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Abstract. In this paper, we consider the valuation of Guaranteed Annuity

Options (GAOs) in a very generalised modelling framework where both inter-

est rate and mortality risk are stochastic and correlated. It is extremely hard
to price these type of options in the correlated environment and as a result

there is an absence of a closed form solution in the literature. We utilise dou-
bly stochastic stopping times to incorporate the randomness about the time

of death and employ a suitable change of measure to make the valuation of

survival benefit possible, there by adapting the pay-off of the GAO in terms
of the pay-off of a basket call option. We derive general price bounds for

GAOs by employing the theory of comonotonicity, the Rogers-Shi ([72]) ap-

proach and the general closed form basket option pricing bounds as discussed
in [16]. The theory derived is then applied to affine models to generate some

very interesting formulae for the bounds under the affine set up. Numerical

examples are furnished and benchmarked against Monte Carlo simulations to
estimate the price of a GAO for the well known Vasicek model.

1. Introduction

The present times have witnessed a huge leap in life expectancy sending ripples
across financial institutions who face unexpected challenges in the pricing of key
longevity linked products such as ‘Guaranteed Annuity Options’ sparking a lot of
interest in this area. A sneak peek into the history of mankind reveals that in the
twentieth century, being a centenarian was considered to be a matter of great pride
and almost an impossible feat to achieve. So much so that about a century ago,
the British monarch started sending anniversary messages to “current citizens of
[the monarch’s] realms or UK Overseas Territories” who reached the age of 100.
In 1917, King George V sent a total of 24 celebratory messages to centenarians.
By 1952 this had increased more than 10-fold to 255, and in 2016, it has exploded
to nearly 60-fold to 14500 (c.f. [66]). The million dollar question is: Where will it
end?

In a recent study based on data from Office of National Statistics, UK (c.f.
[67]), [3] concluded that, the straight line increase in the numbers of UK citizens
reaching an age of 100 years seems set to continue. According to the latest posting
on the Official Statistics website1, one in three babies born in the year 2016 will
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live to see their 100th birthday. Interestingly, female life expectancy scores over
their male counterparts. Around 13% of girls born in 1951 are expected to be alive
in 2051. For girls born in 2016 the figure is estimated to be 35% and around 60%
of girls born in 2060, might expect to live long enough to receive a message from
the reigning monarch. At this rate, the number of centenarians is also projected to
continue rising – reaching a mammoth 83,300 in 2039 which is more than enough
to keep any future monarch busy!

This interesting excerpt highlights the gravity of the problem that is looming
large over financial institutions today viz. longevity risk - the risk that people
outlive their expected lifetimes. Longevity risk is a considerable risk that affects
adversely both the willingness and ability of financial institutions to supply re-
tired households with financial products to deal with wealth de-cumulation in
retirement. Depending on the scenario and need, longevity risk can be defined in
a variety of ways. A statistical perspective of the definition is furnished by [20]
who provide the following concise yet complete definition: “It is a combination of

• uncertainty surrounding the trend increases in life expectancy
and

• variations around this uncertain trend that is the real problem.

This is what is meant by longevity risk and it arises as a result of unanticipated
changes in mortality rates”. Longevity risk is borne by every institution making
payments that depend on the life span of individuals. These include Defined
Benefit (DB) pension plan sponsors, insurance companies selling life annuities,
and governments through the social security pension system and the salary-related
pension plans of public-sector employees. The present scenario is particularly
acute for insurance companies operating in the European Union (EU) where a
new regulatory regime, Solvency II, was introduced in 2016. This requires insurers
to possess a pool of significant additional capital to back their annuity liabilities
if longevity risk cannot be hedged effectively or marked to market. In the next
couple of sections we throw light on the causes of longevity risk and see what
possible solutions can be proposed.

Interestingly, the product that was responsible for bringing longevity risk into
limelight was Guaranteed Annuity Option (GAO) through the closure of the
world’s oldest life office, the Equitable Life Assurance Society (ELAS) in December
2000. Between 1957 and 1988, ELAS had sold a type of pension annuities with
the so-called “Guaranteed Annuity Options (GAOs)” as an embedded feature of
the contracts. A guaranteed annuity option (GAO) gives the policy holder a right
to convert his accumulated fund at retirement at a guaranteed rate rather than
at market annuity rate. At the time of issuance, the value of these GAOs was
considered worthless, but they became very valuable at the time of maturity, due
to two factors:

• Reductions in market interest rates
and

• Unanticipated falls in mortality rates at the oldest ages.

The resultant liability obligations from the guarantees, resulted in serious solvency
concerns for ELAS, requiring the setting up of extra reserves, and finally lead to
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unforeseen financial crisis for the firm (c.f. [7]). Although it appears that the
reason behind the problem was poor risk management of the company, and that the
problems could be avoided if ELAS had hedged its exposure to both interest rate
risk and longevity risk. However, [13] have clearly pointed out that, even if ELAS
had anticipated the problem, it still lacked good instruments to hedge its exposure
to both risks, particularly longevity risk, back to that time. Therefore, this is in
fact not only the problem of ELAS. During the late 1970s and 1980s, guaranteed
annuity rate between cash and pension was a common feature of individual pension
policies in the UK and was sold by more than 40 companies in the market.

The flourishing market of sophisticated insurance products with benefits linked
to financial variables along with various guarantees has given impetus to the active
use of stochastic modeling of both interest and mortality rates in the valuation
of annuity-related products. In this sub-section, we present a brief recap of the
research carried out in the last two decades in context of GAOs. A good reference
in this regard is [42].

In the present era, considering mortality to be independent of financial markets
appears to be a far fetched assumption and a more realistic belief is that the two
underlying risks are correlated. This belief is supported by researchers and prac-
titioners. For example, [39] examine the likelihood that the slowly evolving mean
in the log dividend-price ratio is related to demographic trends. [64] investigates
how demographic changes affect the value of financial assets. He experiments with
a continuous time overlapping generations model having stochastic birth and mor-
tality rates. His model suggests that demographic transitions have an important
role to play in explaining parts of the time variation in the real interest rate, equity
premium and conditional stock price volatility. Moreover, he provides adequate
conditions for the interest rate to be decreasing in the birth rate and increasing in
the death rate. In [25], the authors furnish some empirical evidence of a changing
behaviour of the economy and the financial markets during periods of extreme mor-
tality. Further, [24] explore existence of this dependence within the Feller process
framework. To take care of this scenario, EU’s Solvency II Directive has laid out
new insurance risk management practices for capital adequacy requirements based
on the assumption of dependence between financial markets and life/health insur-
ance markets including the correlation between the two underpinning risks viz.
interest rate and mortality (c.f. Quantitative Impact Study 5:Technical Specifica-
tions [71]). [51] introduced a pricing framework in which the dependence between
the mortality and the interest rates is explicitly modeled. In their methodology,
the mortality rate was modeled as an affine-type diffusion process just like the
short rate process. They derived analytic expressions for mortality-linked insur-
ance products employing the change of measure technique. Their approach paved
the path for new perspectives and methodology in the valuation of other insurance
products under a more reasonable assumption that risk factors are dependent.

This line of research has triggered research on evaluation of GAOs under the
assumption of correlation between mortality and financial risks. [62, 63], were
the pioneers to consider the correlated framework for valuing a GAO and they
developed a pricing formula where the interest rate and mortality processes follow
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bivariate Gaussian dynamics. In their setting, the dependence between mortality
and interest rates is described by one constant, namely the pairwise linear cor-
relation coefficient. In fact in [62] they use the theory of comonotonic bounds
in approximating the sums of lognormal random variables to obtain convex price
bounds for GAOs in the Gaussian setting. [43] propose a modeling framework,
where the interest and mortality rates are correlated and the dynamics of each
risk factor possess regime-switching affine structures, to facilitate the GAO val-
uation. The correlation introduced through the diffusion components of the risk
factors and the underlying Markov chain driving the switching of regimes pro-
vides an explanation of the the rates’ relation and dynamics. A different measure
called endowment-risk-adjusted measure, which first appeared in [62] and was sub-
sequently used in [45] under several competing models, is employed to price the
GAO.

More recently, [28] scrutinize the consequences of the dependence assumption
on the pricing of a GAO. They assume that mortality and interest rates are driven
by systematic and idiosyncratic factors, modelled by affine models which remain
positive such as the multi-CIR and the Wishart models. They employ the above
mentioned change of measure to value the GAO using Monte Carlo methodology.
Their investigation reveals that for an advanced affine model (such as the Wishart
one) that permits a non-trivial dependence between the mortality and the interest
rates, the value of a GAO cannot be explained only in terms of the initial pairwise
linear correlation and this fact plays an important role in risk management in the
presence of an unknown dependence. Finally, [44] address the problem of setting
capital reserves for a guaranteed annuity option (GAO). They formulate the mod-
eling framework for the loss function of a GAO. A one-decrement actuarial model
having death as the only decrement is employed. Once again, the interest and
mortality risk factors follow correlated affine structures. Risk measures are calcu-
lated using moment-based density method and compared with the Monte-Carlo
simulation. Bootstrap technique is used to assess the variability of risk measure
estimates. The authors also establish the relation between a desired level of risk
measure accuracy and required sample size under the constraints of computing
time and memory. A sensitivity analysis of parameters is also conducted. Their
numerical investigations furnish practical considerations for insurers to abide by
certain regulatory requirements. Thus, dealing with Guaranteed Annuity Options
under the correlation assumption of mortality and financial risks offers a fertile
ground for future research.

The existing literature in the direction of pricing of GAO’s under the correlation
assumption is rather scarce and only Monte Carlo estimation of the GAO price is
available for sophisticated models (c.f. [28]). But Monte Carlo method is generally
time consuming for complex models (c.f. [40]). This article is a concrete step in
the direction of pricing of GAOs under the correlation direction. It investigates
the designing of price bounds for GAO’s under the assumption of dependence
between mortality and interest rate risks and provides a much needed confidence
interval for the pricing of these options. In a set up similar to [8], we advocate
the use of doubly stochastic stopping times to incorporate the randomness about
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the time of death. Moreover the proposed bounds are model-free or general in the
sense they are applicable for all kinds of models and in particular suitable for the
affine set up. Keeping pace with the relevant literature (c.f. [62], [28]), we applied a
change of probability measure with the ‘Survival Zero Coupon Bond’ as numéraire
for the valuation of the GAO. This change of measure facilitates computation
and enhances efficiency (c.f. [63]). The organization of the paper follows. In
Section 2 we introduce the market framework with the necessary notations. In
Section 3 we define GAOs and show that their pay-off is similar to that of a
basket option. This is followed by Section 4 which highlights the technicalities of
affine processes. Sections 5 and 6 are the core sections which present details on
finding lower and upper bounds for GAOs. In Section 7 we present examples while
numerical investigations in support of the developed theory appear in Section 8.
Section 9 then concludes the paper.

2. The Market Framework

In this section, we introduce the necessary set up required to construct the
mathematical interplay between financial market and the mortality model. Quite
clearly, due to the presence of both mortality and interest rate risk, we are handling
a pricing problem in an incomplete market so that a unique pricing measure does
not exist. We therefore utilize the fact that in the absence of arbitrage, at least
one equivalent martingale measure (EMM) Q exists that can then be used to find
fair prices of mortality contingent securities. We exploit this fact and refrain from
assuming that the mortality evolution process behaves according to a given model,
but aim to draw conclusions that hold under any model. This is in contrast to the
standard approach to pricing mortality contingent products which is to postulate
a model and to determine the price of the underlying as the suitably discounted
risk neutral expectation of the payoff under that model. A major problem with
this approach is that no model can capture the real world behaviour of mortality
linked securities fully, thus exposing the entire procedure to model risk.

We consider a filtered probability space (Ω,F,F,Q) where F = {Ft}t≥0 such
that the filtration is large enough to support a process X in Rk, representing the
evolution of financial variables and a process Y in Rd, representing the evolution
of mortality. We concentrate on an insured life aged x at time 0, with random
residual lifetime denoted by τx which is an F-stopping time.

The filtration F includes knowledge of the evolution of all state variables up to
each time t and of whether the policyholder has died by that time. More explicitly,
we have:

Ft = Gt ∨Ht

where

Gt ∨Ht = σ (Gt ∪Ht)

with

Gt = σ (Zs : 0 ≤ s ≤ t) , Ht = σ
(
1{τ≤s} : 0 ≤ s ≤ t

)
and where Z = (X,Y ) is the joint state variables process in Rk+d. Thus we have

Gt = GXt ∨ GYt .
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In fact H = {Ht}t≥0 is the smallest filtration with respect to which τ is a stopping
time. In other words H makes F the smallest enlargement of G = {Gt}t≥0 with
respect to which τ is a stopping time, i.e.,

Ft = ∩s>tGs ∨ σ (τ ∧ s) , ∀t.
We may think of Gt as carrying information captured from medical/demographi-
cal data collected at population/ industry level and of Ht as recording the actual
occurrence of death in an insurance portfolio. Further, we take as given a pre-
dictable short rate process r = {rt}t≥0 such that it satisfies the technical condition∫ t
0
rsds <∞ a.s. for all t ≥ 0. The short rate process r represents the continuously

compounded rate of interest of a risk-less security and it is G-predictable.
Finally, we assume that the stopping time τx is governed by an intensity µx

such that µx is a non-negative Gt-predictable process satisfying
∫ t
0
µx (s) ds < ∞

a.s. for all t ≥ 0.
One can refer to [8] to compute the ‘probability of survival’ up to time T ≥ t,

on the set {τ > t}, i.e.

Q (τ > T |Ft) = E
[
e−

∫ T
t
µsds|Ft

]
, (2.1)

where E denotes the usual expectation w.r.t the EMM Q.
In fact, we characterize the conditional law of τ in several steps. Given that the

non-negative Gt-predictable process µ is satisfying
∫ t
0
µx (s) ds <∞ a.s. for all t >

0, we consider an exponential random variable Φ with parameter 1, independent
of G∞ and define the random time of death τ as the first time when the process∫ t
0
µsds is above the random threshold Φ, i.e.,

τ
.
= {t ∈ R+ :

∫ t

0

µs (s) ds ≥ Φ}. (2.2)

It is evident from (2.2) that {τ > T} = {
∫ T
0
µsds < Φ}, for T ≥ 0. Next,

we work out Q (τ > T |Gt) for T ≥ t ≥ 0 by using tower property of conditional
expectation, independence of Φ and G∞ and facts that µ is a Gt-predictable process
and Φ ∼ Exponential (1), i.e.,

Q (τ > T |Gt) = E
[
e−

∫ T
0
µsds|Gt

]
. (2.3)

In fact, the same result holds for 0 ≤ T < t. Further, we observe that {τ > t}
is an atom of Ht. As a result, in a manner similar to [8], we have constructed a
doubly stochastic Ft-stopping time driven by Gt ⊂ Ft in the following way (c.f.
[12], ex 34.4, p.455):

Q (τ > T |GT ∨ Ft) = 1{τ>t}E
[
1{τ>T}|GT ∨Ht

]
= 1{τ>t}e

−
∫ T
t
µsds. (2.4)

Next, the conditioning on Ft can be replaced by conditioning on Gt as shown
in the Appendix C of [8].

We remark that, we do not take Gt ∨ σ(Φ) as our filtration Gt because, in that
case, the stopping time τ would be predictable and would not admit an intensity.
The construction portrayed here guarantees that τ is a totally inaccessible stopping
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time, a concept intuitively meaning that the insured’s death arrives as a total
surprise to the insurer (see [70], Chapter III.2, for details). With this, we move to
the focal point of this paper viz. GAOs.

3. Guaranteed Annuity Options

3.1. Introduction. AGuaranteed Annuity Option(GAO) is a contract that gives
the policyholder the flexibility to convert his/her survival benefit into an annuity
at a pre-specified conversion rate. The guaranteed conversion rate denoted by g,
can be quoted as an annuity/cash value ratio. According to [14], the most popular
choice for the guaranteed conversion rate g for males aged 65 in the UK in the
1980s was g = 1

9 , which means that per £1000 cash value can be converted into
an annuity of £111 per annum. The GAO would have a positive value if the
guaranteed conversion rate is higher than the available conversion rate; otherwise
the GAO is worthless since the policyholder could use the cash to obtain higher
value of annuity from the primary market. As a result, the moneyness of the GAO
at maturity depends on the price of annuity at that time in the market and this
in turn is calculated using the prevailing interest and mortality rates.

3.2. Mathematical Formulation. Consider an x year old policyholder at time
0 who has an access to a unity amount at his retirement age Rx. Then, a GAO
gives the policyholder a choice to choose at time T = Rx − x between an annual
payment of g or a cash payment of 1. Let äx (T ) denote the value at time T of
a whole life annuity due for a person aged x at time 0, which gives an annual
payment of one unit amount at the start of each year, this payment beginning
from time T and conditional on survival. If w is the largest possible survival age
then the annuity price (which is truncated in a way as the largest survival age is
assumed to be w) is given by

äx (T ) =

w−(T+x)−1∑
j=0

E
[
e−

∫ T+j
T

(rs+µs)ds|GT
]

=

w−(T+x)−1∑
j=0

SZ (T, T + j) (3.1)

and

SZ (t, T ) = E
[
e−

∫ T
t

(rs+µs)ds|Gt
]

(3.2)

denotes the price at time t of a pure endowment insurance with maturity T for an
insured of age x at time 0 who is still alive at time t. This insurance instrument is
nomenclated as a survival zero-coupon bond abbreviated as SZCB by [28] and the
authors remark that it can be used as a numèraire because it can be replicated by a
strategy that involves longevity bonds (c.f. [60]) assuming a liquid market for these
instruments. This is in analogy with the usual bootstrapping methodology used
to find the zero rate curve starting by coupon bonds. This insurance instrument
pays one unit of money at time T upon the survival of the insured at that time.
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In fact r + µ can be viewed as a fictitious short rate or yield to compare these
instruments with their financial counterparts.

At time T , the value of the contract having the above embedded GAO can be
described by the following decomposition

V (T ) = max(gäx (T ) , 1)

= 1 + gmax

(
äx (T )−

1

g
, 0

)
. (3.3)

In order to apply risk neutral evaluation, we state a result from [8] to compute
the fair values of a basic pay-off involved by standard insurance contracts. These
are benefits, of amount possibly linked to other security prices, contingent on
survival over a given time period. We require the short rate process r and the
intensity of mortality µ to satisfy the technical conditions stated in Section 2.

Proposition 3.1. (Survival benefit). Let C be a bounded Gt-adapted process.
Then under the EMM Q, the time-t fair value SBt (CT ;T ) of the time-T survival
benefit of amount CT , with 0 ≤ t ≤ T , is given by:

SBt (CT ;T ) = E
[
e−

∫ T
t
rsds1{τ>T}CT |Ft

]
= 1{τ>t}E

[
e−

∫ T
t

(rs+µs)dsCT |Gt
]
(3.4)

In particular, if C is GXt -adapted and X and Y are independent, then, the following
holds

SBt (CT ;T ) = 1{τ>t}E
[
e−

∫ T
t
rsdsCT |GXt

]
E
[
e−

∫ T
t
µsds|GYt

]
(3.5)

Proof. A comprehensive proof can be found in [8]. □

Thus, we have the value at time t = 0 of the second term in (3.3), which is
called the GAO option price entered by an x-year policyholder at time t = 0 as

C(0, x, T ) = E

[
e−

∫ T
0

(rs+µs)dsg

(
äx (T )−

1

g

)+
]
. (3.6)

In order to facilitate calculation, we adopt the following change of measure.

3.3. Change of Measure. We advocate a change of measure similar to the one
adopted in [28]. We define a new probability measure Q̃ with the Radon-Nikodym

derivative of Q̃ w.r.t Q as:

dQ̃

dQ
:= ηT =

e−
∫ T
0

(rs+µs)ds

E
[
e−

∫ T
0

(rs+µs)ds
] . (3.7)

We will use Ẽ to denote the expectation w.r.t the new probability measure Q̃. An
important point here is that the measure Q̃ preserves the doubly stochastic nature
of the death time, as condition (A4) in [9] is satisfied. The setting considered here
is considerably more powerful than plain vanilla market consistent valuation. For
example, it could apply to situations in which calibration of the measures Q̃ and Q
is informed by empirical evidence on policyholder behaviour, as long as the latter
is captured by a suitable EMM preserving the main features of the framework (c.f.
[4], section 4.5). In this case, the approach could take into account the “private
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valuation” of the annuity cashflows in addition to the case of a benchmark market
annuity rate.

Further on using Bayes’ Rule for conditional expectation, the survival benefit
in (3.4) can be rewritten as

SBt (CT ;T ) = 1{τ>t}SZ (t, T ) Ẽ [CT |Gt] (3.8)

The advantage of the change of measure approach is that the complex expecta-
tion appearing in the survival benefit given in (3.4) has been decomposed into two
simpler expectations: the first one corresponds to the price of the SZCB given in
(3.2) and the second one is connected to the expected value of the survival benefit

CT under the new probability measure Q̃ which needs to be determined. In the
passing, one notes that in (3.8) if CT = 1, we get an interesting relationship

SBt (1;T ) = 1{τ>t}SZ (t, T ) . (3.9)

where SZ (t, T ) has been defined in(3.2). Clearly SZ (t, T ) is the pre-death coun-
terpart of process SBt (1;T ) (c.f.[10], section 2). Another good reference is [52].
In particular

SB0 (1;T ) = 1{τ>t}SZ (0, T ) . (3.10)

A similar change of measure has been employed by [63] and [62] with the only
difference that they use the unitary survival benefit given in (3.9) as the numèraire.
On the contrary, [51] have used a twin change of measure to compute value of a
GAO.

3.4. Pay-off. Under the new probability measure Q̃ defined in (3.7), the GAO
option price decomposes into the following product

C(0, x, T ) = gSZ (0, T ) Ẽ

[(
äx (T )−

1

g

)+
]

(3.11)

where SZ (0, T ) is defined in (3.2). To develop ideas further, we express the pay-off
in a more appealing form as follows:

C(0, x, T ) = gSZ (0, T ) Ẽ

(n−1∑
i=1

S
(i)
T − (K − 1)

)+
 (3.12)

where we utilize the fact that SZ (T, T ) = 1 and define n = w − (T + x); K = 1
g

and

S
(i)
T = SZ (T, T + i) ; i = 1, 2, ..., n− 1. (3.13)

The last term on the R.H.S in the payoff of the GAO resembles the pay-off of a
basket option having unit weights and the SZCBs, maturing at times T + 1, T +
2, ..., w − x− 1 acting as the underlying assets. We seek to evaluate tight model-
independent bounds for the GAOs in the ensuing sections. To the best of our
knowledge, the equations (3.6) and (3.11) have only been valued by Monte Carlo
simulations for specific choice of models. In [63], numerical experiments in the
Gaussian setting have shown that (3.11) is a little bit more precise and in particular
it is less time consuming than the implementation of (3.6). [28] have investigated
these calculations for different affine models such as the multi-CIR and the Wishart
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cases. [62] have computed very specific comonotonic bounds for GAOs in the
Gaussian framework.

It is important to point out here that the more generalized version of GAOs
include what is called the “quanto” or “equity” component. Assume that we have
a single premium equity-linked policy. The contract is assumed to mature at time
T . The premium is invested into an account with market value SF (t) at time
t, where SF (t) is a random process. At maturity, the proceeds of the policy are
SF (T ). As a result, the full-fledged version of GAO pay-off in this case on lines
of (3.11) is

C(0, x, T ) = gSZ (0, T ) Ẽ

[
SF (T )

(
äx (T )−

1

g

)+
]

(3.14)

The simplest framework for valuing books of equity linked GAO policies in run
off, for example, typically relies on a two factor affine model for the short rate and
a geometric Brownian motion for the equity/quanto component (c.f. [6]). The
correlation structure of the three-dimensional Brownian motion is a very important
dimension of the model when it comes to GAO valuation. Although the extension
to a quanto pay-off component is outside the scope of the present work, we plan
to undertake the same in near future. We now discuss affine processes and utilize
these processes to test our bounds.

4. Affine Processes

Affine processes are essentially Markov processes with conditional characteristic
function of the exponentially affine form. A thorough discussion of these processes
on canonical state space appears in [36] and [41]. More recently the development of
multivariate stochastic volatility models has lead to the evolution of applications of
affine processes on non-canonical state spaces, in particular on the cone of positive
semi-definite matrices. A plethora of research papers are available to explore
and interested readers can refer to [23] for details. A unified approach on affine
processes is presented in [57] and following this approach we recall the details of
the affine processes in the Appendix A. In regards to the evolution of interest rates
and the force of mortality we consider a set up similar to [28], i.e., we present the
affine setting within the time homogeneous subclass of models. However extension
to the time inhomogeneous case is possible and interested readers can refer to [41]
and [58].

Suppose we have a time-homogeneous affine Markov process X taking values
in a non-empty convex subset E of Rd, (d ≥ 1) equipped with the inner product
⟨·, ·⟩. We then assume that the dynamics of the interest rate and force of mortality
are given respectively as follows.

rt = r̄ + ⟨R,Xt⟩ (4.1)

and

µt = µ̄+ ⟨M,Xt⟩ (4.2)

where r̄, µ̄ ∈ R, M,R ∈ Rd or Md where Md is the set of real square matrices of
order d.
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This means that the interest rate and mortality are linear projections of the
common stochastic factor X along constant directions given by the parameter R
and M respectively. We will be interested in the cases where the X is a classical
affine process on the state space Rm+ × Rn or an affine Wishart process on the

state space S+
d , which is the set of d×d symmetric positive definite matrices. The

inner product possesses the flexibility to condense into scalar product or trace
depending on the nature of R and M being respectively vectors or matrices. In
the case of Vasicek model (c.f. [74]), the affine set up is uni-dimensional. A very
good reference to show that the stochastic processes underlying the Vasicek model
fall under the affine set up is [56].

In the passing it is important to note that the affineness of the underlying
model is preserved as we move from the physical world to the the risk neutral
environment, although new affine dynamics emerge (c.f. [11] and [37]). In fact the
behaviour of affine processes under changes of measure depends on the risk premia
associated with the underlying measures. More recently [32] examine the condi-
tions under which it is possible or not to translate the independence assumption
from the physical world to the pricing world.

We now state without proof the following proposition which indeed presents the
methodology to value SZCBs and in turn GAOs. A detailed proof appears in [46]
and the necessary notations are defined in the Appendix A.

Proposition 4.1. Let X be a conservative affine process on S+
d under the risk

neutral measure Q. Let the short rate be given in accordance with (4.1). Let

τ
′
= T − t, then the price of a zero-coupon bond is given by

SZ (t, T ) = E
[
e−

∫ T
t

(r̄+µ̄+⟨R+M,Xu⟩)du|Ft
]

= e−(r̄+µ̄)τe
−ϕ̃

(
τ
′
,R+M

)
−⟨ψ̃

(
τ
′
,R+M

)
,Xt⟩, (4.3)

where ϕ̃ and ψ̃ satisfy the following Ordinary Differential Equations (ODEs) which
are known also as Riccati ODE’s.

∂ϕ̃

∂τ ′ = ℑ̃
(
ψ̃
(
τ

′
, R+M

))
, ϕ̃ (0, R+M) = 0, (4.4)

∂ψ̃

∂τ ′ = ℜ̃
(
ψ̃
(
τ

′
, R+M

))
, ψ̃ (0, R+M) = 0, (4.5)

with

ℑ̃
(
ψ̃
(
τ

′
, R+M

))
= ⟨b, ψ̃

(
τ

′
, R+M

)
⟩−
∫
S+
d \{0}

(
e
−⟨ψ̃

(
τ
′
,R+M

)
,ξ⟩ − 1

)
m (dξ)

(4.6)
and

ℜ̃
(
ψ̃
(
τ

′
, R+M

))
= −2ψ̃

(
τ

′
, R+M

)
αψ̃
(
τ

′
, R+M

)
+BT

(
ψ̃
(
τ

′
, R+M

))

−
∫
S+
d \{0}

e−⟨ψ̃
(
τ
′
,R+M

)
,ξ⟩ − 1 + ⟨χ (ξ) , ψ̃

(
τ

′
, R+M

)
⟩

∥ ξ ∥2 ∧1

µ (dξ) +R+M.

(4.7)
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In fact it is interesting to note that assuming this kind of affine structure means
that our fictitious yield model is “affine” in the sense that there is, for each maturity
T , an affine mapping ZT : Rn → R such that, at any time t, the yield of any SZCB
of maturity T is ZT (Xt) echoing the results obtained in the seminal paper of [35].

As a result we have for i = 1, 2, ..., n− 1,

S
(i)
T = e−(r̄+µ̄)ie−ϕ̃(i,R+M)−⟨ψ̃(i,R+M),XT ⟩, (4.8)

where ϕ̃ (i, R+M) and ψ̃ (i, R+M) satisfy the equations (4.4) and (4.5) with

τ
′
= i. Alternatively, one may write

S
(i)
T = S

(i)
0 eX

(i)
T ; i = 1, 2, ..., n− 1, (4.9)

with

S
(i)
0 = e−((r̄+µ̄)i+ϕ̃(i,R+M)) (4.10)

and

X
(i)
T = −⟨ψ̃ (i, R+M) , XT ⟩. (4.11)

As a result in the affine case, by using equation (4.8) in (3.12) the formula for
GAO pay-off can be written in a very compact form as shown below

C(0, x, T ) = gSZ (0, T )

×Ẽ

(n−1∑
i=1

e−(r̄+µ̄)ie−ϕ̃(i,R+M)−⟨ψ̃(i,R+M),XT ⟩ − (K − 1)

)+


(4.12)

where SZ (0, T ) is given by equation (4.3) with τ
′
= T . As a result in the affine

case, our quest of bounds for the GAO becomes simplified as we are dealing only
with XT .

The analytical tractability of affine processes is essentially linked to generalized
Riccati equations as given above which can be in general solved by numerical
methods although explicit solutions are available in the Vasicek (c.f. [74]) model
without jumps.

5. Lower Bounds for Guaranteed Annuity Options

We now proceed to work out appropriate lower bounds for the payoff of the
GAO as given in (3.12). Invoking Jensen’s inequality , we have

Ẽ

(n−1∑
i=1

S
(i)
T − (K − 1)

)+
 ≥ Ẽ

(n−1∑
i=1

Ẽ
(
S
(i)
T |Λ

)
− (K − 1)

)+
 . (5.1)

The general derivation concerning lower bounds for stop loss premium of a sum
of random variables based on Jensen’s inequality can be found in [73] and for its
application to Asian basket options, one can refer to [27]. [1] utilize comonotonicity
theory to find a price range for Asian options. Define

S =

n−1∑
i=1

S
(i)
T (5.2)
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and

Sl =

n−1∑
i=1

Ẽ
(
S
(i)
T |Λ

)
(5.3)

Thus, we have obtained

S ≥cx Sl. (5.4)

where cx denotes convex ordering (see for example in [30]). Now, suitably tailoring
the inequality (5.1), we obtain

C(0, x, T ) ≥ gSZ (0, T ) Ẽ

(n−1∑
i=1

Ẽ
(
S
(i)
T |Λ

)
− (K − 1)

)+
 . (5.5)

5.1. A First Lower Bound. In case, if the random variable Λ is independent
of the prices of pure endowments having term periods 1, 2, ..., n− 1 at the time T ,

i.e., of S
(i)
T ; i = 1, 2, ..., n− 1, respectively, the bound in (5.5) simply reduces to:

C(0, x, T ) ≥ gSZ (0, T ) Ẽ

(n−1∑
i=1

Ẽ
(
S
(i)
T

)
− (K − 1)

)+
 . (5.6)

or even more precisely as the outer expectation is redundant, we obtain a very
trivial bound for GAO expressed in terms of expectation of SiT , i.e.,

C(0, x, T ) ≥ gSZ (0, T )

(
n−1∑
i=1

Ẽ
(
S
(i)
T

)
− (K − 1)

)+

=: GAOLB. (5.7)

5.1.1. The Lower Bound under the Affine Set Up. Under the affine set up of
Section 4 (c.f. equation (4.8)), the lower bound given in equation (5.7) reduces to

GAOLBaff = gSZ (0, T )

×

(
n−1∑
i=1

(
e−((r̄+µ̄)i+ϕ̃(i,R+M))L

(
ψ̃ (i, R+M)

))
− (K − 1)

)+

(5.8)

where L denotes the Laplace transform of XT with parameter ψ̃ (i, R+M) un-

der the transformed measure Q̃. This means that if one can lay hands on the
distribution of XT , this bound has a very compact form.

5.2. The Comonotonic Lower Bound. As the next step, we obtain a tighter
lower bound by assuming that the endowment products Si have an asset price
process given in terms of exponential Lévy model as follows:

S
(i)
T = S

(i)
0 exp

(
X

(i)
T

)
; i = 1, 2, ..., n− 1, (5.9)

where X
(i)
T is a Lévy process observed at time T and S

(i)
0 is the price of pure

endowment of term i years at time 0. For each i, let µi and σ2
i represent the

expectation and variance of Xi respectively. Further, let ρij denote the correlation
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of X
(i)
T and X

(j)
T and assume that, for all i, j, this is non-negative. Again using

Jensen’s inequality, one may write

Ẽ
[
S
(i)
T |S(j)

T = s
]
≥ S

(i)
0 exp

(
Ẽ

[
X

(i)
T |X(j)

T = loge

(
s

S
(j)
0

)])
(5.10)

Further, we assume that the Lévy process has no jumps so that

Ẽ
[
X

(i)
T |X(j)

T = xj

]
= µ(i) + ρ(ij)

σ(i)

σ(j)

(
xj − µ(j)

)
(5.11)

where

µ(i) = Ẽ
[
X

(i)
T

]
= Ẽ

[
loge

(
S
(i)
T

S
(i)
0

)]
; i = 1, 2, ..., n− 1 (5.12)

(
σ(i)
)2

= Var
[
X

(i)
T

]
= Var

[
loge

(
S
(i)
T

S
(i)
0

)]
; i = 1, 2, ..., n− 1 (5.13)

Further for i ̸= j = 1, 2, ..., n− 1, we have

ρ(ij) = Corr
[
X

(i)
T , X

(j)
T

]
= Corr

[
loge

(
S
(i)
T

S
(i)
0

)
, loge

(
S
(j)
T

S
(j)
0

)]
(5.14)

Also from [30], we know that

S ≥cx
n−1∑
i=1

Ẽ
(
S
(i)
T |S(j)

T

)
. (5.15)

Combining (5.10), (5.11) and (5.15), we get that

S ≥sl
n−1∑
i=1

S
(i)
0

(
S
(j)
T

S
(j)
0

)ρ(ij) σ(i)

σ(j)

exp

(
µ(i) − ρ(ij)

σ(i)

σ(j)
µ(j)

)
. (5.16)

On comparing (5.15) with (5.3) and (5.4), we see that S
(j)
T is in fact playing the role

of Λ. Further, let Y
(ij)
T denote the individual components of the sum on the right

hand side of equation (5.16). Since we have assumed that ρ(ij) ≥ 0 ∀i, j, it follows
that the vector

(
Y

(1j)
T , Y

(2j)
T , ..., Y

((n−1)j)
T

)
is comonotonic since its components

are strictly increasing functions of a single variable S
(j)
T and so we define

Sl2j =

n−1∑
i=1

Y
(ij)
T (5.17)

and from (5.16) and (5.17), it is evident that

S ≥sl Sl2j . (5.18)

Further, the stop-loss transform of Sl2j can be written as the sum of stop-loss

transform of its components (see for example in [30]), i.e.,

Ẽ

[(
Sl2j − (K − 1)

)+]
=

n−1∑
i=1

Ẽ

[(
Y

(ij)
T − F−1

Y
(ij)
T

(
F
S

l2
j
(K − 1)

))+
]
−K2 (5.19)
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where

K2 =

(
(K − 1)− F−1

S
l2
j

(
F
S

l2
j
(K − 1)

))(
1− F

S
l2
j
(K − 1)

)
(5.20)

and (K − 1) ∈
(
F−1+

S
l2
j

(0) , F−1
Sjl2

(1)

)
. Further, F

S
l2
j
(K − 1) is the distribution

function of Sl2 evaluated at K − 1 so that we have:

F
S

l2
j
(K − 1) = P

[
Sl2j ≤ (K − 1)

]
= P

n−1∑
i=1

S
(i)
0

(
S
(j)
T

S
(j)
0

)ρ(ij) σi

σ(j)

exp

(
µ(i) − ρ(ij)

σ(i)

σ(j)
µ(j)

)
≤ (K − 1)

 (5.21)

In fact Sl2j ≤ (K − 1) if and only if S
(j)
T ≤ x

′
S
(j)
0 provided that ρ(ij) ≥ 0 ∀ i, j,

where we substitute x
′
for Sj/S

(j)
0 in the above expression and obtain its value by

solving the following equation

n−1∑
i=1

S
(i)
0

(
x

′
)ρ(ij) σ(i)

σ(j)

exp

(
µ(i) − ρ(ij)

σ(i)

σ(j)
µ(j)

)
− (K − 1) = 0. (5.22)

As a result, we have:

F
S

l2
j
(K − 1) = F

S
(j)
T

(
x

′
S
(j)
0

)
= F

Y
(ij)
T

(
S
(i)
0

(
x

′
)ρ(ij) σ(i)

σ(j)

exp

(
µ(i) − ρ(ij)

σ(i)

σ(j)
µ(j)

))
.(5.23)

Using this result in (5.19) along with the stop-loss order relationship between S

and Sl2j as given by equation (5.18), we obtain

C(0, x, T ) ≥ gSZ (0, T )

(
n−1∑
i=1

S
(i)
0

(
S
(j)
0

)−ρ(ij) σ(i)

σ(j)

exp

(
µ(i) − ρ(ij)

σ(i)

σ(j)
µ(j)

)
×

P

(
x

′
S
(j)
0 , T, ρ(ij)

σ(i)

σ(j)
, j

)
−K2

)
=: GAOLB

(2)
j , (5.24)

where K2 is defined in (5.20). Further, µ(i),
(
σ(i)
)2

and ρ(ij) are given respectively
in (5.12)-(5.14) and P is defined as the asymmetric power expectation function
given by

P
(
x

′
, t, z, j

)
= Ẽ

[((
S
(j)
t

)z
−
(
x

′
)z)+]

, (5.25)

where in our case t = T and we are using S
(j)
T in place of S

(j)
t . Since the above lower

bound is a lower bound for every j, we can maximise this for j ∈ {1, 2, ..., n − 1}
to obtain an optimal lower bound for GAO.

We have derived this lower bound under the assumption of positive correlation
between the objects viz. pure endowments in the basket. Although from the point
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of view of stochastic processes, this assumption may be restrictive, in reality, it is
quite a reasonable assumption. This is because we talking about SZCBs or pure
endowments of different duration issued to the same set of lives at the same time
T .

5.3. The General Lower Bound. To obtain a more general bound, we now
relax the assumption of positive correlation between the pure endowments. We
adapt the approach undertaken by [27] for Asian basket options for GAOs. This
approach considers a non-comonotonic sum based on the methodology of [72] for
Asian options.

Let us define X
(i)
T in the same way as we have done in the comonotonic case.

Next, we choose a single random variable Λ such that
(
X

(i)
T ,Λ

)
for every i ∈

{1, 2, ..., n − 1} is Bivariate Normally Distributed (BVN) with correlation coeffi-
cient given by ρ(iΛ). Clearly a simple application of Jensen’s inequality yields the
following convex order lower bound for Si given any random variable Λ.

S
(i)
T ≥cx Ẽ

(
S
(i)
T |Λ

)
. (5.26)

As a result

S ≥cx Sl :=
n−1∑
i=1

Ẽ
(
S
(i)
T |Λ

)
. (5.27)

We know that if (X, Y ) ∼ BVN
(
µX , µY , σ

2
X , σ

2
Y , ρ

)
, the conditional distribu-

tion of the lognormal random variable eX , given the event Y = y is given as

FeX |Y=y (x) = Φ

 loge x−
(
µX + ρσX

σY
(y − µY )

)
σX
√
1− ρ2

 . (5.28)

where Φ denotes the c.d.f. of standard normal distribution. In our case by as-

sumption, we have (Xi,Λ) ∼ BVN
(
µ(i), µΛ,

(
σ(i)
)2
, σ2

Λ, ρ
(iΛ)
)
. As a result, the

distribution function of S
(i)
T conditional on the event Λ = λ is given as

F
S

(i)
T |Λ=λ

(
x

′
)
= Φ

(
a
(
x

′
))

(5.29)

where a (x) is given by

a
(
x

′
)
=

loge x
′ −
(
log
(
S
(i)
0

)
+ µ(i) + ρ(iΛ) σ(i)

σΛ
(λ− µΛ)

)
σ(i)

√(
1−

(
ρ(iΛ)

)2) . (5.30)

As the differentiation of c.d.f. yields the p.d.f., therefore the conditional density
function of Si given Λ = λ satisfies the following equation:

f
S

(i)
T |Λ=λ

(
x

′
)
=

1

x′σ(i)

√(
1−

(
ρ(iΛ)2

))ϕ(a(x′
))

, (5.31)
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where ϕ denotes the p.d.f. of standard normal distribution. As a result, the

conditional expectation of S
(i)
T given Λ = λ is given by the expression

Ẽ
(
S
(i)
T |Λ = λ

)
= S

(i)
0 e

µ(i)+
(σ(i))

2
(
1−(ρ(iΛ))

2
)

2 +ρ(iΛ)σ(i) (λ−µΛ)
σΛ . (5.32)

We utilize this expression to obtain a lower bound for Guaranteed Annuity Option
under the above setting. Clearly, using (5.5) and (5.27), we have

C(0, x, T ) ≥ gSZ (0, T ) Ẽ

(n−1∑
i=1

S
(i)
0 e

µi+
σ2
i (1−ρ2iΛ)

2 +ρiΛσi
(λ−µΛ)

σΛ − (K − 1)

)+
 .

(5.33)
To obtain the lower bound in a more compact form, we define

f (v) =

n−1∑
i=1

S
(i)
0 eµ

(i)+
(σ(i))

2
(1−ρ2iΛ)
2 +ρ(iΛ)σ(i)Φ−1(v) − (K − 1) (5.34)

where

v = Φ

(
Λ− µΛ

σΛ

)
(5.35)

Then

Ẽ
[(
Sl − (K − 1)

)+]
= Ẽ

[
(f (V ))

+
]

(5.36)

with V being uniformly distributed on (0, 1). An important consideration in the

valuation of Ẽ
[
(f (V ))

+
]
will be the interval upon which f is positive. This can

be obtained by using the following result. Clearly, f (v) is no longer a monotone
function of v as in the comonotonic case when not all ρ(iΛ) have the same sign.

Proposition 5.1. If ρ(iΛ) ≥ 0 for every i, then f has a unique root in (0, 1).
Otherwise, f (v) has two solutions if and only if infv∈(0,1) f (v) < 0.

Proof. Let us first assume that ρiΛ ≥ 0 for every i. Then, f is a continuous, strictly
increasing function of v. Furthermore, we see that f tends to − (K − 1) < 0 as
v ↓ 0 and ∞ as v ↑ 1. Therefore, by applying the Intermediate Value Theorem,
we see that f has a single root in (0, 1).

On the other hand, if ρ(iΛ) and ρ(jΛ) are of opposite sign for some i ̸= j, then
observe that the derivative of f with respect to v satisfies

f ′ (v) =
1

ϕ (Φ−1 (v))

n−1∑
i=1

S
(i)
0 ρ(iΛ)σ(i)eµ

(i)+
(σ(i))

2
(
1−(ρ(iΛ))

2
)

2 +ρ(iΛ)σ(i)Φ−1(v) (5.37)

where as before ϕ denotes the standard normal density function. We see, that the
denominator of f ′ (v) is strictly positive for v ∈ (0, 1). Let as denote its numerator
by N (v). We see that

N ′ (v) =
1

ϕ (Φ−1 (v))

n−1∑
i=1

S
(i)
0

(
ρ(iΛ)

)2 (
σ(i)
)2
eµ

(i)+
(σ(i))

2
(
1−(ρ(iΛ))

2
)

2 +ρ(iΛ)σ(i)Φ−1(v)

(5.38)
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is positive for v ∈ (0, 1). This means that N (v) is an increasing function of v.
Moreover, if there exist ρ(iΛ), ρ(jΛ) of opposite sign, for some i ̸= j, then

lim
v↓0

N (v) = −∞ and lim
v↑1

N (v) = +∞.

Therefore, there exists a unique v∗ ∈ (0, 1) such that N (v∗) = 0 and hence
f ′ (v∗) = 0. Also

lim
v↓0

f (v) = +∞ and lim
v↑1

f (v) = +∞.

So that, f (v) is either positive upon the whole interval [0, 1] or has a strictly
negative minimum f (v∗). We therefore obtain the following result concerning the
infimum of f .

inf
v∈(0,1)

f (v) = f (v∗) . (5.39)

If f (v∗) < 0, then f is a continuous, strictly decreasing function over the interval
(0, v∗), which tends to ∞ as v ↓ 0. Hence, there exists a unique v1 ∈ (0, v∗) such
that f (v1) = 0. Moreover, f is a continuous, strictly increasing function on (v∗, 1),
which tends to ∞ as v ↑ 1. Therefore, from the Intermediate Value Theorem, we
obtain an additional v2 ∈ (v∗, 1) such that f (v2) = 0. If inf

v∈(0,1)
f (v) ≥ 0, then it is

immediate that f can only have at most one root. This completes the proof. □

We see from Proposition 5.1 that either f (v) ≥ 0 for all v ∈ (0, 1) or there exist
v1 < v2 such that f (v) ≤ 0 for all v ∈ [v1, v2], with f (v) positive otherwise. This
then leads to the following lower bound for guaranteed annuity options.

Theorem 5.2. Let S
(i)
T be a process given in terms of exponential Lévy model,

i.e., S
(i)
T = S

(i)
0 eX

(i)
T where i = 1, 2, ..., n − 1 and let Λ be a normally distributed

random variable such that
(
X

(i)
T ,Λ

)
∼ BVN

(
µ(i), µΛ,

(
σ(i)
)2
, σ2

Λ, ρ
(iΛ)
)

and let

Q̃ be the associated probability measure. Let f (v) be defined according to equation
(5.34). Then a lower bound for the value of a GAO bought by a life of present age
x with guaranteed rate g is given by

C(0, x, T ) ≤ GAOLB3,

where

GAOLB3 = gSZ (0, T )

(
n−1∑
i=1

S
(i)
0 eµ

(i)+
(σ(i))

2

2 − (K − 1)

)
(5.40)

if f (v) ≥ 0 for all v ∈ (0, 1). Otherwise,

GAOLB3 = gSZ (0, T )

×

(
n−1∑
i=1

S
(i)
0 eµ

(i)+
(σ(i))

2

2 Φ
(
ρ(iΛ)σ(i) − z2

)
− (K − 1)Φ (−z2)

)
(5.41)

if ρ(iΛ) are all of positive sign and

GAOLB3 = gSZ (0, T )
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×

(
n−1∑
i=1

S
(i)
0 eµ

(i)+
(σ(i))

2

2

(
Φ
(
z1 − ρ(iΛ)σi

)
+Φ

(
ρ(iΛ)σ(i) − z2

))
− (K − 1)

(
Φ (z1) + Φ (−z2)

))
(5.42)

otherwise, where z1 ≤ z2 solve the following equation in z

n−1∑
i=1

S
(i)
0 eµ

(i)+
(σ(i))

2
(
1−(ρ(iΛ))

2
)

2 +ρ(iΛ)σ(i)z − (K − 1) = 0. (5.43)

Proof. The case where f (v) ≥ 0 is trivial. In the case where f (v) < 0 for some v,
we see from Proposition 3 that f (v) = 0 has one solution in (0, 1) if the ρ(iΛ) are of
the same sign and two otherwise. By setting z1 = Φ−1 (v) for each i, we obtain the
solutions to equation (5.43) (where the case with ρiΛ > 0 for every i is analogous
to setting z1 = −∞). Let z1 and z2 solve equation (5.43) and set v = Φ(z). Then,
defining I = (−∞, z1)∪ (z2,∞), we can write the stop-loss transform of Sl defined
in equation (5.27) in the following way:

Ψ
(
Sl, (K − 1)

)
= Ẽ

[(
n−1∑
i=1

S
(i)
0 eµ

(i)+
(σ(i))

2
(
1−(ρ(iΛ))

2
)

2 +ρ(iΛ)σ(i)Z

− (K − 1)

)
1{Z∈I}

]

=

n−1∑
i=1

(
S
(i)
0 eµ

(i)+
(σ(i))

2
(
1−(ρ(iΛ))

2
)

2

×
(∫ z1

−∞
eρ

(iΛ)zϕ (z) dz +

∫ ∞

z2

eρ
(iΛ)zϕ (z) dz

))
− (K − 1) (Φ (z1) + Φ (−z2)) . (5.44)

Therefore, we obtain equations (5.42) and (5.41). □

6. Upper Bounds for Guaranteed Annuity Options

We derive a couple of upper bounds for the Guaranteed Annuity Options.

6.1. A First Upper Bound. This section will focus on finding an upper bound
for Guaranteed Annuity Options by using comonotonicity theory in a manner
similar to [53], [33], [18] and [61]. [49] uses the method of Lagrange multipliers to
find an upper bound for basket options.

Define the comonotonic counterpart of S =
(
S
(1)
T , ..., S

(n−1)
T

)
with U ∼ U (0, 1)

where U stands for Uniform Distribution as Su =

(
F−1

S
(1)
T

(U) , ..., F−1

S
(n−1)
T

(U)

)
.

Further define

Sc =

n−1∑
i=1

F−1

S
(i)
T

(U) =

n−1∑
i=1

Sci . (6.1)

76



RAJ KUMARI BAHL

Clearly [see for example in 30],

S ≤cx Sc (6.2)

In other words,

Ẽ

(n−1∑
i=1

S
(i)
T − (K − 1)

)+
 ≤ Ẽ

(n−1∑
i=1

Sci − (K − 1)

)+
 (6.3)

and we have

Ẽ

(n−1∑
i=1

Sci − (K − 1)

)+
 =

n−1∑
i=1

Ẽ

[(
S
(i)
T − F−1

S
(i)
T

(FSc ((K − 1)))

)+
]
−K3

(6.4)
where

K3 =
(
(K − 1)− F−1

Sc (FSc (K − 1))
)
(1− FSc (K − 1)) (6.5)

and it is understood that (K − 1) ∈
(
F−1+
Sc (0) , F−1

Sc (1)
)
. As a result, an upper

bound for GAO is given as

C(0, x, T ) ≤ gSZ (0, T )

(
n−1∑
i=1

Ẽ

[(
Si − F−1

S
(i)
T

(FSc (K − 1))

)+
]
−K3

)
(6.6)

where K3 is defined in (6.5). Further we write the upper bound given above as

C(0, x, T ) ≤ gSZ (0, T )

(
n−1∑
i=1

Ẽ

[(
S
(i)
T − F−1

S
(i)
T

(
x

′
))+

]
−K3

)
:= GAOUB1

(6.7)

where x
′ ∈ (0, 1) (see for example [30]) is the solution of the equation

n−1∑
i=1

F−1

S
(i)
T

(
x

′
)
= K − 1. (6.8)

6.2. An Improved Upper Bound by conditioning. We can improve on the
upper bound obtained above by finding a conditioning variable Λ under which the
Si are dependent. This is discussed in detail for basket options in [29] using a

choice of Λ such that Λ ≥ dΛ implies

n−1∑
i=1

S
(i)
T ≥ (K − 1). We use a different more

simplified approach for GAOs. We assume that some additional information is

available concerning the stochastic nature of
(
S
(1)
T , S

(2)
T , ..., S

(n−1)
T

)
. That is, we

can find a random variable Λ, with a known distribution, such that the individual

conditional distributions of S
(i)
T given the event Λ = λ are known for all i and all

possible values of λ. Such an approach can be found in [53], [30] and [31].
Define

Su =

n−1∑
i=1

F−1

S
(i)
T |Λ

(U) =

n−1∑
i=1

Sui , (6.9)
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where U ∼ U (0, 1). Then we have

S ≤cx Su ≤cx Sc (6.10)

Now let Su =
(
Su1 , ..., S

u
n−1

)
. Since

(
F−1

S
(1)
T |Λ=λ

, ..., F−1

S
(n−1)
T |Λ=λ

)
is comonotonic,

we have,

F−1
Su|Λ=λ (p) =

n−1∑
i=1

F−1

S
(i)
T |Λ=λ

(p) , p ∈ (0, 1) . (6.11)

It follows that, in this case

n−1∑
i=1

F−1

S
(i)
T |Λ=λ

(
FSu|Λ=λ (K − 1)

)
= K − 1. (6.12)

and so we have

f (λ) = Ẽ

(n−1∑
i=1

Sui − (K − 1)

)+
∣∣∣∣∣∣Λ = λ


=

n−1∑
i=1

Ẽ

[(
S
(i)
T − F−1

S
(i)
T |Λ=λ

(
FSu|Λ=λ (K − 1)

))+
∣∣∣∣∣Λ = λ

]
−K4

(6.13)

where

K4 =
(
(K − 1)− F−1

Su|Λ=λ

(
FSu|Λ=λ (K − 1)

)) (
1− FSu|Λ=λ (K − 1)

)
(6.14)

and it is clear that (K − 1) ∈
(
F−1+
Su|Λ=λ (0) , F

−1
Su|Λ=λ (1)

)
. By applying the tower

property and using the convex order relationship given by (6.10), we obtain an
upper bound for GAO, i.e.,

C(0, x, T ) ≤ gSZ (0, T ) Ẽ
[
(Su − (K − 1))

+
]

= gSZ (0, T ) Ẽ [f (λ)]

= gSZ (0, T )

×

(
n−1∑
i=1

∫ ∞

−∞
Ẽ

[(
S
(i)
T − F−1

S
(i)
T |Λ=λ

(
FSu|Λ=λ (K − 1)

))+
∣∣∣∣∣Λ = λ

]
dFΛ (λ)−K4

)
(6.15)

where K4 is defined in (6.14). Given the event Λ = λ, let x
′
be the solution to the

following equation
n−1∑
i=1

F−1

S
(i)
T |Λ=λ

(
x

′
)
= K − 1. (6.16)

Further, we see from equation (6.12), that x
′
= FSu|Λ=λ (K − 1). It therefore

follows, as a result of equation 93 of [30] that an upper bound for GAO is given as

C(0, x, T ) ≤ gSZ (0, T )
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×

(
n−1∑
i=1

∫ ∞

−∞
Ẽ

[(
S
(i)
T − F−1

S
(i)
T |Λ=λ

(
x

′
))+

∣∣∣∣∣Λ = λ

]
dFΛ (λ)−K4

)
=: GAOUB

(2)
j , (6.17)

where x
′
is obtained by solving (6.16).

Since the above upper bound is an upper bound for all j, it follows that we can
find the optimal upper bound by maximizing equation (6.17) over j ∈ {1, 2, ..., n−
1}. As remarked earlier, this bound improves upon the unconditional bound given
by (6.7). In case if the marginal cdfs F

S
(i)
T |Λ are strictly increasing, one can put

K4 = 0 in (6.17) to obtain the upper bound.

6.3. An Upper Bound based on the Arithmetic-Geometric Mean In-
equality. In order to obtain an upper bound for GAOs which is directly applica-
ble to the affine set up, we make use of arithmetic-geometric mean inequality in
a manner similar to [16] who used this methodology to arrive at an upper bound
for basket options.

Let us first define the arithmetic and geometric mean of the (n− 1) pure en-
dowments appearing in the payoff of GAO (c.f. (3.12)) respectively as

A
(n−1)
T =

1

n− 1

n−1∑
i=1

S
(i)
T (6.18)

and

G
(n−1)
T =

(
n−1∏
i=1

S
(i)
T

) 1
n−1

, (6.19)

where S
(i)
T ; i = 1, 2, ..., n− 1 are defined in equation (3.13). It is well known that

A
(n−1)
T ≥ G

(n−1)
T a.s. (6.20)

Further, let us define the log-geometric average as

Y
(n−1)
T =

1

n− 1

n−1∑
i=1

lnS
(i)
T . (6.21)

Next we define as in equation (4.9),

X
(i)
T = ln

(
S
(i)
T

S
(i)
0

)
; i = 1, 2, ..., n− 1. (6.22)

Further, we assume that the joint characteristic function of
(
X

(1)
T , ..., X

(n−1)
T

)
can

be obtained under the transformed measure Q̃, where we define

ϕT (γ) = Ẽ
[
ei

∑n−1
k=1 γkX

(k)
T

]
(6.23)
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with γ = [γ1, γ2, ..., γn−1]. As the next step, we obtain the relationship between

log-geometric average and X
(i)
T ’s as follows

Y
(n−1)
T =

1

n− 1

n−1∑
i=1

ln

(
S
(i)
T

S
(i)
0

S
(i)
0

)

=
1

n− 1

n−1∑
i=1

X
(i)
T + Y

(n−1)
0 . (6.24)

Next, we try to express the characteristic function of log-geometric average under

the transformed measure Q̃ in terms of the joint characteristic function of X
(i)
T ’s

viz. ϕT (γ) defined in equation (6.23). Let ϕYT
(γ0) denote the characteristic

function of log-geometric average Y
(n−1)
T with parameter γ0. Then we have

ϕYT
(γ0) = Ẽ

[
eiγ0Y

(n−1)
T

]
= Ẽ

[
eiγ0Y

(n−1)
0 +i

∑n−1
k=1 (

γ0
n−1 )X

(k)
T

]
= eiγ0Y

(n−1)
0 ϕT

(
γ0

n− 1
1

)
(6.25)

where 1 = (1, 1, ..., 1) is a 1 × (n− 1) vector of 1’s, so that γ0
n−11 is 1 × (n− 1)

vector with components γ0
n−1 and ϕT (γ) is defined in (6.23). In light of equation

(6.18), we can express the GAO pay-off formula given in equation (3.12) as

C(0, x, T ) = g (n− 1)SZ (0, T ) Ẽ

[(
A

(n−1)
T −K ′

)+]
, (6.26)

where

K ′ =
K − 1

n− 1
. (6.27)

Adding and subtracting G
(n−1)
T within the max function on R.H.S. of equation

(6.26), and exploiting equation (6.20), we obtain an upper bound of GAO as

C(0, x, T ) ≤ g (n− 1)SZ (0, T )

×
(
Ẽ

[(
G

(n−1)
T −K

′
)+]

+ Ẽ
[
A

(n−1)
T

]
− Ẽ

[
G

(n−1)
T

])
=: GAOUB (6.28)

We make use of Fourier inversion to compute the call type expectation involved
in the upper bound and we state the result in the following proposition.

Proposition 6.1. Given the geometric mean of n − 1 pure endowments defined
in equation (6.19) and K

′
> 0,

Ẽ

[(
G

(n−1)
T −K

′
)+]

=
e−δ lnK

′

π

∫ ∞

0

e−iη lnK
′

ΨGT (η; δ) dη (6.29)
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where ΨGT (η; δ) denotes the Fourier transform of Ẽ

[(
G

(n−1)
T −K

′
)+]

with respect

to lnK
′
along with the damping factor eδ lnK

′

such that

ΨGT (η; δ) = ei(η−i(δ+1))Y
(n−1)
0

ϕT

(
η−i(δ+1)
n−1 1

)
δ2 + δ − η2 + iη (2δ + 1)

, (6.30)

where the parameter δ tunes the damping factor [c.f. 17, 16] and ϕT (.) is defined
in equation (6.23).

Proof. Let fYT
(y) denote the probability density function (p.d.f.) of the log-

geometric average Y
(n−1)
T . We introduce the damping factor in accordance with

[17]. Then, by definition, the Fourier transform of Ẽ

[(
G

(n−1)
T −K

′
)+]

with

respect to lnK
′
along with the damping factor eδ lnK

′

is given as

ΨGT (η; δ) =

∫
R
eiη lnK

′
+δ lnK

′

Ẽ

[(
eY

(n−1)
T −K

′
)+]

d lnK
′

=

∫
R
eiη lnK

′
+δ lnK

′
∫ ∞

lnK′

(
ey −K

′
)
fYT

(y) dy d lnK
′

=

∫
R
eiη lnK

′
+δ lnK

′
∫ ∞

lnK′
eyfYT

(y) dy d lnK
′

−
∫
R
eiη lnK

′
+δ lnK

′
∫ ∞

lnK′
K

′
fYT

(y) dy d lnK
′

= ΨG1

T (η; δ)−ΨG2

T (η; δ) . (6.31)

We evaluate both integrals by adopting a change of order of integration, as detailed
below

ΨG1

T (η; δ) =

∫
R
ey
(∫ y

−∞
eiη lnK

′
+δ lnK

′

d lnK
′
)
fYT

(y) dy

=
1

iη + δ

∫
R
ei(η−i(δ+1))yfYT

(y) dy

=
ϕYT

(η − i (δ + 1))

iη + δ

= ei(η−i(δ+1))Y
(n−1)
0

ϕT

(
η−i(δ+1)
n−1 1

)
iη + δ

. (6.32)

where the last couple of statements follow from the definition of the characteristic

function of Y
(n−1)
0 given in (6.25) and its link to the joint characteristic function of

joint characteristic function of
(
X

(1)
T , ..., X

(n−1)
T

)
defined in (6.23). On the same

lines we have

ΨG2

T (η; δ) = ei(η−i(δ+1))Y
(n−1)
0

ϕT

(
η−i(δ+1)
n−1 1

)
iη + (δ + 1)

. (6.33)
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Substituting ΨG1

T (η; δ) and ΨG2

T (η; δ) in equation (6.31), remembering the damp-
ing factor we get the requisite result given in equation (6.29). □

In a similar manner we obtain

Ẽ
[
G

(n−1)
T

]
= eY

(n−1)
0 ϕT

(
−i
n− 1

1

)
. (6.34)

We then plug the formulae (6.29) and (6.34) into equation (6.28) to obtain the
upper bound GAOUB.

6.3.1. The Upper Bound under the Affine Set Up. Consider the affine set up of
section 5.4 (c.f. equations (4.8)-(4.11)). Let ϕXT

denote the characteristic function

of XT with parameter Λ under the transformed measure Q̃ so that

ϕXT
(Λ) = Ẽ

[
ei⟨Λ, XT ⟩

]
. (6.35)

Now using equation (4.11), we see that the joint characteristic function of the ran-

dom vector
(
X

(1)
T , ..., X

(n−1)
T

)
under the transformed measure Q̃, given in equation

(6.23) becomes ,

ϕaffT (γ) = ϕXT

(
−
n−1∑
k=1

γkψ̃ (k,R+M)

)
, (6.36)

where
(
−
∑n−1
k=1 γkψ̃ (k,R+M)

)
is the parameter of the characteristic function,

with ψ̃ (k,R+M) satisfying the equations (4.5) with τ = k. As a result, ΨGT (η; δ)
given in equation (6.30) can be written in a more compact way as

ΨG
aff

T (η; δ) = ei(η−i(δ+1))Y
(n−1)
0

ϕXT

(
− (η−i(δ+1))

n−1

∑n−1
k=1 ψ̃ (k,R+M)

)
δ2 + δ − η2 + iη (2δ + 1)

. (6.37)

Similarly, we have from equation (6.34),

Ẽaff
[
G

(n−1)
T

]
= eY

(n−1)
0 ϕXT

(
i

n− 1

n−1∑
k=1

ψ̃ (k,R+M)

)
. (6.38)

Moreover, using the definition of arithmetic average given in equation (6.18) and
utilizing (4.8), we see that

Ẽaff
[
A

(n−1)
T

]
=

1

n− 1

n−1∑
k=1

(
e−((r̄+µ̄)k+ϕ̃(k,R+M))L

(
ψ̃ (k,R+M)

))
, (6.39)

where as defined in Section 5.5.1, L denotes the Laplace transform of XT with
parameter given as ψ̃ (k,R+M) under the transformed measure Q̃. Finally we
substitute equation (6.37) in the expression (6.29) and then the result and equa-
tions (6.38)-(6.39) into (6.28) to get

GAOUBaff = g (n− 1)SZ (0, T )

×

(
1

n− 1

n−1∑
k=1

(
e−((r̄+µ̄)k+ϕ̃(k,R+M))L

(
ψ̃ (k,R+M)

))
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−eY
(n−1)
0 ϕXT

(
i

n− 1

n−1∑
k=1

ψ̃ (k,R+M)

)

+
e−δ lnK

′

π

∫ ∞

0

e
−i

(
η lnK

′
−(η−i(δ+1))Y

(n−1)
0

)
δ2 + δ − η2 + iη (2δ + 1)

×

ϕXT

(
− (η − i (δ + 1))

n− 1

n−1∑
k=1

ψ̃ (k,R+M)

)
dη

)
, (6.40)

where ϕXT
(.) is defined in equation (6.35) and L denotes the Laplace transform

of XT under the transformed measure Q̃.

7. Example: The Vasicek Model

We now derive lower and upper bounds by choosing a particular models for the
interest rate and force of mortality viz. the Vasicek Model

Let us consider the case where the interest rate (rt) and the force of mortality
(µt) for an insured aged x at time 0 obey the Vasicek model [c.f. 74], with dynamics
given by

drt = a (b− rt) dt+ σdW 1
t , (7.1)

where a, b and σ are positive constants and W 1
t is a standard Brownian motion

under the probability measure Q and

dµt = cµtdt+ ξdZt, (7.2)

where c and ξ are positive constants and Zt is also a standard Brownian motion
under the EMM Q correlated with W 1

t so that

dW 1
t dZt = ρdt. (7.3)

This means that Zt = ρW 1
t +

√
1− ρ2W 2

t , where W 2
t is a standard Brownian

motion independent of W 1
t . It is important to fine tune the model in case of

mortality by choosing c and ξ properly to avoid the possibility of negative mortality
rates. In fact, under this model, we have [c.f. 62, for details]

S
(i)
T = S

(i)
0 eX

(i)
T (7.4)

where
S
(i)
0 = α(i) (7.5)

with
α(i) = eD

(i)+H̃(i)

(7.6)

such that for i = 1, 2, ..., n− 1

D(i) =

(
b− σ2

2a2

)(
A(i) − i

)
− σ2

4a

(
A(i)

)2
(7.7)

with

A(i) =
1− e−ai

a
(7.8)

and

H̃(i) =

(
ρσξ

ac
− ξ2

2c2

)(
G̃(i) − i

)
+
ρσξ

ac

(
A(i) − ϕ(i)

)
+
ξ2

4c

(
G̃(i)

)2
(7.9)
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with

G̃(i) =
eci − 1

c
(7.10)

and

ϕ(i) =
1− e(a−c)i

a− c
. (7.11)

Further
{
X

(i)
T

}
i=1,2,...,n−1

is defined as:

X
(i)
T = −

(
A(i)rT + G̃(i)µT

)
, (7.12)

where A(i) and G̃(i) are defined respectively in equations (7.8) and (7.10). Here

we have [c.f. 62] under the probability measure Q̃,

(rT , µT ) ∼ BVN
(
µrT , µµT

, σ2
rT , σ

2
µT
, ρ (rT , µT )

)
(7.13)

where BV N stands for bivariate normal distribution and

µrT = Ẽ [rT ]

= e−aT r0 + b
(
1− e−aT

)
− σ2

2a2
(
1− e−aT

)2
− ρσξ

c

[
ecT

(
e−cT − e−aT

)
a− c

− 1− e−aT

a

]
, (7.14)

σ2
rT =

σ2

2a

(
1− e−2aT

)
, (7.15)

µµT
= Ẽ [µT ] = ecTµ0 −

ξ2

2c2
(
1− ecT

)2 − ρσξ

a

[
e−aT

(
eaT − ecT

)
a− c

− ecT − 1

c

]
,

(7.16)

σ2
µT

=
ξ2

2c

(
e2cT − 1

)
, (7.17)

and

Cov [rT , µT ] =
ρσξ

a− c

(
1− e−(a−c)t

)
(7.18)

with Cov standing for covariance. In light of equation (7.12) and (7.13), it is clear
that

X
(i)
T ∼ N

(
µ(i),

(
σ(i)
)2)

(7.19)

where µ(i) and
(
σ(i)
)2

are defined respectively in equations (5.12) and (5.13) are
given as follows in the context of the Vasicek model.

µ(i) = −
(
A(i)µrT + G̃(i)µµT

)
(7.20)(

σ(i)
)2

=
(
A(i)

)2
σ2
rT +

(
G̃(i)

)2
σ2
µT

+ 2A(i)G̃(i)Cov [rT , µT ] . (7.21)

In fact, one may write

X
(i)
T = −W (i)

T , (7.22)
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where W
(i)
T ∼ N

(
−µ(i),

(
σ(i)
)2)

. Finally, for i ̸= j we note that

ρ(ij) = Corr
(
X

(i)
T , X

(j)
T

)
= Corr

(
W

(i)
T ,W

(j)
T

)
(7.23)

where Corr stands for correlation and for i ̸= j = 1, 2, ..., n− 1

ρ(ij) =
A(i)A(j)σ2

rT +
(
AiG̃

(j) +A(j)G̃(i)
)
Cov [rT , µT ] + G̃(i)G̃(j)σ2

µT

σ(i)σ(j)
. (7.24)

The computation of the price bounds for GAO hinges upon the availability of the
price of SZCBs SZ (0, T ). We refer to [62] for the price of these instruments under
the Vasicek model and note that

SZ (0, T ) = α(0)eV
(0)

(7.25)

with

α(0) = eD
(0)+H̃(0)

(7.26)

where

D(0) =

(
b− σ2

2a2

)(
A(0) − T

)
− σ2

4a

(
A(0)

)2
(7.27)

with

A(0) =
1− e−aT

a
(7.28)

and

H̃(0) =

(
ρσξ

ac
− ξ2

2c2

)(
G̃(0) − T

)
+
ρσξ

ac

(
A(0) − ϕ(0)

)
+
ξ2

4c

(
G̃(0)

)2
(7.29)

with

G̃(0) =
ecT − 1

c
(7.30)

and

ϕ(0) =
1− e(a−c)T

a− c
. (7.31)

and finally

V (0) = −
(
A(0)r0 + G̃(0)µ0

)
, (7.32)

where A(0) and G̃(0) are defined respectively in equations (7.28) and (7.30) and
r0 and µ0 are the initial (time 0) values of the interest rate and mortality rate.
We now derive lower and upper bounds for the Vasicek model on the lines of

GAOLB
(2)
j and GAOUB

(2)
j respectively.
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7.0.1. The Lower Bound GAOLB
(V S)
j . We know that if a 2-dimensional random

vector (X, Y ) ∼ BVN
(
µX , µY , σ

2
X , σ

2
Y , ρ

)
, the conditional distribution of the log-

normal random variable eX , given the event eY = y is given as

FeX |eY =y (x) = Φ

 loge x−
(
µX + ρσX

σY
(loge y − µY )

)
σX
√

1− ρ2

 . (7.33)

where Φ denotes the c.d.f. of standard normal distribution. Clearly for two as-
sets, say the ith and jth asset in the basket considered above, it is evident from

(7.19) and (7.23) that (Xi, Xj) ∼ BVN
(
µ(i), µ(j),

(
σ(i)
)2
,
(
σ(j)

)2
, ρ(ij)

)
. Further

from equation (7.4) as S
(i)
T = S

(i)
0 eX

(i)
T , we have from equation (7.33) that the

distribution function of S
(i)
T conditional on the event S

(j)
T = s is given as

F
S

(i)
T |S(j)

T =s
(x) = Φ (a (x))

where a (x) is given by

a (x) =

loge x−
(
log
(
S
(i)
0

)
+ µ(i) + ρ(ij) σ

(i)

σ(j)

(
log

(
s

S
(j)
0

)
− µ(j)

))
σ(i)

√(
1−

(
ρ(ij)

)2) . (7.34)

As the differentiation of c.d.f. yields the p.d.f., therefore the conditional density

function of S
(i)
T given S

(j)
T = s satisfies the following equation:

f
S

(i)
T |S(j)

T =s
(x) =

1

xσ(i)

√(
1−

(
ρ(ij)

)2)ϕ (a (x)) , (7.35)

where ϕ denotes the p.d.f. of standard normal distribution. As a result, the

conditional expectation of S
(i)
T given S

(j)
T is given by the expression

Ẽ
(
S
(i)
T |S(j)

T

)
= S

(i)
0

(
S
(j)
T

S
(j)
0

)ρ(ij) σ(i)

σ(j)

e
µ(i)+

(σ(i))
2
(
1−(ρ(ij))

2
)

2 −ρ(ij) σ(i)

σ(j)
µ(j)

(7.36)

Invoking equation (5.15) and denoting the individual components of the sum on
the r.h.s. of equation (7.36) as Yij , we see that under the assumption ρ(ij) ≥ 0 ∀i, j,
the vector

(
Y1j , Y2j , ..., Y(n−1)j

)
is comonotonic, and so define

Sl3j =

n−1∑
i=1

Yij (7.37)

and from (7.36), (5.15) and (7.37), it is evident that

S ≥cx Sl3j . (7.38)
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Further, the stop-loss transform of Sl3j can be written as the sum of stop-loss

transform of its components [see for example in 30], i.e.,

Ẽ

[(
Sl3j − (K − 1)

)+]
=

n−1∑
i=1

Ẽ

[(
Yij − F−1

Yij

(
F
S

l3
j
(K − 1)

))+]
(7.39)

where F
S

l3
j
(K − 1) is the distribution function of Sl3 evaluated at K − 1 so that

we have:

F
S

l3
j
(K − 1) = P

[
Sl3j ≤ (K − 1)

]
= P

[
n−1∑
i=1

S
(i)
0

(
S
(j)
T

S
(j)
0

)ρ(ij) σ(i)

σ(j)

e
µ(i)+

(
1−(ρ(ij))

2
)

2 −ρ(ij) σ(i)

σ(j)
µ(j)

≤ (K − 1)

]
(7.40)

In fact Sl3j ≤ (K − 1) if and only if S
(j)
T ≤ xS

(j)
0 provided that ρ(ij) ≥ 0 ∀ i, j,

where we substitute x for Sj/S
(j)
0 in the above expression and obtain its value by

solving the following equation

n−1∑
i=1

S
(i)
0 (x)

ρ(ij) σ(i)

σ(j) e
µ(i)+

(σ(i))
2
(
1−(ρ(ij))

2
)

2 −ρ(ij) σ(i)

σ(j)
µ(j)

− (K − 1) = 0. (7.41)

As a result, we have:

F
S

l3
j
(K − 1) = FSj

(
xS

(j)
0

)
= F

Y
(ij)
T

S(i)
0 (x)

ρ(ij) σ(i)

σ(j) e
µ(i)+

(σ(i))
2
(
1−(ρ(ij))

2
)

2 −ρ(ij) σ(i)

σ(j)
µ(j)

 .

(7.42)

Using this result in (7.39) along with the convex order relationship between S and

Sl3j as given by equation (7.38), we obtain

C(0, x, T ) ≥ gSZ (0, T )

(
n−1∑
i=1

S
(i)
0

(
S
(j)
0

)−ρ(ij) σ(i)

σ(j)

× e
µ(i)+

(σ(i))
2
(1−ρ2ij)
2 −ρ(ij) σ(i)

σ(j)
µ(j)

P

(
xS

(j)
0 , T, ρ(ij)

σ(i)

σ(j)
, j

))
(7.43)

where µ(i),
(
σ(i)
)2

and ρ(ij) for the Vasicek model are given respectively in (7.20),
(7.21) and (7.23) and P is defined in (5.25) so that we have

P

(
xS

(j)
0 , T, ρ(ij)

σ(i)

σ(j)
, j

)
=

(
S
(j)
0

)ρ(ij) σ(i)

σ(j)

(
e
ρ(ij) σ(i)

2σ(i) (ρ
(ij)σ(i)σ(j)−2µ(j))
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× Φ
(
d(1j)

)
− x

ρ(ij) σ(i)

σ(j) Φ
(
d(2j)

))
, (7.44)

where d2j and d1j are given respectively as

d(2j) =
loge

(
1
x

)
− µ(j)

σ(j)
(7.45)

d(1j) = d(2j) + ρ(ij)σ(i) (7.46)

Inserting (7.44) in (7.43), we achieve the lower bound GAOLB
(V S)
j as follows

C(0, x, T ) ≥ gSZ (0, T )

(
n−1∑
i=1

S
(i)
0 e

µ(i)+
(σ(i))

2
(
1−(ρ(ij))

2
)

2 −ρ(ij) σ(i)

σ(j)
µ(j)

×

(
e
ρ(ij) σ(i)

2σ(j) (ρ
(ij)σ(i)σ(j)−2µ(j))Φ

(
d(1j)

)
− x

ρ(ij) σ(i)

σ(j) Φ
(
d(2j)

)))
=: GAOLB

(V S)
j . (7.47)

Since the above lower bound is a lower bound for every j, we can maximise this
for j ∈ {1, 2, ..., n− 1} to obtain an optimal lower bound for GAO in the Vasicek
Case.

7.0.2. The Improved Upper Bound GAOUB
(V S)
j . In section 5.6.2, we have shown

that the upper bound SWUB1 can be improved by assuming that there exists a

random variable Λ such that Cov
(
S
(i)
T ,Λ

)
̸= 0 ∀i. Suppose this assumption is

true here and we choose

Λ =

n−1∑
k=1

Y
(k)
T (7.48)

where

Y
(k)
T =

X
(k)
T − µ(k)

σ(k)
(7.49)

where in the context of the Vasicek Model, X
(k)
T , µ(k) and σ(k) are defined respec-

tively in equations (7.12), (7.20) and (7.21) and it is evident from (7.19) that

Y
(k)
T ∼ N (0, 1) ; k = 1, 2, ..., n− 1 (7.50)

and as a result by the definition of Λ in equation (7.48)

Λ ∼ N
(
0, σ2

Λ

)
(7.51)

where

σ2
Λ = (n− 1) +

n−1∑
k=1

n−1∑
l=1

k ̸=l

ρ(kl) (7.52)
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where ρ(kl) is defined in equation (7.23). Also simple calculations show that the

correlation coefficient between X
(k)
T and Λ is given by

ρkΛ =

n−1∑
l=1

ρ(kl)√
(n− 1) +

∑n−1
k=1

∑n−1
l=1

k ̸=l
ρ(kl)

; k = 1, 2, ..., n− 1. (7.53)

As a result (
X

(k)
T , Λ

)
∼ BVN

(
µ(k), 0,

(
σ(k)

)2
, σ2

Λ, ρkΛ

)
. (7.54)

Now, from equation (6.17) noting that the marginal cdfs F
S

(i)
T |Λ=λ

are strictly

increasing so that K4 = 0, we see that an upper bound for GAO is given as

C(0, x, T ) ≤ gSZ (0, T )

n−1∑
i=1

∫ ∞

−∞
E

[(
S
(i)
T − F−1

S
(i)
T |Λ=λ

(x)

)+
∣∣∣∣∣Λ = λ

]
dΦ

(
λ

σΛ

)
,

(7.55)
where using equation (6.16), we see that x is obtained by solving the following
equation

n−1∑
i=1

F−1

S
(i)
T |Λ=λ

(x) = K − 1. (7.56)

An explicit formula for the conditional inverse distribution function of S
(i)
T given

the event Λ = λ, is provided by the following result.

Proposition 7.1. Under the assumptions of the Vasicek model, conditional on

the event Λ = λ, the conditional inverse distribution function of S
(i)
T for i =

1, 2, ..., n− 1 is given by

F−1

S
(i)
T |Λ=λ

= S
(i)
0 e

µ(i)+ρiΛ
σ(i)

σΛ
λ+σ(i)

√
1−ρ2iΛΦ−1(x)

. (7.57)

Proof. The proof follows directly from equations (5.29) and (5.30) of Section 5.5.3.
□

From equation (7.56), we then wish to solve the following for x

n−1∑
i=1

S
(i)
0 e

µ(i)+ρiΛ
σ(i)

σΛ
λ+σ(i)

√
1−ρ2iΛΦ−1(x)

= K − 1. (7.58)

As a result, using equation (7.55), the improved upper bound for Guaranteed
Annuity Option is given by the following set of equations

C(0, x, T ) ≤ gSZ (0, T )

∫ ∞

−∞

(
n−1∑
i=1

S
(i)
0 e

µ(i)+ρiΛ
σ(i)

σΛ
λ+ 1

2 (σ
(i))

2
(1−ρ2iΛ)Φ

(
c
(i)
1

)
− (K − 1) (1− x)

)
dΦ

(
λ

σΛ

)
=: GAOUB

(V S)
j (7.59)

89



and

c
(i)
1 = σ(i)

√
(1− ρ2iΛ)− Φ−1 (x) i = 1, 2, ..., n− 1 (7.60)

where x ∈ (0, 1) solves equation (7.58).
We have also worked out bounds for the multidimensional Cox-Ingersoll-Ross

(CIR) (c.f. [21]) model and the well-known Wishart Model. However, keeping in
view the length of the paper, we are not presenting them here. Interested readers
can refer to [5].

8. Numerical Results

Now we investigate the applications of the theory derived in the previous sec-
tions. We have successfully obtained a number of lower bounds and an upper
bound for Guaranteed Annuity Options in Sections 5 and 6. We now test these
vis-a-vis the well-known Monte Carlo estimate for the GAO. We carry out this
working for the Vasicek model. The nomenclature for the bounds has already
been specified in Sections 5, 6 and 7. In all the examples, we have the following
‘Contract Specification’:

g = 11.1%, T = 15, n = 35;

8.1. Vasicek Model. In table 1, we assume that the interest rate (rt) and the
force of mortality (µt) for an insured aged x at time 0 obey the Vasicek model,
with dynamics given by the specifications in equations (7.1)-(7.3). We highlight
below the parameter choices in accordance with [62]. The value of the correlation
coefficient between the interest rate and the force of mortality is varied in table 1.
Parameter choices for table 1 are

Interest Rate Model:

a = 0.15%, b = 0.045, σ = 0.03, r0 = b;

Mortality Model:

c = 0.1%, b = 0.045, ξ = 0.0003, µ0 = 0.006.

Using equations (7.15) and (7.17)-(7.18), we see that

Corr [rT , µT ] =
2ρ

√
ac

(a− c)

(
1− e−(a−c)t)√

(1− e−2aT ) (e2cT − 1)
(8.1)

As a result, we infer that the correlation between mortality and interest rate is
directly proportional to the ρ which depicts the correlation between the underlying
Brownian motions governing these two risks. In table 1, we vary ρ from -0.9 to 0.9
and investigate the effect of changing correlation between the two aforementioned
risks on the lower and upper bounds and Monte Carlo estimate for the GAO price
under the Vasicek model. To obtain the general lower bound given in section 5.5.3
we adhere to the same choice of Λ as that for the improved upper bound for the
Vasicek case given in section 5.7.1. It is evident that when the correlation between
these underlying rates grows, the prices of the GAO begin to swell. This finding
is in line with the results of [62]. However, while the bounds obtained by these
authors are vague, we succeed in deriving tight lower and upper bounds for the
GAO price. The numerical findings of Table 1 are portrayed in figures 1-3. While
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figures 1 and 2 depict comparisons between the bounds, figure 3 portrays the price
bounds for the GAO price under the Vasicek Model. We do not work out the
third upper bound GAOUB for the Vasicek case since inversion of the distribution
function is possible here yielding extremely tight upper bounds especially using the

conditioning approach. Table 1 reflects that the relative difference (= |bound−MC|
MC )

between any bound and the benchmark Monte Carlo estimate decreases with an
increase in the correlation between mortality and interest rate. This observation
is echoed by figure 1. On the other hand, figure 2 depicts the difference between
the Monte Carlo estimate of the GAO price and the derived bounds. The bound

GAOLB
(V S)
j fares much better than GAOLB3, although the former is restricted

to the assumption of positive correlation between the two competing risks viz.
mortality and interest rate which is by all means a very sensible assumption. The
absolute difference between the estimated price and the bounds diminishes as the
value of the correlation is increased. The competing worms in figures 1 and 2
show the efficacy of additional information as the ones exploiting extra knowledge
completely outperform the thread of trivial lower bound by a huge margin. Finally
figure 3 is a testimony to the fact that the bounds are extremely tight. There is
indeed a clustering of the bounds around the line depicting Monte Carlo estimator.

9. Conclusions

Our research investigates the designing of price bounds for Guaranteed Annuity
Options assuming that mortality and interest rate risk are correlated. The high-
light of this paper is that the methodologies devised here allow to get rid with the
issue of dealing with sums of a large number of correlated variables. Moreover they
are also successful in dealing with cumbersome stochastic processes. In fact, the
bounds are extremely tight particularly when the underpinning risks are governed
by Vasicek models. This paper is frontrunner in obtaining both the lower and the
upper bound in the affine case that depend on the properties of the distribution of
the random variables connected to the transformed stochastic processes underlying
mortality and interest rate. While the lower bound depicts itself in form of Laplace
transform of the underlying random variable, the upper bound is presented in the
form of the associated characteristic function. Both of these tools are easy com-
putable vital statistics for any distribution. The most interesting point is that we
need to work in one dimension, in contrast to what would have been at least a 34-
dimensional set up, assuming that a person lives at least 100 years making n=35.
As a result in cases where inversion of the distribution function is unavailable,
an upper bound can still be found provided the characteristic function of the log
prices of the underlying assets viz. pure endowments in our case is known. This
paper serves as the perfect launching pad to deal with experiments to incorporate
jumps in the models for mortality to price GAOs. Moreover, the methodology
employed for furnishing bounds for GAOs can be extended to obtain bounds for
Guaranteed Minimum Income Benefits (GMIBs). A worthy observation is that the
stimulant for the present work is the theory of comonotonicity. One can therefore
easily extend this approach for computing tight bounds for other longevity linked
securities.
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Figure 1. Relative Difference of Lower and Upper Bounds
w.r.t. MC estimate under Vasicek model with GAOLB0 denoting
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Appendix A. Appendix A

Definition A.1. Affine Process A time-homogeneous Markov process X rela-
tive to some filtration (Fs) and with state space (D,D) (augmented by ∆) is called
affine if

(i) it is stochastically continuous, that is, lims→t ps (x, ·) = pt (x, ·) for all t ≥ 0
and x ∈ D, and

(ii) its Fourier-Laplace transform has exponential affine dependence on the initial
state. This means that there exist functions ϕ : R+×S+

d → R+ and ψ : R+×S+
d →

93



 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Pr
ic

e 
MC

GAOLB

GAOUB1

GAOLB0

GAOLB(VS)

GAOUB(VS)

Figure 3. GAO Price Bounds under Vasicek model for the pa-
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GAOLB denoting GAOLB3

S+
d such that

Ex
[
e⟨u,Xt⟩

]
= Pte

⟨u,x⟩ =

∫
D

e⟨u,ξ⟩pt (x, dξ) = e−ϕ(t,u)−⟨ψ(t,u),x⟩, (A.1)

for all x ∈ D and (t, u) ∈ R+ × Rd

Definition A.2. Truncation Function Let χ : Sd → Sd be some bounded
continuous truncation function with χ (ξ) = ξ in the neighborhood of 0. An
admissible parameter set given by

(
α, b, βij , c, γ,m, µ

)
associated with χ consists

of:

• a linear diffusion coefficient

α ∈ S+
d , (A.2)

• a constant drift term

b ⪰ (d− 1)α, (A.3)

• a constant killing rate term

c ∈ R+, (A.4)

• a linear killing rate coefficient

γ ∈ S+
d , (A.5)

• a constant jump term: a Borel measure m on S+
d \ {0} satisfying∫

S+
d \{0}

(∥ ξ ∥ ∧1)m (dξ) <∞, (A.6)

• a linear jump coefficient: a d×d matrix µ = (µij) of finite signed measures
on S+

d \ {0} such that µ (E) ∈ S+
d for all E ∈ B

(
S+
d \ {0}

)
and the kernel

M (x, dξ) :=
⟨x, µ (dξ)⟩
∥ ξ ∥2 ∧1

(A.7)
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satisfies∫
S+
d \{0}

⟨χ (ξ) , u⟩M (x, dξ) <∞ for all x, u ∈ S+
d with ⟨x, u⟩ = 0, (A.8)

• a linear drift coefficient: a family βij = βji ∈ Sd such that the linear map
B : Sd → Sd of the form

B (x) =
∑
i,j

βijxij (A.9)

satisfies

⟨B (x) , u⟩ −
∫
S+
d \{0}

⟨χ (ξ) , u⟩M (x, dξ) ≥ 0 for all x, u ∈ S+
d with ⟨x, u⟩ = 0.

(A.10)

Definition A.3. Generator For an affine process X taking values in S+
d ⊂ Sd

the infinitesimal generator is defined as

Af (x) = lim
t→0+

E [f (Xx
t )]− f (x)

t
for x ∈ S+

d , f ∈ C2 (Sd,Rd)

with bounded derivatives. (A.11)
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