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Abstract. Climate change forecasting can be considered one of the impor-
tant branches of climatology as accurate estimates of future climate situations

are needed to plan timely and such interventions which will minimize the im-

pacts of change in the climate. General circulation models, or GCMs in short,
although they are commonly used, have a problem with their ability to per-

form long term forecasts as they tend to be hugely resource demanding. In

the present study, we aim to further examine climate time series data and
its improvement through deep learning. More specifically, we implemented

and tested two specific models: a Basic Long Short-Term Memory (BLSTM)

model and an Autoregressive Long Short-Term Memory (AR-LSTM) model.
The Basic LSTM model is developed to capture long-term dependencies in

time series data, but it does not specifically account for linear models of the
time series. The assumption about linear relations between variables in the

AR-LSTM is removed. It includes autoregressive elements to model such

relations, while LSTM units are reserved for representation of non-linear de-
pendencies.

1. Introduction

Among the most enduring problems that climate scientists face today is the issue
of climate change prediction. Particularly with continuously increasing global tem-
peratures and increasingly erratic weather conditions, making accurate long-term
forecasts of climate changes are critical for devising and implementing mitigation
measures, managing natural processes, and dealing with environmental hazards
[1]. Traditionally, climate forecasts have been based on the General Circulation
Models (GCMs), which represent the Earth’s climate system by numerical compu-
tations of complex physical equations governing atmospheric circulation, temper-
ature, and humidity. Although GCMs were crucial in avoiding some of the gaps
in understanding climate systems, they come with a host of limitations, including
high computational costs and a lack of accurate long-term forecast predictions [2].
Recent climate modelling studies highlight the unsuitability of GCMs for multi-
decadal risks. Also, their broad spatial range or predictions of climate change
for regions are quite expensive and complicated. For these reasons, a more prag-
matic approach that combines alternate approaches with new methods that include
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machine learning or ML approaches, especially time series approaches. Machine
learning, especially using deep learning models, has tremendous potential for fore-
casting time series data effectively by learning a wide variety of relationships and
patterns in complex data [4]. In addition, recurrent type networks RNNs and
the more advanced version LSTMs have found widespread applications in time
series analysis because of their ability to learn temporal sequences. Because of
the different kinds of memory cells incorporated into them, LSTM models can
help remember information for a long period, which helps understand the complex
and time series features underlying the climate data [5]. Nevertheless, traditional
LSTM models have disadvantages, especially in the aspect of representation of
polylinear relations that are embedded in the data. For instance, climate data
such as temperature anomalies are observed to have linear components (for ex-
ample gradual global warming) as well as non linear ones (for instance seasonal
or regional variations) [6]. If the strategy employs only purely LSTM technique
this will not facilitate a complete understanding of the situation as such linear
components are equally important if full accuracy as intended in the forecasts is
to be attained. In this regard, we present an Autoregressive Long-Short Term
Memory (AR-LSTM) model that consists of an autoregressive (AR) part to take
care of linear trends and LSTM layers to regress the non-linear trends within the
data in hand.

The autoregressive part in this AR-LSTM model, as the name suggests ad-
dresses the linear aspect of time series data which in this example is the slow con-
tinuous increase in the global temperatures. And by adding this part the model is
able to represent the short-term dynamics but also the longer term general trends.
Therefore, it is expected that, the in the competition of the two types of models,
the AR-LSTM model which combines LSTM layers for nonlinear dynamics and
AR-LSTM approach will outperform the conventional LSTM type only model in
real climate modeling and forecasts.

Through this research, the comparative study will be done on the Global Tem-
perature Anomaly Dataset using the Basic LSTM model and AR-LSTM models
through predicting climate change. The Mean Squared Error (MSE), Mean Abso-
lute Error (MAE), and R-squared (R²) were quantified to evaluate the predictive
performance of the developed models. The ultimate aim of the current study is
to prove that hybrid models such as AR-LSTM obtain better accuracy in climate
predictions specifically for forecasting long term trends and seasonal changes. This
study adds to the model of machine learning applications in climate science by uti-
lizing time series analysis and deep learning approaches. The results are likely to
improve the already existing climate models while offering new tools for climate
forecasting hence promoting more effective decision making aimed at conservation
and management of resources.

2. Literature Review

Climate Change has been researched for numerous decades, and different tech-
niques have been implemented in order to understand long term climatic trends
and its effects. Most widely used includes General Circulation Models of which are
mathematical programs that model the physical processes which regulate Earth’s
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climate system. In GCMs, the climate system is portrayed by a mesh consisting
of averaged equations that describe a variety of atmospheric, oceanic, and land
processes. These developments have been very useful in enhancing appreciation
of the climate processes, especially the prediction of global warming, sea level rise
and precipitation change in different regions of the globe [7]. However, GCMs are
faced with serious problems especially on the aspect of the two calibrated ones’
performance over long terms periods and fine resolution climatic factors which are
highly expensive to compute [8].

2.1. Limitations of GCMs: Through the use of GCMs, climate science has
improved significantly. However, there are some notable limitations. Intensive
resources and time are required to run simulations for a long time frame climate
scenario, and there is often a decline in performance when making predictions for
decades after the simulation has been set up. In addition, enhancing the quality of
these forecasts decreases the area and duration of the prediction, rendering a short-
term, seasonal or local climate variability projections as virtually impossible to do.
Additionally, GCMs frequently fall short of accounting for intricate feedbacks and
fast variations of the atmosphere, which causes researchers to look for complements
or other models, which are able to cover the non-linearities and uncertainties that
exist within the parameters of climate adequately [10].

2.2. Machine Learning in Climate Prediction: Machine learning models,
specifically those using deep learning, are demonstrating their potential for over-
coming some shortcomings associated with GCMs. These models have exceptional
skill in diagnosing latent structures of huge datasets, which makes them ideal for
any analysis that involves the climate classification. Recurrent Neural Networks
(RNNs), and in particular Long Short-Term Memory (LSTM) networks, have be-
come popular owing to their properties of capturing long-term and complex non-
linear dependencies in time series data [11]. LSTM models have found applications
in areas such as temperature, rainfall and even air pollution forecasting [12]. Such
models contain memory cells which enable them to have long-range dependencies
which makes them useful in tasks that require modelling of climate systems that
constantly changes over period of time. However, LSTM models have their own
shortcomings. For instance, as many climate change variables indicate, the in-
crease in global temperatures is a linear relationship that is not easily captured
with the almost black box LSTM models. Particularly, LSTMs have the capability
to capture the non-linear trend as well as seasonal variability but because they do
not incorporate linearity, accuracy in predicting the global climate change over a
long period could be affected. To address this shortage, researchers have started
to include autoregressive (AR) elements into LSTM networks to create hybrid
models.

2.3. Autoregressive Models in Time Series Analysis: Evidently, in time
series modelling autoregressive techniques have gained popularity over a time es-
pecially in the perspective of economic and environmental forecasting [13]. These
approaches aim to estimate future values based on a linear combination of past
observations, taking the linear relationships in the data. However, AR models are
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basic and do not allow for complicated non-linearities, meaning that they cannot
be relied upon for highly volatile datasets such as those in climate forecasting [14].
To solve this, AR model and LSTM combinations are considered. The standalone
LSTM fails to capture the linear effect and relies heavily on the AR-LSTM to
retain that effect while still being able to capture nonlinear components of a time
series. The AR portion accounts for the linear effects while the LSTM component
addresses the effects of nonlinearity and seasonal effects [15]. These combined
structures have been reported to outperform traditional forecasts in the areas of
energy, finance as well as weather forecasting, and are now being implemented in
the field of climate science.

2.4. Existing Applications of AR-LSTM Models: There are various studies
which address the inclusion of AR-LSTM models in environmental forecasts. So,
for example, [16] applied AR-LSTM models in predicting levels of emission of air
pollution and showed that the hybrid model yields better results than either the
AR or LSTM models used alone. Likewise, [17] applied autoregressive models for
flood forecasting and concluded AR-LSTM combination gave the best predictive
accuracy compared to the models used in isolation. These studies justify the use
of combined linear and non-linear approaches to modeling as this tends to enhance
the reliability of forecasts especially in cases where the time series datasets exhibit
complex scales interdependencies as in the case of climate change situations. Ad-
ditionally, research such as the one completed by [18] investigates different deep
learning architectures in predicting weather and climate, looking at the differences
in models. The results achieved indicate that the use of incorporated convolutional
and recurrent neural networks models, such as LSTM, outperforms the traditional
numerical models in short-range weather forecasts. However, applying these mod-
els tends to reveal that there are challenges in predicting large scale patterns and
trends in long range climate forecasts.

2.5. Comparison with Current Study: Climate science field has a new con-
tribution in applying machine learning techniques. This is done by analyzing the
international climate change prediction based on Basic LSTM model and AR –
LSTM model. Earlier researchers did show the effectiveness of hybrid models in
the forecasting of environmental changes but self-explanatory global temperature
change prediction was not widely tested. Therefore, this study aims to extend
the existing literature by measuring how well the AR- LSTM model performed
in tracking annual and seasonal climate changes which is usually modeled poorly
by other models that do not specifically aim to capture this feature. Considering
the vast applicability of autoregressive models and LSTM networks, this research
intends to circumvent the disadvantages associated with the use of GCMs whilst
increasing computational efficiency. The results from this study should therefore
assist in modeling long term predictions concerning climate changes and increase
the tools used in climate change science and environmental policies.

3. Proposed Methodology

3.1. Dataset Collection and Preprocessing. The purpose of this research is
to implement and evaluate the performance of two machine learning, the Basic
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Long Short-Term Memory model (LSTM) and Autoregressive Long Short-Term
Memory model (AR-LSTM) on global temperature anomaly data. Moreover, the
performance of these models is quantitatively compared with the existing models
to emphasize the AR-LSTM model advancements over the previous approaches.
Figure 1 illustrates the Flowchart for Climate Change Prediction.

3.1.1. Dataset Description. The data employed in this study is derived from the
Global Historical Climatology Network (GHCN) temperature anomaly datasets
that document temperature anomalies’ development over time and across a variety
of locations in the world [19]. This data set encompasses monthly mean temper-
ature readings from several weather stations around the world, hence facilitating
the determination of temperature anomalies from its normal or set conditions.

Source :The data is freely accessible and can be obtained through the National
Oceanic and Atmospheric Administration (NOAA) and the Climate Data Online
(CDO) platform. The GHCN dataset includes temperature readings sourced from
over one thousand weather stations across the globe with great spatial coverage.
Temporal Coverage: The dataset covers the period starting from 1880 and until
now enabling the study of long-term temperature patterns. In this case, the study
will span the time range of the years 2002 to 2022 due to the climate dynamics
and change happening more recently.

DataStructure : The dataset has the monthly temperature data for every
year and every month as deviations from the average temperature recorded for the
20th century. This type of structure makes it easier to examine changes in the
temperatures without considering the season or annual trend’s effects.

SpatialResolution : Global data can be accessed through the GHCN dataset
and data gathered from various stations, estimated to be in thousands. Also
mentioned are the coordinates of each weather station allowing for a location
based evaluation of the temperature effects.

Preprocessing : The collected dataset was adjusted to fit the analysis by
removing outliers using linear interpolation methods, rescaling to the window [0,
1] and Time lag features to allow for easy computation of the LSTM and AR-LSTM
models.

Owing to the historical time series data that this dataset has and its geo-
graphical context, this enables an ideal test of the proposed AR-LSTM model for
predicting temperature.

3.1.2. Handling Missing Values. All missing values from the dataset are inter-
polated using a linear method which values data points as a linear interpolation
of neighboring points to enhance the robustness of the dataset and reduce the
amount of distortion in the time series. This is performed so as to maintain data
integrity.

3.1.3. Data Normalization. The entire dataset is scaled to the interval [0, 1] be-
cause the temperature anomaly reliable data is given in a variety of scale. Though
differently implemented, normalizing parameters in the full range of models helps
to achieve an agility in dealing with convergence during training thus increasing
the efficacy of the model involved.
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Figure 1. Workflow of LSTM and AR-LSTM Model Develop-
ment and Evaluation

3.1.4. Train-Test Split. The available dataset is separated into two parts with
the training set accounting for 80 percent and the testing set accounting for 20
percent. The training set is used to train the models while the testing set is meant
to assess the performance accuracy of the models on unused data. This sort of
partitioning makes sure that the models are try out older data, hence, making it
difficult for the models to over fit and allows them to be thoroughly evaluated.
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3.1.5. Time Lag Feature Engineering. For predicting the future temperatures a
temporal window parameter or lag features are created where the model uses
the previous months of temperature anomalies to forecast the future values. For
example, a time interval of twelve months is taken in predicting the temperature
anomaly of the succeeding month. This implies that in any single prediction, the
model takes a sequence of twelve past monthly anomalies as input in prediction.

3.2. Model Architecture.

3.2.1. Basic LSTM Model. The Basic LSTM model is designed to analyze and
learn long-term dependencies in time series data. Its structure comprises the
following components:

• Input Layer: The model takes 12 lag features (i.e., the previous 12
months of temperature anomalies) as input.

• LSTM Layers: Two Long Short-Term Memory (LSTM) layers are im-
plemented, each containing 64 hidden units. LSTM layers are chosen for
their strong ability to retain information over time and perform well in
time series forecasting tasks.

• Dropout Layers: A dropout layer with a dropout rate of 20% is placed
after each LSTM layer to prevent overfitting by randomly omitting a subset
of neurons during training.

• Dense Layer: The final output layer is a dense (fully connected) layer
with a single neuron, which predicts the temperature anomaly for the next
month.

• Loss Function and Optimizer: The model uses Mean Squared Error
(MSE) as the loss function and employs the Adam optimizer with a learn-
ing rate of 0.001. This configuration facilitates stable gradient descent and
effective convergence during training.

3.3. AR-LSTM Model. An autoregressive component added to the LSTM lay-
ers for capturing both linear and non-linear relationships in the time series data.
The architecture is as follows:

• Component: The first component of the model AR-LSTM is the Au-
toregressive (AR) model, and this model does the explicit modelling of
the linear relationships embedded in the data. In this case, an AR (5)
model is used thereby weighting the last five time steps for predicting the
next time step. This component ensures that the linear trend i.e., gradual
global warming is captured.

• Residual Error Calculation: The residual error from the AR model is
calculated by subtracting the AR-predicted value from the actual value.
This residual signifies the non-linear part of the time series, which the
LSTM layers will model.

• LSTM Component: The residual errors are fed deep into the LSTM
layers; two stacked LSTM layers with 64 units. These layers learn to
capture more complex relationships within the data like seasonal trends
random oscillations.
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• Dense Layer: The final output layer summarizes the forecast for the
next month’s temperature anomaly by integrating the predictions of the
AR component (linear part) along with the LSTM component (non-linear
part).

• Loss Function and Optimizer: Just as in the case of Basic LSTM
model, AR-LSTM model manages MSE during training, which assumes
the role of loss function and utilizes Adam’s optimizer set at a learning
rate of 0.001.

3.3.1. Model Training. For both, the Basic LSTM model and AR-LSTM, the
following training configuration is utilized while using the temperature anomaly
dataset:

• Epochs: The models are trained for a maximum of 100 epochs. This is
enough time for the models to reach optimal solutions.

• Batch Size: A batch size of 64 is the optimum batch size for this training
procedure, allowing for a compromise between time and the ability to learn
efficiently.

• Early Stopping: The models also employ an early stopping mechanism
whereby training will be called off after a specified number of epochs with-
out improvement on the validation set, reducing the risk of over fitting and
minimizing unnecessary computational resource usage.

• Dropout Regularization: During training, dropout layers are applied
to prevent over fitting by randomly deactivating a percentage of neurons
during each forward pass, supporting generalization.

3.4. Evaluation Metrics. After the training, the two models are commonly
tested on the test set and in such testing, the models’ prediction accuracy is
evaluated based on the following performance metrics:

• Mean Squared Error (MSE):MSE calculates the average of the squared
differences between the predicted temperature anomalies obtained and the
actual temperature anomalies. The prediction accuracy is high with a
lower MSE.

• Mean Absolute Error (MAE): MAE measures the average of the ab-
solute differences between the predicted and the actual value. This also
assists in providing explanation towards the level of error the model has on
average. Measures the average absolute difference between the predicted
and actual values. This metric provides insight into the model’s overall
error magnitude.

• R-squared (R2): R2 is used to determine the fit of the model’s prediction
to the actual data. Ignoring margins of error, an R-square score closer to
1 means there is higher explanation for variance in the target variable by
the model.

In the case of this paper, Mean Squared Error, Mean Absolute Error and R-
squared metric is what will be used to evaluate and compare the two models
developed i.e. Basic LSTM and AR-LSTM. More emphasis will be placed towards

107



IMPROVING CLIMATE CHANGE PREDICTIONS USING T.S.A AND D.L.

Figure 2. Comparison of Performance Metrics for Basic LSTM
and AR-LSTM Models

how the models cope with temperature anomalies over short and long periods of
time.

The Basic LSTM model managed to capture general trends to a reasonable
level, but it struggled with linear integrations focusing on low frequency, long run
temperature changes. On the other side, the AR-LSTM model did enhance the
predicting power quite a lot, especially for the linear trends such as increasing
temperature trend or seasonal variations. The Table 1 gives the values of Mean
Squared Error (MSE), Mean Absolute Error (MAE), and R-squared (R2) for the
models and confirms the improved predictive performance of the AR-LSTM model
to the Basic LSTM model. Overall, the AR-LSTM model performed significantly

Table 1. Comparison of Performance Metrics for Basic LSTM
and AR-LSTM Models.

Model MSE MAE R2

Basic LSTM 0.015 0.098 0.85

AR-LSTM 0.010 0.075 0.92

better than the Basic LSTM model in all metrics and so has the ability to capture
even the nonlinear trends more effectively. It should be pointed out that both MSE
and MAE were considerably lower and R2 value was closer to 1, hence greater data
fit.

The AR-LSTM model performed better than the Basic LSTM model in terms
of MSE, MAE, R-squared values as shown in Figure 2 demonstrating the enhanced
predictive accuracy of the AR-LSTM model over the Basic LSTM model.

3.5. Comparative Analysis with Existing Methods. Existing Methods
Most of the climate prediction models currently used, in particular General Circu-
lation Models (GCMs) or as they are sometimes known Atmospheric GCMs, are
based on the large scale simulations of the atmosphere. Although GCMs enable
accurate forecasts for short time periods it is the capacity for long-term forecasting
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that is significantly limited due to computing constraints and lack of capacity in
modeling non-linear and regional differences [9]. Furthermore, for various spheres,
numerical models such as autoregressive models or separate LSTM models for time
series forecasting were employed, but in general, they had problems in capturing
both linear and highly intricate climate data seasonality. Comparison with AR-
LSTM The AR-LSTM model designed in this work improves over the limitations
of existing methods by acquiring the benefits from both autoregressive and LSTM
models:

• Linear Trends: The model AR-LSTM has an autoregressive mechanism
that helps model like temperature anomalies that show gradual trends
over time such as global warming which are often difficult for models using
LSTM only components to achieve.

• Non-linear Dynamics: The model makes use of LSTM which can be
able to learn non-linear features such as seasonal features, seasonal features
which are seldom addressed in GCM and AR models.

• Computational Efficiency: In places where there is a high required
computing resource such as it is the case with GCM, the AR-LSTM model
is relatively computationally cheaper and this means that it can be trained
on standard computer set up without affecting predictive power of the
model.

Carrying out a comparative study of the performance of AR-LSTM model with
other GCMs and autoregressive models shows the advantages of this asymmetri-
cal hybrid model approach to the problems of climate change. GCMs are often
acknowledged for their detailed aging and other life cycle simulations, whereas the
AR-LSTM prefers an alternative methodology that is faster, cheaper and less com-
plicated in terms of resources for projecting climate of a longer time horizon where
resource limitations are a factor. The Table 2 summarizes the capacities and suc-
cesses of climate projection models such as General Circulation Models (GCM),
Autoregressive (AR) models, Basic LSTM models and AR-LSTM models. The
areas of evaluation include linear and nonlinear trend fitting, seasonal variations,
degree of complexity as well as the MSE, MAE, R squared (R2), training duration
and long term and short term forecast accuracy and horizon.

Figure 3 shows how GCM, AR, Basic LSTM, and AR-LSTM Models can be
compared to each other in terms of capturing linear trends, non-linear dynam-
ics, handling seasonal variations, computational complexity, and key performance
metrics including Mean Squared Error (MSE), Mean Absolute Error (MAE), R-
squared (R²), training time, and predictive accuracy for both long-term and short-
term forecasts. The table can be summarized as follows:

• General Circulation Models (GCMs): These models are good in
terms of reproducing physical processes and basic trends especially during
short-term prediction, however they are very computer intensive and are
not really good for long term forecasting because of the complexity of the
model.

• Autoregressive (AR) Models:Autoregressive models have the tendency
to perform best when it comes to exploiting linear trends, but it is lacking
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Table 2. Comparison of Model Features and Performance Met-
rics.

Feature/Model GCM AutoReg.
(AR)
Models

Basic
LSTM
Model

AR-
LSTM
Model

Captures Linear Trends Yes Yes No Yes

Captures Non-linear Dynamics No Limited Yes Yes

Handling of Seasonal Variations Moderate Poor Moderate Excellent

Computational Complexity Very High Low Moderate Moderate

MSE (Mean Squared Error) High for
long-term
predictions

Varies (usu-
ally moder-
ate)

0.015 0.010

MAE (Mean Absolute Error) High for
long-term
predictions

Moderate 0.098 0.075

R² (Goodness of Fit) High for
short-term,
low for
long-term

Moderate 0.85 0.92

Training Time Very High Low Moderate Moderate

Predictive Accuracy (Long-Term) Limited due
to computa-
tional cost

Low Moderate High

Predictive Accuracy (Short-Term) High Moderate High High

Figure 3. Comparison of Features and Performance Metrics
across Models.
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when trying to tackle non-linearities and seasonal variations and thus not
optimized for climate predictions that has both types of patterns.

• Basic LSTM Model: The Basic LSTM network model appears to take
into account non-linear relationships and temporal dependencies, however
it does not seem to model linear trends which is essential at long term
horizon.

• AR-LSTM Model: The performance of the AR-LSTM model, that com-
bines the benefits of the AR and the LSTM models, is superior in almost
every aspect as it can model both linear and non-linear features well with
lower MS and MAE, and offering higher R² scores. This makes it very
effective for both short- and long-term climate predictions.

The description above clearly illustrates the edge that the AR-LSTM model pos-
sesses over traditional GCM’s as well as other machine learning models.

4. Conclusion

The specific focus of the developed approach is to combine traditional autore-
gressive models and their LSTM network extensions, in order to meet the re-
quirements of climate change prediction. This study, which seeks to analyze the
efficiency of hybrid models using basic LSTM and AR-LSTM, aims to demonstrate
the usefulness of such hybrid models in the better prediction of global tempera-
ture anomaly datasets. With the results from this study, it may be possible to
diversify the existing models with others that are computationally less intensive
yet effective in climate predictions. In terms of improvement over existing LSTM
and numerical models, the AR-LSTM model has brought forth a significant im-
provement as it can pinpoint both linear and nonlinear patterns from the climate
data. This is evident from the MSE, MAE and R² scores of the model which
suggest that hybrid approaches like AR-LSTM are effectively capable of long-term
predictions of climate changes. These models will be improved further in the next
phase of this work to predict other climate change variables and will integrate
more features like external climate drivers.
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