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Abstract : Count Data denotes the frequency of an event transpiring within a designated time interval. 

For instance, examine the prevalence of caesarean sections that women experience during their lifetime. 

Nearly every academic discipline, such as management, economics, medicine, and industrial organizations, 

utilizes count data. The count data is extensively utilized across various fields including marketing, public 

health, and biomedical science. This study aims to estimate the relevant parameters for the Number of C-

Section Deliveries (NCSD) among women in Andhra Pradesh (AP), India, who are between the ages of 15 

and 49. The secondary dataset from NFHS-5 is used for the analysis. This study uses Integrated Nested 

Laplace Approximation (INLA) to fit the NCSD model. The PRM and NBRM are used to find the best 

fit. Using the information criterion, the DIC and WAIC of NBRM are 7050.75 and 7050.74, 

respectively, which is less than the DIC and WAIC of PRM, which are 8092.54 and 8102.35, 

respectively. Hence, it is concluded that NBRM is the best fit of NCSD and that Breech Presentation, 

Heart Disease, High Blood Pressure, Prolonged Labour, Child is Twin, Age of the respondent, and 

Education are significant determinants of the NCSD. Therefore, the government policy makers need to 

consider these variables while making the health care polices for women aged 15 to 49 years old, who are of 

childbearing Age. 
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1. Introduction 

Count data regression methods are utilized when the dependent variable takes on 

non-negative integer values. Long (1997) and Cameron & Trivedi (1996) provide a 

thorough overview of count regression models. Count data models are commonly 

utilized in empirical research. Count was utilized in specific recent investigations. 

These represent the models. Yang (2007) examines the factors affecting potential 

admission into a sector through a Poisson distribution count model. Hellström and 

Nordström (2008) analyze household decisions about the number of nights allocated 

to monthly leisure outings through count data modelling. Nelson and Young (2008) 

employ Poisson and negative binomial count regressions to analyze the influence of 

several factors on alcohol advertising in magazines (Nan-Ting Chou & David 
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Steenhard, 2009). This research uses INLA to analyze fertility count data. INLA is 

selected due to its scalability for high-dimensional fertility data, avoiding Markov 

chain Monte Carlo’s (MCMC) convergence issues. Several texts exclusively focused on 

count regression, specifically PRM and NBRM; include works by Cameron and 

Trivedi (2013) and Hilbe (2014). The conventional negative binomial regression 

model, referred to as NB2, is founded on the Poisson-gamma mixture distribution. 

This formulation is favoured for its capacity to model Poisson heterogeneity through a 

gamma distribution (NCSS, LLC, 2021). To ascertain the parameters of the variables 

when the dependent variable is count data and the independent variables are 

categorical data. The secondary data, National Family Health Survey (NFHS-5), 

conducted between 2019 and 2021, which is from the Demography and Health 

Surveys (DHS) during the phase VII, is used for the research. Estimating the mean or 

mode of the NCSD for the women aged between 15 and 49 in Andhra Pradesh, India 

is the primary goal (Hilbe, 2011). The mean or mode of the resultant posterior 

distribution of a parameter is referred to as the parameter of interest (Hilbe, 2011). 

2. Materials & Methods 

2.1. Variables considered for the study  

The variables are as follows: 

NCSD   =  “Number of caesarean section deliveries” 

BP  =  “Breech presentation” 

HD   =  “Currently has heart disease” 

HBP   =  “High blood pressure” 

PL   =  “Prolonged labour” 

CT   =  “Child is twin” 

Age  =  “Current Age” 

EL   =  “Education level” 

TR  = “Type of place of residence” 

 

Where   

    “                                      ” 

    “                   ” 
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    “                           ” 

    “                   ” 

    “                ” 

    “             ” 

                  

    “                 ” 
 

Hence, we have the mathematical model as:  

                                        

                           

                                

                                             

                                  

                       

 

 

(1) 

The above model can be written in Statistical terms as: 

 

                                            

                  

 

(2) 

 

                                            (3)            

 

Where    is the predictand variable,                      are predictor variables,   

                        are parameters and   is disturbance term 

 Then the structure of a count model will be 

                                               (4)                    

 

In GLM theory, the link function linearizes the relationship between the linear 

predictor,    , and the fitted value,   or    or estimated mean,     . Consequently,   

is delineated in relation to the inverse relationship.  

                                                                   (5) 
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                                  (6) 

 

2.2. Multicollinearity detection by Variance Inflation Factor (VIF) 

Montgomery. D.C. et al. (2003), state that the presence of more than two 

regressor variables results in the effects of multicollinearity. The estimates of     will be 

large if multicollinearity exists between regressors    and   . Based on VIF values, one 

can say that there is no multicollinearity if the VIF value is 1. Moderate 

multicollinearity exists if the VIF value lies in the interval 1-5. High multicollinearity 

exists if the VIF value is greater than 5. Serious multicollinearity exists if the VIF value 

is greater than 10. 

2.3. Heterogeneity Test 

This involves comparing a model with a random effect for group 

membership to a model without it, using model comparison metrics like the WAIC or 

the Deviance DIC provided by INLA. It includes creating an INLA model with the 

outcome variable regressed on covariates but without a random effect for the group 

variable, allowing it to be a null model. Then, create a new INLA model identical to 

the null model, but include a random effect for the group variable. Extract the DIC or 

WAIC values from both models. A larger difference in DIC/WAIC between the null 

and alternative models suggests significant evidence of heterogeneity. If the null model 

DIC/WAIC value is less than the alternative model DIC/WAIC value, then it is 

evident that heterogeneity exists.  

2.4. Poisson Regression Model (PRM) 
The probability density function of Poisson random variables is defined by  

 
         

        

  

    
                      

  

                            (7)     

 

And its log likelihood function is 

 
                            

 

   

    
 

                                      (8) 

A key characteristic of the Poisson distribution and PRM is equi-dispersion, indicating 

the same mean and variance of the distribution. 

                                                                                  (9)      
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2.5. Over-dispersion Test 
B. Muniswamy & Aragaw Eshetie Aguade (2019) explain that the efficiency 

of parameter estimates is still rather high when the typical Poisson model is used on 

over-dispersion data, but their standard errors are understated. As a result, test 

significance levels and coverage probabilities of confidence intervals are no longer 

reliable and may produce wildly deceptive results (Heinzl & Mittlböck, 2003). To put 

it another way, excessive dispersion will result in an underestimation of standard 

errors, which will lead to incorrect analysis conclusions (Ismail & Jemain, 2007). Over-

dispersion must therefore be managed. Using an NBRM for over-dispersion is an 

additional strategy (Zhao et al., 2009; Zhu & Zhang, 2006). 

 Hilbe, J.M. (2011) writes that the classic basic count response model is the PRM. The 

PRM's central distribution assumption is equi-dispersion of PRM. Real data rarely 

matches this assumption. When the response variance exceeds the mean, over-

dispersion in PRM takes place. When the variation is smaller than the mean, under-

dispersion is present. In actuality, these hardly ever happen. 

 The primary causes of over-dispersion are a positive association between response and 

excessive variability in response counts or probabilities. Over-dispersion arises when 

the distributional assumptions of the data are violated, particularly when observations 

are clustered, contravening the assumption of probability independence. Excessive 

variability may cause the standard errors of the estimations to be underestimated or 

diminished. A variable may appear to be a significant predictor when it is not. 

A model is considered over-dispersed if the ratio of the Pearson or Chi-square statistic 

to the degrees of freedom exceeds 1.0. The fraction of either is referred to as the 

dispersion. If greater than 1.25, then an adjustment may be necessary. If greater than 

1.5, then it is classified as over-dispersed. 

2.5.1. Pearson's Chi-square Test 
Pearson's Chi-square test is calculated by dividing the Pearson (or   ) 

statistic by the degrees of freedom. The fraction of either is referred to as the 

dispersion. Equation (10) serves as a criterion for assessing over-dispersion in a PRM. 

If the quotient exceeds 1, it indicates over-dispersion. 

 
           

          

                 
 

 

                                       (10) 

Where Chi-square is 
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                                                              (11) 

 

Then create a diagnostic plot in R. The plot is designed to visualize the relationship 

between the fitted values and the squared Pearson residuals. 

2.6. Negative Binomial Regression Model (NBRM) 

If the principal properties of the Poisson distribution and the equi-

dispersion of the PRM are violated, then the mean and variance of the distribution 

will not be equivalent. Over-dispersion occurs when the variance exceeds the mean of 

the response variable. Under-dispersion occurs when the variance is less than the 

mean of the response variable. The Binomial regression model is more suitable for 

under-dispersed data. The NBRM is more suitable for over-dispersed data.  

Then the NBRM is 

 

     
 

 
      

     
 
 
 

  
 
 
         

  
 

      

 

 
 

  
   

      

 
  

 

      

                     (12) 

 

Where   is the parameter that indicates the degree of over-dispersion, and    = 0, 1, 2, 

3,….  

The log likelihood function of NBRM is 

 
     

 

 
               

   

     

   
 

 
           

 

   

          
 

 
                   

 

 
   

 

 

 

(13) 

Hence, the mean and variance of NBRM are 

 

and  

                                                                     (15)      

 

                                                                         (14)      
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2.7. Model selection 
When comparing multiple models to choose the most suitable one for the 

data, DIC and WAIC can be employed as alternatives to the likelihood ratio test. 

Similar to the Akaike Information Criterion (AIC), the DIC is the predominant 

method for determining the model that best fits the data by comparing two or more 

models using INLA. It seeks to equilibrate the goodness of fit with the model's 

complexity. It is analogous to the coefficient of multiple determinations (  ); 

however, it imposes a penalty based on the number of parameters included in the 

model (i.e., the model's complexity). In contrast to   , an effective model is 

characterised by the lowest DIC value (Dejen Tesfaw Molla, 2013). 

2.7.1. Marginal Log-likelihood (MLIK) 

The marginal likelihood      is a helpful metric when comparing models. 

Bayes factors, for instance, are defined as ratios of the marginal likelihoods of two 

competing models; this likelihood is also used in the DIC computation. 

 
         

        

          
               

 

                                           (16) 

 

In actuality, it is        's normalizing constant. This approximation permits the 

deviation from Gaussian since         is handled non-parametrically. However, if the 

posterior marginal of   is multimodal, this approach might not work. This applies 

broadly to the INLA technique and is not unique to the evaluation of the marginal 

likelihood. Thankfully, unimodal posterior distributions are usually produced by the 

latent Gaussian models (H. Rue, Martino, and Chopin 2009). 

2.7.2. Deviance Information Criterion (DIC) 

The most commonly utilized information criterion in the frequentist 

statistical framework is AIC. The DIC proposed by Spiegelhalter et al. (2002) 

represents a major advancement in model selection within the Bayesian literature 

during the last two decades. DIC can be seen as a Bayesian alternative to AIC. DIC 

can be seen as a Bayesian alternative to AIC. Analogous to AIC, it evaluates the 

predictive accuracy of hypothetically duplicated data against observed data, balancing a 

metric of model adequacy with a metric of complexity. DIC, however, takes into 

account earlier information, unlike AIC. DIC possesses several beneficial attributes 

and is constructed with the posterior mean of the log-likelihood or the deviation 

(Yong Li et al., 2022). 

                                                    (17) 
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Where  

 
  

 

 
             

 

   

 
 

                            (18) 

 

                                                 (19) 

 

Where        is the maximum function over all posterior samples, and   is the 

number of posterior samples (Nathan J. Evans, 2019). 

2.7.3. Watanabe – Akaike Information Criterion (WAIC) 

As stated by Watanabe (2010), Andrew Gelman et al. (2014), and Gaya & 

Ketz (2024), the predicted log predictive densities for each data point are used to 

compute WAIC. WAIC is adequate to determine the best model among all candidate 

models if the posterior distribution of θ is derived directly from the probability of    

without the use of latent processes and if the observation process is free of sampling 

bias (Gaya & Ketz, 2024). 

WAIC is defined as: 

                                                         (20) 

Where 
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                               (22) 

 

Where   is the number of posterior samples,   is the number of data points,        is 

the variance function over the posterior samples,     is the log predictive density of 

the data, and       is the effective number of parameters (Gaya & Ketz, 2024). 

3. Test Results & Applications 

3.1. Multicollinearity 

Certain variables can be multicollinear when constructing a linear regression 

model. When multiple independent variables correlate with one another, this is 
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known statistically as multicollinearity. As a result of this multicollinearity, statistical 

judgments become less reliable. In a regression model analysis, multicollinearity is the 

absence of unique information about the regression model due to a high correlation 

between two or more independent predictor variables. Therefore, these variables need 

to be eliminated when creating a multiple regression model. 

The variance inflation factor (VIF) measures the extent of correlation among 

independent variables in a regression model, serving to detect multicollinearity within 

the model. A VIF value below 1 indicates the absence of a connection. A moderate 

correlation is shown when the VIF value ranges from 1 to 5. A VIF value exceeding 5 

indicates a strong association. 

Table 1: Summary of VIF values 

Covariates GVIF DF GVIF^(1/(2*Df)) 

BP 6.1722 2 1.5762 

HD 1.0026 1 1.0013 

HBP 12.9088 2 1.8955 

PL 20.2855 2 2.1223 

CT 1.0358 3 1.0059 

Age 1.1436 1 1.0697 

EL 1.1440 3 1.0227 

 

Table 1 gives the summary of VIF values. The     
 

      value of BP is 1.5762, HD is 

1.0013, HBP is 1.8955, PL is 2.1223, CT is 1.0059, Age is 1.0697, and EL is 1.0227. 

Since all the     
 

      values are between 1 and 5, it is concluded that moderate 

multicollinearity is present. Where (GVIF) is the Generalized Variance Inflation 

Factor and (DF) is the Degrees of Freedom. Hence, it is concluded that all the 

covariates are to be included in the model, for they are all important variables in the 

study.  
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Figure 1:  VIF plot 

Figure 1 showcases the VIF values. The plot explains that the VIF value is between 1 

and 5, which is a sign of moderately multicollinearity present. That says all the 

regressors BP, HD, HBP, PL, CT, Age, and EL are to be included for the study. 

3.2. Heterogeneity 

The DIC values of PRM without random effect, type of residence (TR), and 

PRM with random effect, TR, are computed and compared for the heterogeneity.  

Table 2: Heterogeneity Test  

PRM DIC 

without random effect, TR 8092.69 

with random effect, TR 8194.00 
 

Table 2 gives the DIC values of PRM without and with random effect; TR. The PRM 

with random effect TR, DIC value 8194.00, is greater than the PRM without random 

effect TR, DIC value 8092.69, which indicates that there is no significant evidence of 

heterogeneity.  

 

3.3. Application - PRM using INLA  

Modelling the NCSD using INLA, fitted in PRM. The mean, standard 

deviation, 0.025 quantile, 0.5 quantile, 0.975 quantile, mode, and Kullback-Leibler 

Divergence (KLD) are estimated.  
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Table 3: Values of the parameters of interest, and KLD - PRM 

Fixed effect: Mean 

Standard 

deviation 

0.025 

quantile 

0.5 

quantile 

0.975 

quantile Mode KLD 

(Intercept)      -1.112 0.161 -1.428 -1.112 -0.796 -1.112 0.00 

BPYes  1.082 0.070 0.945 1.082 1.219 1.082 0.00 

BPDon't know  0.656 0.115 0.431 0.656 0.881 0.656 0.00 

HDYes  -0.920 0.501 -1.901 -0.920 0.062 -0.920 0.00 

HDDon't know 0.000 31.623 -61.980 0.000 61.980 0.000 0.00 

HBPYes  0.640 0.061 0.521 0.640 0.759 0.640 0.00 

HBPDon't know 0.036 0.146 -0.249 0.036 0.321 0.036 0.00 

PLYes -0.487 0.063 -0.611 -0.487 -0.364 -0.487 0.00 

PLDon't know -0.348 0.187 -0.714 -0.348 0.018 -0.348 0.00 

CT1st of multiple 0.204 0.213 -0.214 0.204 0.621 0.204 0.00 

CT2nd of multiple 0.095 0.210 -0.316 0.095 0.506 0.095 0.00 

CT3rd of multiple -105.924 13.394 -132.175 -105.924 -79.673 -105.924 0.00 

CT4th of multiple 0.000 31.623 -61.980 0.000 61.980 0.000 0.00 

CT5th of multiple 0.000 31.623 -61.980 0.000 61.980 0.000 0.00 

Age   0.026 0.005 0.017 0.026 0.035 0.026 0.00 

ELPrimary 0.391 0.101 0.193 0.391 0.588 0.391 0.00 

ELSecondary 0.031 0.076 -0.119 0.031 0.181 0.031 0.00 

ELHigher  0.449 0.081 0.290 0.449 0.609 0.449 0.00 

 

Table 3 displays estimations of PRM. The mean or mode of the covariates BP Yes, BP 

Don't know and HBP Yes are more than 0.500 where as the covariates  HD Don't 

know,  CT4th of multiple and CT5th  of multiple are 0.000. A posterior distribution is 

correctly approximated by a Gaussian distribution when the KLD score is zero. 

  

3.4. Pearson’s Chi-square Test 

Pearson's Chi-square test performs the test for dispersion. The null 

hypothesis is that there is no over-dispersion in PRM. The result is as follows: 

 

Table 4:Chi-square Test  

Data    df Dispersion 

PRM 3169.961 2818 1.1249 
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Table 4 shows the Chi-square test for dispersion. The dispersion value, 1.1249, is 

greater than 1, which indicates that the PRM may not be appropriate due to over-

dispersion. Reject the null hypothesis and accept the alternative hypothesis. It is 

concluded that the PRM is over-dispersed.  

Over-dispersion in a PRM is verified by using Pearson's chi-square statistic and 

creating a diagnostic plot.  

 

Figure 2: Diagnostic plot for over-dispersion 

Figure 2 is a diagnostic plot for over-dispersion in Poisson model data. Some points 

above the reference red line suggest over-dispersion, which confirms NBRM adoption.  

3.5. Application - NBRM using INLA 

Modelling the NCSD using INLA, fitted in NBRM. The mean, standard 

deviation, 0.025 quantile, 0.5 quantile, 0.975 quantile, mode, and KLD are estimated.  

Table 6: Values of the parameters of interest, KLD and hyperparameters - NBRM 

Fixed effect: Mean 

Standard 

deviation 

0.025 

quantile 

0.5 

quantile 

0.975 

quantile Mode KLD 

(Intercept)      -1.081 0.173 -1.420 -1.081 -0.742 -1.081 0.00 

BPYes  -0.316 0.075 -0.463 -0.316 -0.170 -0.316 0.00 

BPDon't know  0.513 0.129 0.260 0.513 0.765 0.513 0.00 

HDYes  -0.977 0.520 -1.997 -0.977 0.043 -0.977 0.00 

HDDon't know 0.000 31.623 -62.009 0.000 62.009 0.000 0.00 

HBPYes  0.032 0.066 -0.097 0.032 0.161 0.032 0.00 

HBPDon't know 0.017 0.158 -0.293 0.017 0.327 0.017 0.00 
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PLYes -0.067 0.068 -0.201 -0.067 0.067 -0.067 0.00 

PLDon't know -0.750 0.205 -1.151 -0.750 -0.347 -0.750 0.00 

CT1st of multiple 0.201 0.231 -0.251 0.201 0.654 0.201 0.00 

CT2nd of multiple 0.082 0.227 -0.364 0.082 0.529 0.082 0.00 

CT3rd of multiple -31.384 13.481 -57.833 -31.379 -4.962 -31.379 0.00 

CT4th of multiple 0.000 31.623 -62.009 0.000 62.009 0.000 0.00 

CT5th of multiple 0.000 31.623 -62.009 0.000 62.009 0.000 0.00 

Age   0.022 0.005 0.012 0.022 0.032 0.022 0.00 

ELPrimary 0.107 0.106 -0.101 0.107 0.315 0.107 0.00 

ELSecondary 0.491 0.081 0.333 0.491 0.649 0.491 0.00 

ELHigher  0.701 0.087 0.531 0.701 0.871 0.701 0.00 

Model hyperparameters: 6.89 3.66 3.34 5.84 16.17 4.81   

 

Table 6 presents the estimation of the NBRM parameters. The mean or mode of the 

covariates BP, Don't know, and EL Higher is more than 0.500, whereas the covariates 

HD, Don't know, CT4th of multiple, and CT5th of multiple are 0.000.  

 

Table 7: Comparison of models 

Model 

Model selection criteria 

MLIK DIC WAIC 

PRM -3597.74 8092.54 8102.35 

NBRM -3593.64 7050.75 7050.74 

 

Table 7 illustrates that the marginal log-likelihood of NBRM, -3593.64, exceeds that of 

PRM, -3597.74. The DIC for NBRM is 7050.75, which is lower than the PRM value 

of 8092.54. Additionally, the WAIC for NBRM is 7050.74, which is also lower than 

the PRM value of 8102.35. Therefore, NBRM aligns more effectively with the NCSD 

model. The NBRM exhibits lower DIC and WAIC values than PRM. Consequently, 

this substantiates that NBRM is suitable and superior to PRM. 

4. Discussion 

4.1. Findings 

This study succinctly outlines the INLA algorithm for estimating the 

marginal posterior mean or mode of parameters and hyperparameters in Bayesian 

spatial and spatio-temporal models. The parameters of interest, mean or mode of 
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PRM, are as follows. Mean or mode of the intercept is -1.112, BP Yes & BP Don’t 

know is 1.082 & 0.656, HD Yes & HD Don’t know is -0.92 & 0.000, HBP Yes &  

HBP Don’t know is 0.640 & 0.036, PL Yes & PL Don’t know is -0.487 & -0.348, 

CT1st multiple, CT2nd multiple, CT3rd multiple, CT4th multiple & CT5th multiple is 

0.204, 0.095, -105.924, 0.000 & 0.000, Age is  0.026, EL Primary, EL Secondary & 

EL Higher” is 0.391, 0.031, 0.449.    

The parameters of interest, mean or mode of NBRM, are as follows. Mean or mode of 

the intercept is -1.081, BP Yes & BP Don’t know is -0.316 & 0.513, HD Yes & HD 

Don’t know is -0.977 & 0.000, HBP Yes & HBP Don’t know is 0.032 & 0.017, PL 

Yes & PL Don’t know is -0.067 & -0.750, CT1st multiple, CT2nd multiple, CT3rd 

multiple, CT4th multiple & CT5th multiple is 0.201, 0.082, -31.384, 0.000 & 0.000, 

Age is  0.022, EL Primary, EL Secondary & EL Higher is  0.107, 0.491 & 0.701 

respectively. The NCSD dataset relevant to PRM and NBRM is employed to 

demonstrate the estimated solution using INLA. The algorithm INLA provides 

substantial computing advantages compared to various techniques for tackling issues 

related to random and fixed effects within designated regions and timeframes in 

spatial-temporal analysis. Using the INLA algorithm this work calculates the fixed 

effects of additive models. NBRM fits the best for the NCSD, which is over-dispersed. 

The alternative models can be used to estimate NCSD. The prevalence of c-section 

deliveries in AP from 2019 to 2021 is examined by Bayesian spatial-temporal 

modelling using the INLA framework. The NCSD model can be compared with other 

regression models. 

4.2. Conclusion 

The study is conducted using the INLA package in R. The NBRM; DIC, 

7050.75 and WAIC, 7050.74 demonstrate a superior match in modeling the NCSD 

compared to the PRM; DIC 8092.54 and WAIC 8102.35, as indicated by DIC and 

WAIC values. The INLA offers an effective approach for modeling in PRM and 

NBRM. The PRM can be compared with the count data regression models that 

evaluate over-dispersion, which is recommended for further research. This study 

aimed to utilize regression models dealing count data to examine the NCSD, 

employing empirical data from NFHS-5. The factors of interest are assessed, focusing 

on the NCSD childbearing women in Andhra Pradesh, India. NBRM is recognized as 

the most appropriate model, indicating that BP, HD, HBP, PL, CT, Age, and EL are 

significant factors influencing the NCSD. Therefore, government policymakers need 

to consider these variables while making health care policies for women aged 15 to 49 

years old who are childbearing.  
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