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BAYES ESTIMATION AND BAYES RISK UNDER DIFFERENT
LOSS FUNCTIONS

M. GEETHA* AND DR. R. SELVAM

ABSTRACT. To analyze the performance of various estimators, this paper
compares Bayesian and classical estimate approaches across a variety of loss
functions. The work focuses on informative versus non-informative priors
in Bayesian estimation. The calculations are based on a number of loss
functions, including the Square Error Loss Function (SELF), Quadratic Loss
Function (QLF), Precautionary Loss Function (PLF), and Entropy Loss Func-
tion (ELF). The methodology uses simulation techniques as well as real-world
datasets to test the performance and robustness of the proposed estimators.
The Bayesian estimators, classical estimators, and related Bayes hazards us-
ing empirical analysis and extensive simulations to computed. The findings
show that the Minimum Mean Square Error estimator (MiniMSE) is more
accurate and reliable than other estimators in a variety of settings. Further-
more, for both types of priors, it is demonstrated that the Bayes risk under
the Quadratic Loss Function (QLF) is the lowest among all loss functions
considered, including SELF, PLF, and ELF. This suggests that, when com-
pared to other loss functions, QLF is a more effective and balanced criterion
for making estimation decisions. The study’s findings provide vital new in-
sights into how to choose the optimum estimate techniques and loss functions
for statistical decision theory and practical data processing.

1. Introduction

Statistical inference plays a critical role in the decision-making process, partic-
ularly in the estimation of unknown parameters based on observed data. Among
the various approaches to statistical estimation, Bayesian inference has emerged
as a powerful and flexible framework. Unlike classical methods, which rely solely
on the observed data, Bayesian methods incorporate prior knowledge or beliefs
about the parameters using prior distributions. This integration of prior and like-
lihood information enables more robust and adaptive estimation, particularly in
situations involving uncertainty or limited data.

Bayesian estimation seeks to minimize the expected loss, leading to the concept
of Bayes estimators. These estimators rely on the selection of a loss function, which
measures the penalty paid for differences between the estimated and true values,
in addition to the shape of the prior distribution. Divergent perspectives on choice
risk and estimating mistakes are reflected in several loss functions. The Squared
Error Loss Function (SELF), Quadratic Loss Function (QLF), Precautionary Loss
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Function (PLF), and Entropy Loss Function (ELF) are often employed loss func-
tions. Different Bayes estimators and related hazards result from each of these
functions, which each reflect a distinct viewpoint on punishing estimate mistakes.
A key metric for assessing an estimator’s performance is the Bayes risk, which is
the smallest predicted loss in relation to the posterior distribution. The Bayes
risk and, thus, the estimation’s effectiveness are directly impacted by the choice
of suitable priors (informative or non-informative) and loss functions. This study
uses both informative and non-informative priorities to examine how well Bayesian
and classical estimators perform under different loss functions. The study evalu-
ates the effectiveness of estimators in terms of their mean square errors and Bayes
hazards using simulated methods and real-world data applications. This research
finds the best estimate methods and loss functions for real-world inference tasks
by comparing estimators across several decision frameworks.

2. Preliminaries

It is suggested that the Pareto distribution be estimated using the Bayesian
and classical methods. In order to analyze stock prices and instability, this model
is frequently used in business and economics, biological research, insurance firms,
population migration, survival time in a quadratic system, geophysical phenom-
ena in society, dependability, and life testing. Al-Kutubi, Hadecelsalim, Noor
Akmaibrhim, and Al Omari Ahmed (2010) examined the distinctions between
Bayesian estimation and maximum likelihood. Al Omari Mohammed Ahmed and
Noor Akmaibrhim (2011) used a non-informative prior and right-censored data
to examine the effectiveness of Bayes’ survival function and MLE. Sankudey and
Sudhansu A. Maiti (2012) used extended Jeffrey’s priors with both symmetric and
asymmetric loss functions to study the Bayes estimators of the Rayleigh parame-
ter, and the risk associated with it. In 2015, R.K. Radha used an informative prior
to study the Bayesian analysis of exponential distributions. The Bayes estimate of
the shape parameter of the exponentiated moment exponential distribution with
informative and non-informative priors under different loss functions was inves-
tigated by Kawsar Fatima and S.P. Ahmad (2018). The fundamental ideas and
mathematical formulas required to comprehend Bayes estimate and Bayes risk
under various loss functions are presented in this section. The framework for the
creation and evaluation of the estimators employed in this investigation is estab-
lished by these initial phases.

2.1. Bayesian Estimation.

Assume X is the observed data with the likelihood function f(x—), where is
an unknown parameter associated to a statistical model. The Bayesian framework
treats as a random variable by using the prior distribution (), which represents
preexisting views or information about before data observation.

The Bayes theorem provides the posterior distribution of 8 after seeing data x :

m(0 | x) = [f(z [ O)m(0)]/ [/ f(z | 9)W(9)d9}

169



BAYES ESTIMATION AND BAYES RISK UNDER DIFFERENT LOSS FUNCTIONS

The value that minimizes the posterior anticipated loss is the Bayes estimator
0(x) of 0 :

o(x) = argmina/ L(#,a)r(0 | x)do

2.2. Loss Functions.
The shape of the Bayes estimator is determined by the choice of loss function
L(6#,a). Typical loss functions consist of:
SELF( Squared Error Loss Function ) : L(#,a) = (6 — a)?
Bayes estimator: posterior mean E[§ | X]
QLF (Quadratic Loss Function): L(#,a) = w(0)(0 — a)?
PLF( Precautionary Loss Function ) : L(6,a) = (6 — a)? x exp(A(6 — a))
ELF(Entropy Loss Function): L(,a) = (a/0 —log(a/0) — 1)

2.3. Bayes Risk.
The Bayes risk of an estimator d(x) is the expected loss averaged over both the
data and the prior distribution:

r(m,d) = //L(&é(x))f(x | 6)dxm(0)do

2.4. Priors.

Non-informative priors, like Jeffreys or uniform priors, reflect minimal past
knowledge. Informative Priors: Include a significant amount of prior information
based on historical data or professional judgment. Umesh Chandra, Vinod Kumar,
and Gaurav Shukla developed and tested the risk function expression under three
different loss functions in 2020. The lack of progress in building proper Bayesian
inference tools is striking. Bayesian inference for Pareto type I distributions with
known scale parameters.

The pdf of Pareto type - I distribution is defined as

0

6
f(t;aﬁ):{tﬁ_l;t>a;9>0;a>0 (2.1)

where 6 represents the shape parameter, « is the known scale parameter, and t
is a random variable. The moments of the Pareto type I distribution were supplied

by
Mean,
0
B(t) = 90‘_ 60> 1
Variance,
(Je}
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3. Classical Estimation

Classical estimation is an important estimation techique in statistics. In this
section a specfic method of estimation such as Maximaum Liklihood Estima-
tion(MLE),Uniformly Minimum Variance Unbiased Eestimation(UMVUE), Min-
iMean Sequare Error Estimation (MiniMSE), are considered to estimate the shape
parameter of Parato model proper in the study

3.1. Maximum Likelihood Estimator. Let tq,ts,.....t, be a collection of n
random variables taken from a Pareto Type I distribution, using the likelihood
function, parameters 6 and «, and the probability density function.

n

L=]]t(tie.0)

i=1

In case of frequency distribution

~ " 11 t; -1
0= {Zz:l]{[og —log a] (3.1)

3.2. Exponential family and Uniformly Minimum Variance Unbiased
Estimator.

The distribution has the following general form for its density functions is
f(t,0) = a(d) - b(t)elc@dM)] is defined as an exponential family of distributions
with a single parameter. The Pareto distribution, which has a density function
and belongs to the exponential distribution family, can be expressed as,

f(t, 9) — 969 log a—(0+1) log, t

_ 969 log, a—0log, t—log t

— fe~ log,, tefe log, (t/c)

Where, a(f) = 0,b(t) = e'*%*,  ¢(0) = —0,d(t) = log, (t>
a

Therefore, the given statistic is a complete sufficient statistic for 8 of

P =3 log, ().
With parameters n and 6, it is simple to demonstrate that the statistic P is
distributed as a Gamma distribution.
If T ~ Pareto ( a, 0 ), then log,(¢t/«a) ~ exponential(§) and
P=>3" log, (%) ~ Gamma(n,0) with pdf
en

g(p) = —p" e

; >0, 06>0
n p 2

Let us consider,
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E @) = /OOO %g(p)dp (3:2)

<16
= A Eﬁpn 16 9pdp (33)
0" n—1
= T (3.4)

D (;) - - ! ; (3.5)

E(";l):e (3.6)

2=2 is a P is an objective estimate of 8, and P is the whole statistic for 6. The
Lehmann-Scheffe theorem is used to get the UMVUE of 6, which is

n—1

Oumvue = (3.7)

The class of estimators of the type includes the Minimum Mean Squared Error
estimator (MinMSE) is £.

OvinmsE = n-2 (3.8)
- _ ?(n+2)

MSE (9MLE) = D=3 (3.9)
MSE (éUMVUE) - (n9 ) (3.10)
MSE (éMmMSE) - (nej Y (3.11)

(3.12)

Therefor the combination is

MSE (éMinMSE> < MSE (éUMVUE) < MSE (éMLE>
It has been demonstrated that the Uniformly Minimum Variance Unbiased Es-

timator (UMVUE) and Maximum Likelihood Estimator (MLE) are less accurate
than the Minimum Mean Squared Error (MinMSE).

4. Bayesian Estimation and Bayes Risk using Non - informative prior

The Bayesian estimation approach minimizes the estimated loss for all X obser-
vations by estimating an unknown parameter, §. The Bayes approach is an average
case analysis since it calculates an estimator’s average risk for each parameter in
the distribution under study. The average risk is defined as follows, given the prior
probability distribution 7 on the parameter space w :
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R (0) = Ep.[L(6,6)]

Thus, the lowest that the average risk may reach is the Bayes risk for a previous

Ro = [Ra00)]

The non-informative prior can be used in Bayesian analysis when there is no
prior information of the parameter. Because we do not know the parameters,
we may utilize Jeffrey’s prior, which is the square root of the Fisher information
matrix for each observation.

The Jeffrey’s prior is defined as

81(0) o< V1(0) = b/ 1(0)

Where I(0) = —nE (82313§L)

9(6) = b\/ —nE (d2;‘;§ L )

logL =0loga— (04 1)logx
dlogL 1

Therefore

=—-+41 —1
a0 o—i-oga ogx
d2logL_ 1
ez 02

d?log L 1
E( de? )“92
b

Assuming that t1,to,.....,t, be the n independent observation which follows
the Pareto Type I Distribution with probability density function, given in(1.1) the
value of « is known and 6 is the only unknown parameter, we shall obtain the
posterior probability density function for 6 using Jeffrey’s prior distribution.

Posterior probability density (pdf) function for 6 is

gL B:itite,. . t)
1S 8O)L (0511, ta, ... . ty) df
lb\/ﬁ.enenelogae—w—&-l)zlogw '
= 05’01 nondlog ap,—(0+1)T lo 2 llSlIlg(2.1.1)
Jo sby/n.gnendlosae 870

(gflanenG log a—(6+1)X log w)

h(0/ti,to, ... . 1)

- fooo f—1gnendloga—(0+1)Tlogz Jg

(97171679(771 log a+X log a:)

= fooo gn—1le—0(—nlogat+Xlogz g
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Where,

p= Zlog (t; /)

i=1
B (6n—1e=0F)
o fooo gn—1—60P 1
P'n.
R/t ta,. ... t) = ﬁ9’“L—1e—91”
The posterior density function of Jeffreys prior is
h (9/t1,t2, R .,tn) = %Hn_le_ep

5. Experimental Study

Experiment-1
We employed sample sizes of n = 25, 50, and 100 to represent the small, median,
and large data sets in this investigation. The simulation results for the traditional

estimate of the Pareto type I distribution’s shape parameter using MLE, UMVUE,
and MinMSE are displayed in Table 1.

TABLE 1. Classical estimation of the shape parameter

Distribution | n shape = 0.1
scale = 0.2 scale = 0.4
MLE UMVUE MINMSE | MLE UMVUE MINMSE
PARETO 25 | 0.005 0.004 0.001 0.019 0.018 0.003
50 | 0.001 0.001 0.001 0.007 0.006 0.001
100 | 0.001  0.0018 0.001 0.003 0.003 0.001

Form the table 1, it is observed that MiniMSE is the best among the other
proposed estimators such as MLE and UMVUE.

Experiment-2

Risks and Bayesian estimates for the Pareto type-I distribution’s form pa-
rameter. To represent small, medium, and big data sets, we utilize samples of
n = 25,50,75, and 100. The informative prior (Exponential prior) and non-
informative prior (Jefferey’s prior) are used to calculate the Bayes risk of the
shape parameter for the Pareto type-I distribution with different loss functions.
The shape parameter values are § = 1,2,3 and o = 4,5, 6.
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TABLE 2. Bayes Estimation under Square Error Loss Function
for different values of o = 4, 5&6, 6 = 1, 2&3.

Prior

4

=1
)

6

4

0=2
5)

6

4

0=3
5

Jeffrey’s

25
50
(0]
100

2.48
2.32
1.98
1.97

2.46
2.32
1.97
1.96

2.11
2.11
1.96
1.95

1.96
1.95
1.94
1.93

1.95
1.94
1.93
1.92

1.94
1.93
1.92
1.91

1.93
1.92
1.91
1.90

1.92
1.91
1.90
1.89

1.91
1.90
1.89
1.88

Exponential

25
50
(0]
100

2.31
2.22
1.97
1.96

2.31
2.21
1.96
1.95

2.10
2.00
1.93
1.92

1.95
1.94
1.93
1.92

1.94
1.93
1.92
1.91

1.93
1.92
1.91
1.90

1.92
1.91
1.90
1.90

1.91
1.90
1.89
1.89

1.90
1.88
1.87
1.86

TABLE 3. Bayes Risk under Square Error Loss Function for dif-

ferent values of o = 4,5&6, 6 = 1, 2&3.

Prior

4

=1
5

6

4

0=2
5

6

4

0=3
5

6

Jeffrey’s

25
50
0]
100

1.54
1.49
0.98
0.97

1.52
1.48
0.98
0.96

0.98
0.98
0.96
0.95

0.97
0.96
0.99
0.95

0.98
0.98
0.96
0.95

0.97
0.97
0.95
0.94

1.10
1.09
0.98
0.97

0.90
0.89
0.87
0.86

0.89
0.88
0.84
0.83

Exponential

25
50
(0]
100

1.42
1.41
0.98
0.96

1.51
1.48
0.96
0.95

0.97
0.96
0.94
0.94

0.96
0.95
0.93
0.93

0.95
0.94
0.93
0.92

0.94
0.93
0.92
0.90

1.10
1.08
0.97
0.92

0.80
0.72
0.73
0.72

0.82
0.81
0.73
0.72

Experiment-3 Bayes Estimation and Bayes Risk of the Shape parameter
(Pareto model) by using real life problem Under various loss functions, informative
(Exponential prior) and non-informative (Jeffrey’s) priors are used to estimate the
Bayes risk of the shape parameter for the Pareto type-I distribution. The survival
data are displayed in tables and utilized to estimate the Bayes risk and Bayes

estimation of the Pareto Type-I distribution’s shape parameter.

In Table 10 denoted U-up:Year of follow-up, NAL:Number alive at beginning of

interval and NDI: Number dying interval.
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TABLE 4. Bayes Estimation under Quadratic Loss Function for

different values of o = 4, 5&6, 6 = 1, 2&3.

Prior

4

=1
)

6

4

0=2
5)

6

4

0=3
5

Jeffrey’s

25
50
(0]
100

1.42
1.40
1.21
0.98

1.31
1.28
1.11
0.98

1.30
1.27
1.10
0.97

1.28
1.26
1.09
0.95

1.26
1.24
1.01
0.94

1.25
1.25
1.01
0.93

1.27
1.26
1.09
0.94

1.25
1.24
1.01
0.93

1.25
1.24
1.01
0.92

Exponential

25
50
(0]
100

1.31
1.30
1.18
0.98

1.28
1.12
1.10
0.97

1.28
1.27
1.10
0.96

1.26
1.25
1.00
0.94

1.25
1.22
1.01
0.93

1.24
1.21
1.01
0.93

1.26
1.25
1.00
0.93

1.25
1.24
1.01
0.92

1.23
1.22
1.00
0.91

TABLE 5. Bayes Risk under Quadratic Loss Function for different

values of @ = 4,5&6, 0 = 1, 2&3.

Prior

=1

0=2

4

5

4

5

4

Jeffrey’s

25
50
75
100

0.82
0.80
0.70
0.69

0.79
0.78
0.70
0.68

0.77
0.76
0.69
0.67

0.69
0.68
0.67
0.66

0.65
0.62
0.61
0.59

0.61
0.59
0.58
0.57

0.42
0.41
0.40
0.40

Exponential

25
50
(0]
100

0.73
0.72
0.61
0.60

0.73
0.72
0.70
0.67

0.71
0.70
0.67
0.67

0.60
0.68
0.65
0.65

0.60
0.60
0.58
0.57

0.59
0.57
0.55
0.54

0.40
0.39
0.38
0.37
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for different values of o = 4, 5&6, 6 = 1, 2&3.

Prior

=1

0=2

0=3

4

5

6

4

5

6

4

5

6

Jeffrey’s

25
50
0]
100

2.98
1.99
1.97
1.82

1.98
1.97
1.96
1.80

1.97
1.96
1.95
1.80

1.96
1.95
1.93
1.71

1.96
1.94
1.93
1.80

1.95
1.93
1.92
1.80

1.94
1.92
1.90
1.79

1.92
1.91
1.89
1.88

1.90
1.89
1.87
1.87

Exponential

25
50
(0]
100

2.16
1.99
1.92
1.78

1.98
1.97
1.95
1.80

1.96
1.95
1.94
1.80

1.95
1.93
1.92
1.80

1.95
1.93
1.92
2.00

1.94
1.92
1.91
1.90

1.92
1.91
1.89
1.88

1.90
1.89
1.88
1.88

1.89
1.88
1.88
1.87

TABLE 7. Bayes Risk under Precautionary Loss Function for dif-
ferent values of o = 4,5&6, 6 = 1, 2&3.

Prior

=1

0=2

5

5

4

Jeffrey’s

25
50
I0)
100

1.41
1.21
0.98
0.97

1.21
1.09
0.97
0.96

0.98
0.97
0.95
0.94

0.96
0.95
0.92
0.90

0.92
0.90
0.89
0.88

0.89
0.88
0.87
0.82

0.76
0.75
0.74
0.73

Exponential

25
50
75
100

1.21
1.12
0.97
0.96

1.20
1.01
0.96
0.95

0.97
0.96
0.95
0.94

0.96
0.95
0.94
0.93

0.89
0.89
0.88
0.87

0.87
0.86
0.85
0.84

0.75
0.74
0.73
0.72

Experiment-4
Classical Estimation of the Shape parameter of Pareto Type-I distribution
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TABLE 8. Bayes Estimation under Entropy Loss Function for dif-
ferent values of o = 4,5&6, 6 = 1, 2&3.

Prior

=1

0=2

0=3

4

5

6

4

5

6

4

5

6

Jeffrey’s

25
50
0]
100

2.92
2.90
2.89
1.98

2.90
2.90
2.79
1.97

2.89
2.79
2.68
1.96

2.68
2.58
2.42
1.95

2.52
2.48
2.33
1.94

2.46
2.32
2.31
1.93

2.48
2.47
2.30
1.92

2.47
2.46
2.30
1.91

2.45
2.12
2.28
1.90

Exponential

25
50
(0]
100

2.68
2.52
2.56
1.96

2.89
2.79
2.68
1.96

2.52
2.46
2.32
1.95

2.46
2.52
2.40
1.94

2.48
2.46
2.28
1.93

2.43
2.30
2.10
1.92

2.31
2.20
2.00
1.90

2.33
2.12
2.00
1.92

2.33
2.10
1.99
1.91

TABLE 9. Bayes Risk under Entropy Loss for different values of

o = 4,5&6, 0 = 1,2&3.

Prior

4

Jeffrey’s

25
50
75
100

1.90
1.96
0.97
0.96

0.97
0.96
0.95
0.94

0.95
0.94
0.93
0.92

0.94
0.93
0.92
0.90

Exponential

25
50
75
100

0.89
0.88
0.87
0.86

0.85
0.84
0.83
0.82

0.84
0.83
0.82
0.81

0.83
0.82
0.81
0.80

178




M. GEETHA* AND DR. R. SELVAM

TABLE 10. Survival time distribution

U-up | NAI | NDI
0-1 | 1100 | 240
1-2 | 860 | 180
2-3 | 680 | 184
3-4 | 496 | 138
45 | 358 | 118
56 | 240 | 60
6-7 | 180 | 52
7-8 | 128 | 44
89 | 84 | 32
>9 | 52 | 28

TABLE 11. Bayes Estimation and Bayes Risk of the Shape parameter

Prior SELF QELF PELF ELF
BE BR | BE BR | BE BR | BE BR
Jeffreys 049 039039 075|051 0.71 044 0.65
Exponential || 0.53 0.25 | 0.43 0.33 | 0.43 0.66 | 0.48 0.56

TABLE 12. The Classical Estimation of the Shape parameter of
Pareto Type-I distribution

Classical Estimation
MLE | UMVUE | MinMSE
6 10.1874 | 0.1405 0.1261

6. Conclusions

This work calculated the form parameter of the Pareto Type-I distribution
utilizing traditional estimating techniques such as MLE, UMVUE, and MiniMSE.
Informative and noninformative priors were utilized to calculate the Bayes risk of
the shape parameter of the Pareto Type-I distribution under various loss functions
in both simulation and real-world settings. The MiniMSE beats the MLE and
UMVUE estimators when compared to the conventional estimate. The shape
parameter has the lowest Bayes risk under QLF when an informative prior is used
instead of a non-informative one, both in simulation and in real-world scenarios.

Furthermore, it has been discovered that the simulation approach reduces Bayes
risk as sample size increases. Finally, MiniMSE outperforms every other classical
estimator that is currently available. Furthermore, it is demonstrated that the
Pareto type-I model with informative prior Bayes risk for the shape parameter
under the quadratic loss function outperforms simulation and real-world problems.
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