NEGERI SEMBILAN, MALAYSIA.

EMAIL: YOGEESH.R@GMAIL.COM

ORCID ID: [HTTPS://ORCID.ORG/0000-0001-8080-7821](https://ORCID.ORG/0000-0001-8080-7821)

³DEPARTMENT OF ELECTRICAL AND ELECTRONICS
ENGINEERING, SR UNIVERSITY, WARANGAL, TELANGANA,
506371, INDIA.

EMAIL: M.KARTHIK@SRU.EDU.IN

ORCID ID: [HTTPS://ORCID.ORG/0000-0002-4605-7673](https://ORCID.ORG/0000-0002-4605-7673)

⁴FACULTY OF BUSINESS AND COMMUNICATIONS, INTI
INTERNATIONAL UNIVERSITY, NILAI 71800, MALAYSIA

⁵INTERNATIONAL INSTITUTE OF MANAGEMENT AND
ENTREPRENEURSHIP, 220086, CITY MINSK, SLAVINSKY ST.1/3,
REPUBLIC OF BELARUS

⁶WEKERLE BUSINESS SCHOOL, 1083 BUDAPEST, HUNGARY

EMAIL: ASOKAN.VASUDEVAN@NEWINTI.EDU.MY

ORCID ID: [HTTPS://ORCID.ORG/0002-9866-4045](https://ORCID.ORG/0002-9866-4045)

⁷DEPARTMENT OF MATHEMATICS, CENTRAL UNIVERSITY OF
KARNATAKA, KALABURAGI-585 367, INDIA.

EMAIL: CHETANACHETANA100@GMAIL.COM

ORCID: [HTTPS://ORCID.ORG/0009-0000-8643-2450](https://ORCID.ORG/0009-0000-8643-2450)

⁸FACULTY OF BUSINESS AND COMMUNICATIONS, INTI
INTERNATIONAL UNIVERSITY, NEGERI SEMBILAN, MALAYSIA,

EMAIL: EUHUI.SOON@NEWINTI.EDU.MY;
ORCID: [HTTPS://ORCID.ORG/0000-0002-3154-3943](https://ORCID.ORG/0000-0002-3154-3943)

⁹INTERNATIONAL RELATIONS AND COLLABORATIONS CENTRE (IRCC), INTI INTERNATIONAL UNIVERSITY, PERSIARAN PERDANA BBN, PUTRA NILAI, 71800 NILAI, NEGERI SEMBILAN, MALAYSIA.

EMAIL: TAFARA.MAYIBONGWE@NEWINTI.EDU.MY;
ORCID: [HTTPS://ORCID.ORG/0009-0009-5490-9651](https://ORCID.ORG/0009-0009-5490-9651)

¹⁰DEPARTMENT OF MATHEMATICS, GOVERNMENT FIRST GRADE COLLEGE FOR WOMEN, M G ROAD, HASSAN-573201, INDIA

EMAIL: SHANKAR.GSCH@GMAIL.COM,
ORCID: [HTTPS://ORCID.ORG/0000-0001-8121-2715](https://ORCID.ORG/0000-0001-8121-2715)

*CORRESPONDING AUTHOR: YOGEESH N,
YOGESH.R@GMAIL.COM