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Abstract. Let G = (V,E) be a simple undirected graph, where V = V (G)

denotes the vertex set and E = E(G) the edge set. For any unordered pair
of distinct vertices u, v ∈ V , we define the e-twin set, denoted by Ecuv , as

follows:

Ecuv = {w ∈ N(u) ∩N(v) : deg(w) ≡ 0 (mod 2)} ,
where N(u) and N(v) represent the open neighborhoods of the vertices u and

v, respectively, and deg(w) is the degree of the vertex w.
The e-twin number, denoted ecuv , is the cardinality of the set Ecuv , i.e.,

ecuv = |Ecuv |.
Using these local contributions, we define a global graph invariant called

the e-twin connectivity index, or E C -index for short. It is given by summing

ecuv over all unordered pairs of distinct vertices in the graph:

E C (G) =
∑

{u,v}⊂V (G)

ecuv .

In this work, we explore and analyse the behavior of the E C -index for

specific graph operations, particularly focusing on the tensor product and

the join of certain families of graphs. The structural properties of these
operations are leveraged to derive explicit formulas for their corresponding

E C -indices.

1. Introduction

Graph theory serves as a fundamental mathematical tool for representing and
analysing molecular structures, especially with regard to their symmetry, stability,
and structural redundancy [5, 6]. Within the domain of chemical graph theory, a
molecule is typically modelled as a graph: vertices represent atoms, while edges
denote covalent bonds. For example, saturated hydrocarbons such as alkanes
can be depicted as acyclic (tree-like) graphs, whereas aromatic compounds like
benzenoid hydrocarbons correspond to planar graphs composed of hexagonal ring
systems.

Among the many graph-theoretic descriptors employed in molecular studies,
degree-based invariants play a crucial role in characterizing connectivity patterns
and evaluating the relative stability of molecular frameworks. In this setting, the
e-twin connectivity index [14] emerges as a novel and insightful parameter. It is
defined based on the count of common neighbors with even degrees between pairs
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of atoms, providing a measure of local structural symmetry and redundancy within
the bonding network.

This index proves especially informative when applied to molecules where sym-
metry and delocalization are central features, such as in conjugated systems like
benzenoids. Additionally, it can offer valuable insights in the analysis of alkanes,
where the branching structure significantly influences chemical reactivity and sta-
bility. Consequently, the e-twin connectivity index enriches the tool kit available
to theoretical chemists exploring structure–property relationships across diverse
classes of molecular graphs.

The search for robust numerical descriptors of molecular structure began more
than half a century ago with the Wiener index [10], introduced in 1947 as the sum
of distances over all vertex pairs in a molecular graph, and quickly followed by the
first and second Zagreb indices in the 1970s, which measure degree-based connec-
tivity at each end of an edge [2, 11, 12]. In the 1990s, the Randić index and its
harmonic variant added further nuance by weighting edges inversely by the prod-
uct (or sum) of their endpoint degrees; the past decade has witnessed an explosion
of new descriptors such as the Sombor index [13], defined by Euclidean norms of
degree-pairs, and its various augmented and geometric extensions. Parallel to these
developments, spectral indices—most notably graph energy, the Estrada index [4],
and the recently formulated Zagreb energy—have provided a global perspective
by summing functions of eigenvalues of the adjacency or Laplacian matrices [3].
The article [9] summarises recent progress about link prediction algorithms, em-
phasizing on the contributions from physical perspectives and approaches, such as
the random-walk based methods and the maximum likelihood methods.

Within this broad framework, the e-twin connectivity index takes a comple-
mentary approach: rather than aggregating local degree contributions or global
spectral information, it focuses on pairwise interactions through the lens of shared
neighborhoods, counting only those common neighbors whose degree is even. This
restriction to even-degree intersection points gives rise to novel structural and
spectral phenomena, especially when graphs are constructed via standard product
operations [7]. In particular, the tensor (or categorical) product which model the
simultaneous occurrence of two adjacency relations, play a pivotal role in both
theoretical graph theory and applications to complex molecular frameworks. Ten-
sor products preserve and intertwine parity properties of degrees in a way that
makes the e-twin connectivity index especially tractable.

Let G = (V,E) be a simple graph with vertex set V = {v1, v2, . . . , vn}. If vi
and vj are adjacent in G, we denote it as vi ∼ vj or vi ∼G vj . The common
neighborhood graph of G is the graph with the same vertex set as that of G where
two vertices are adjacent if they have at least one common neighbor in G. The
common neighborhood graph of G is also known as congraph of G, and is denoted
by con(G).
Let the common neighborhood of two distinct vertices vi and vj , be denoted by
c(vi, vj) and is the set of vertices adjacent to both vi and vj other than vi and
vj . Then the common neighborhood matrix of G denoted by CN(G) is an n× n
matrix whose (i,j)th entry is 0 or |c(vi, vj)| according as i = j or i ̸= j, respectively.
The even degree common neighborhood graph of G, denoted by econ(G), is the
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graph with vertex set V (G) and edge set
Eecon = {{vi, vj} ⊆ V | ∃u ∈ N(vi) ∩N(vj) and dG(u) ≡ 0 (mod 2)}.
Hence, (econ)(G) = (V,Eecon).

The ECN -matrix of (G), is an n×n matrix whose (i, j)th entry is the number
of even degree common neighborhood vertices between vi and vj in G for i ̸= j
and zero otherwise.
The number of common neighborhood vertices of even degree between u and v is
called e-twin number of the vertices u and v, and is denoted by ecuv. Then the
e-twin connectivity index of the graph G is defined as

E C (G) =
∑

{u,v}⊂V (G)

ecuv,

where ecuv is the e-twin number for u, v ∈ V (G).
In this paper, we have computed the e-twin connectivity index of tensor product

and join of some standard graphs such as the complete graph Kn, path graph Pn,
cycle graph Cn, wheel graph Wn and star graph Sn.

2. Preliminaries

Let G be a simple graph with vertex set V (G) and edge set E(G). The degree
of a vertex v ∈ V (G) is denoted by deg(v) or degG(v).

Definition 2.1. [14] Let G be a graph with vertex set V (G), and let u, v ∈ V (G).
Define the e-twin set of u and v, denoted Ecuv, as

Ecuv = {w ∈ N(u) ∩N(v) : deg(w) ≡ 0 (mod 2)}.

The e-twin number of the pair u, v, denoted ecuv, is defined as the cardinality of
the set Ecuv, that is, ecuv = |Ecuv|.

Definition 2.2. [14] Let G be a graph. Define a topological index, e-twin con-
nectivity index by

E C (G) =
∑

{u,v}⊂V (G)

ecuv

where ecuv is the e-twin number for u, v ∈ V (G).

Lemma 2.3. [14] Let Kn be the complete graph of order n. Then

E C (Kn) =

{
1
2n(n− 1)(n− 2) if n is odd,

0 if n is even.

Let us consider the examples of Benzene and Butane. We find the e-twin con-
nectivity index of these molecular structures and analyse their structural property.

Benzene (C6H6). Benzene consists of a 6-carbon ring with alternating single
and double bonds. Each carbon atom is bonded to two other carbon atoms and
one hydrogen atom, yielding all carbon atoms of degree 3 (odd) and all hydrogen
atoms of degree 1 (odd), see Figure 1.

As no vertex has even degree, there can be no common even-degree neighbors.
Thus, E C (C6H6) = 0.
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Figure 1. Benzene (C6H6)
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Significance: The zero e-twin connectivity index reflects a uniformly odd-
degree structure. While benzene exhibits high symmetry and aromatic stability,
structurally it lacks even-degree bonding hubs. This reinforces the uniqueness of
benzene’s bonding: no two atoms share an even-degree intermediate.

Butane (C4H10). Butane is a straight-chain alkane with four carbon atoms. The
degrees are as follows: terminal carbon atoms (C1 and C4)have degree 4 (even),
internal carbon atoms (C2 and C3) have degree 4 (even), and all hydrogen have
degree 1 (odd), see Figure 2.

Figure 2. Butane (C4H10)
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Hydrogen atoms bonded to the same carbon (terminal or internal) share that
carbon as an even-degree common neighbor. Since degree of each carbon is 4,
there are

(
4
2

)
pairs. Hence,

E C (C4H10) = 4×
(
4

2

)
= 24.
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Significance: The e-twin connectivity index captures the presence of shared
bonding centers in the molecule. Here, it reflects structural regularity and mod-
ularity in the methyl groups, and reveals even-degree carbon atoms as bonding
hubs.

3. The e-twin connectivity index of tensor product of some graphs

The tensor (or categorical) product of graphs produces a structure where ad-
jacency is determined by simultaneous adjacency in both factor graphs. This
operation often leads to highly regular and symmetric graphs, making it an in-
teresting settings for studying degree-based invariants. In particular, the e-twin
connectivity index reflects how local neighborhood overlaps with even-degree ver-
tices emerge in such composite structures.

In this section, we compute the e-twin connectivity index E C (G) for the tensor
product of common graph families: complete graphs (Kn), paths (Pn), cycles (Cn),
wheels (Wn), and stars (Sn). These results help illustrate how the interaction
between the structural properties of each factor graph influences the overall index
in the product graph.

Definition 3.1. [1] The tensor product G×H of two graphs G and H is a graph
with vertex set V (G ×H) = V (G) × V (H), where two vertices (g, h) and (g′, h′)
are adjacent in G×H if and only if g ∼ g′ in G and h ∼ h′ in H .

Proposition 3.2. [7] For (u, v) ∈ V (G×H), degG×H(u, v) = degG(u) degH(v).

In the tensor product G×H, a vertex (u, v) is adjacent exactly to those (u′, v′)
for which u′ ∼G u and v′ ∼H v.
Therefore, NG×H(u, v) =

{
(u′, v′) : u′ ∈ NG(u), v

′ ∈ NH(v)
}
= NG(u)×NH(v).

Thus, degG×H(u, v) =
∣∣NG×H(u, v)

∣∣ = ∣∣NG(u) × NH(v)
∣∣ = ∣∣NG(u)

∣∣ ∣∣NH(v)
∣∣ =

degG(u) degH(v).

Proposition 3.3. Let G = Km ×Kn. Then,

E C (G) =

mn

(
(m− 1)(n− 1)

2

)
if (m− 1)(n− 1) even,

0 if (m− 1)(n− 1) odd.

Proof. In G, each vertex (u, v) has degree

degG(u, v) = degKm
(u) degKn

(v) = (m− 1)(n− 1).

Now, each vertex of even degree d contributes
(
d
2

)
to E C (G). There are mn

vertices, so E C (G) = mn
(
(m−1)(n−1)

2

)
whenever (m− 1)(n− 1) is even, and is

zero otherwise. □

Proposition 3.4. Let Pm and Pn be path graphs on m,n ≥ 2 vertices, and let
G = Pm × Pn. Then, E C (G) = 2(n− 2) + 2(m− 2) + 6 (m− 2)(n− 2).

Proof. In Pm, its two endpoints have degree 1 and its m− 2 internal vertices have
degree 2, and likewise for Pn. Now degG(u, v) = degPm(u) degPn(v) ∈ {1, 2, 4}. If
degG(u, v) = 2 (which happens when one factor is an endpoint and the other is
internal), then there are 2(n− 2) vertices of the form (u, v), u an endpoint of Pm
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and v an internal vertex of Pn, and 2(m−2) vertices of the form (u, v), u an internal
vertex of Pm and v an endpoint of Pn, contributing 2(n− 2) · 1 + 2(m− 2) · 1.

If degG(u, v) = 4 (both the factors are internal), then there are (m− 2)(n− 2)
such vertices, contributing (m− 2)(n− 2)

(
4
2

)
= (m− 2)(n− 2)× 6.

Summing these gives, E C (Pm×Pn) = 2(n−2)+2(m−2)+6 (m−2)(n−2). □

Theorem 3.5. Let Cm and Cn be cycle graphs of orders m,n ≥ 3. Then the
e-twin connectivity index of their tensor product is

E C (Cm × Cn) = 6mn.

Proof. Let G = Cm ×Cn, then V (G) = V (Cm)×V (Cn), and two vertices (u1, v1)
and (u2, v2) are adjacent in G if and only if u1 ∼ u2 in Cm and v1 ∼ v2 in Cn.

Since each vertex in Cm and Cn has degree 2, it follows that each vertex (u, v)
in G has degree, degG(u, v) = degCm

(u) · degCn
(v) = 2 · 2 = 4. Thus, all vertices

in G have even degree 4.
By definition, a vertex of even degree d contributes

(
d
2

)
to the e-twin connectivity

index. Here, each vertex contributes
(
4
2

)
= 6. Since there are mn vertices in total,

the total e-twin connectivity index is E C (Cm × Cn) = mn · 6 = 6mn. □

The following theorem presents an exact formula for computing the e-twin con-
nectivity index E C (G) when G is the tensor product of two wheel graphs, Wm

and Wn, with m,n ≥ 4. The expression for E C (Wm ×Wn) crucially depends on
the parity (even or odd nature) of the orders m and n.

Notably, when both m and n are odd, the index attains its maximum value
among all four cases, reflecting the highest possible redundancy due to the presence
of even-degree common neighbors across both wheel structures.

Theorem 3.6. Let Wm and Wn be wheel graphs of orders m,n ≥ 4, respectively,
and let G = Wm ×Wn. Then,

E C (Wm×Wn) =



0 if m and n even,((m−1)(n−1)
2

)
+ (n− 1)

(3(m−1)
2

)
if m odd and n even,((m−1)(n−1)

2

)
+ (m− 1)

(3(n−1)
2

)
if m even and n odd,((m−1)(n−1)

2

)
+ (n− 1)

(3(m−1)
2

)
+ (m− 1)

(3(n−1)
2

)
if m and n odd.

Proof. In Wm, the center vertex has degree m − 1 and each of the m − 1 rim
vertices has degree 3, and similarly in Wn.
Now, degG(x, y) = degWm

(x) degWn
(y) ∈ {(m− 1)(n− 1), 3(m− 1), 3(n− 1), 9}.

There are one center-center vertex of degree (m − 1)(n − 1), m − 1 rim-center
vertices of degree 3(n − 1), n − 1 center-rim vertices of degree 3(m − 1), and
(m − 1)(n − 1) rim-rim vertices of degree 9. If (m − 1)(n − 1) is even then, at

least one of m,n is odd; if so, the center-center vertex contributes
(
(m−1)(n−1)

2

)
. If

3(m−1) is even whenm is odd; if so, the n−1 vertices of type center-rim contribute

(n− 1)
(
3(m−1)

2

)
. If 3(n− 1) is even when n is odd; if so, the m− 1 vertices of type

rim-center contribute (m − 1)
(
3(n−1)

2

)
. Summing these contributions we get the

result. □
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Theorem 3.7. Let Sm and Sn be star graphs on m,n ≥ 2 vertices (each with one
center and m− 1 or n− 1 leaves). Let G = Sm × Sn. Then

E C (Sm × Sn) =



0 if m and n even,((m−1)(n−1)
2

)
+ (n− 1)

(m−1
2

)
if m odd and n even,((m−1)(n−1)

2

)
+ (m− 1)

(n−1
2

)
if m even and n odd,((m−1)(n−1)

2

)
+ (n− 1)

(m−1
2

)
+ (m− 1)

(n−1
2

)
if m and n odd.

Proof. In Sm, the center has degree m− 1 and each of the m− 1 leaves has degree
1, and similarly for Sn. In the tensor product G = Sm ×Sn, for each vertex (x, y)

degG(x, y) = degSm
(x) degSn

(y) ∈ {(m− 1)(n− 1), m− 1, n− 1, 1}.

Each even-degree vertex w contributes
(
degG(w)

2

)
to E C (G). There are one vertex

of degree (m− 1)(n− 1) (center-center), n− 1 vertices of degree m− 1 (center of
Sm times leaves of Sn), m− 1 vertices of degree n− 1 (leaves of Sm times center
of Sn) and (m− 1)(n− 1) vertices of degree 1 (leaf-leaf), which do not contribute.
(m−1)(n−1) even if at least one of m,n is odd. m−1 even if m is odd. n−1 even
if n is odd. Hence in each of the four parity cases, summing the corresponding
binomial contributions we get the formula. □

The above theorem gives an explicit formula for the e-twin connectivity index
of the tensor product of two star graphs. The value of E C (Sm × Sn) depends
entirely on the parity of m and n. When both are even, no even-degree common
neighbors exist, leading to a zero index. In all other cases, the index increases
based on interactions among the leaf vertices, with additional contributions arising
when one or both stars have an odd number of vertices. This highlights how the
structural imbalance introduced by odd degrees enhances local redundancy in the
product graph.

Theorem 3.8. Let Km be the complete graph on m ≥ 2 vertices and Pn the path
graph on n ≥ 2 vertices. Let G = Km × Pn, then

E C
(
Km × Pn

)
= m (n− 2) (m− 1) (2m− 3) +

{
m (m− 1) (m− 2) if m odd,

0 if m even.

Proof. In Km, each vertex has degree m−1. In Pn, the two endpoints have degree
1 and the n− 2 internal vertices have degree 2.

Hence, degG(u, v) = degKm
(u) degPn

(v) = (m− 1)×

{
1 if v an end vertex,

2 if v an internal vertex.

When v is internal in Pn, degG(u, v) = 2(m − 1), which is always even. There

are m(n − 2) such vertices, and each contributes
(
2(m−1)

2

)
=

2(m−1)
(
2(m−1)−1

)
2 =

(m−1)(2m−3). Thus their total contribution to E C (G) ism(n−2)(m−1)(2m−3).
When v is an endpoint of Pn, degG(u, v) = m− 1, which is even exactly when m
is odd. If m is odd, there are 2m such vertices (two endpoints times m choices

for u), each contributing
(
m−1
2

)
= (m−1)(m−2)

2 , and so their total contribution is

2m · (m−1)(m−2)
2 = m(m − 1)(m − 2). When m is even, there is no contribution.

Summing these two parts will give the result. □
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Theorem 3.9. Let Km and Cn be the complete and cycle graphs of orders m ≥ 2
and n ≥ 3, respectively. Then, the e-twin connectivity index of their tensor product
is E C (Km × Cn) = mn(m− 1)(2m− 3).

Proof. Let G = Km × Cn. In Km, each vertex has degree m− 1, and in Cn, each
vertex has degree 2. Therefore, in G, the degree of each vertex is degG(u, v) =
degKm

(u) · degCn
(v) = (m − 1) · 2 = 2(m − 1). Thus, all vertices in G have

even degree 2(m − 1). A vertex of even degree d contributes
(
d
2

)
to the e-twin

connectivity index. Here,
(
2(m−1)

2

)
= (m−1)(2m−3). Since there are mn vertices

in total, the total contribution to the e-twin connectivity index is E C (Km×Cn) =
mn · (m− 1)(2m− 3). □

Theorem 3.10. Let Km be the complete graph on m ≥ 2 vertices and Wn the
wheel graph on n ≥ 4 vertices. Let G = Km ×Wn, then

E C
(
Km ×Wn

)
=


0 if both m and n even,

m
((m−1)(n−1)

2

)
if m even and n odd,

m
((m−1)(n−1)

2

)
+m(n− 1)

(3(m−1)
2

)
if m odd and n even or odd.

Proof. In Km, every vertex has degree m− 1. In Wn, the center vertex has degree
n − 1 and each of the n − 1 rim vertices has degree 3. Therefore, in the tensor
product G = Km ×Wn, every vertex (u, v) satisfies

degG(u, v) = degKm
(u) degWn

(v) = (m− 1)×

{
(n− 1) if v the center vertex,

3 if v a rim vertex.

There arem (center–type) vertices of degree (m−1)(n−1) andm(n−1) (rim–type)
vertices of degree 3(m− 1).
Now we check the conditions for the even degree vertices as they only contribute
to E C (G). The integer (m − 1)(n − 1) is even if at least one of m,n is odd and
3(m − 1) is even if m − 1 is even, that is when m is odd. Accordingly, if m
and n are both even, neither degree is even, so E C (G) = 0. If m is even and
n is odd, then only the center-type vertices (all m of them) contribute, each by(
(m−1)(n−1)

2

)
. Hence, E C (G) = m

(
(m−1)(n−1)

2

)
. If m is odd (regardless of n), then

both center-type and rim-type vertices contribute. There are m center-type giving

m
(
(m−1)(n−1)

2

)
, and m(n − 1) rim-type giving m(n − 1)

(
3(m−1)

2

)
. Summing these

we get the result. □

Theorem 3.11. Let G = Km × Sn, where Km be the complete graph on m ≥ 2
vertices and Sn the star graph on n ≥ 2 vertices. Then,

E C (Km × Sn) =


0 if m and n even,

m
((m−1)(n−1)

2

)
if m even and n odd,

m
((m−1)(n−1)

2

)
+m(n− 1)

(m−1
2

)
if m odd and n even or odd.
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Proof. In Km, each vertex has degree m − 1. In Sn, the center has degree n − 1
and each of the n− 1 leaves has degree 1. In the tensor product G = Km × Sn,

degG(u, v) = degKm
(u) degSn

(v) = (m− 1)×

{
(n− 1) if v the center vertex,

1 if v a leaf.

There are m vertices of degree (m − 1)(n − 1) (center-type), each contributing(
(m−1)(n−1)

2

)
whenever (m−1)(n−1) is even and m(n−1) vertices of degree m−1

(every u with a leaf), each contributing
(
m−1
2

)
whenever m − 1 is even. Now,

(m− 1)(n− 1) is even if at least one of m,n is odd and m− 1 is even if m is odd.
Summing these contributions case by case gives the result. □

4. The e-twin connectivity index of join of some graphs

The join operation is a fundamental graph construction that significantly in-
creases connectivity by adding edges between every vertex of two disjoint graphs.
This operation combines structural features from both components and creates
new interactions that influence graph invariants. In the context of the e-twin con-
nectivity index, the join operation can introduce even-degree common neighbors
between vertex pairs that were previously disconnected or structurally distant.

In this section, we compute the e-twin connectivity index E C (G) for the join
of various well-known graph families, including the complete graph Kn, path Pn,
cycle Cn, wheel Wn, and star Sn. These graphs offer diverse degree patterns and
topological characteristics, allowing us to observe how the index behaves under
different structural scenarios. The results provide insight into the role of vertex
degrees and neighborhood intersections in determining local redundancy in the
joined graphs.

Definition 4.1. [8] The join of two simple graphs G and H, denoted by G +H
is a graph formed by taking the disjoint union of G and H and adding an edge
between every vertex of G and every vertex of H.

Theorem 4.2. Let G and H be simple, undirected graphs with |V (G)| = p and
|V (H)| = q. For each vertex x ∈ V (G), define

tG(x) =
(degG(x)

2

)
, AG = {x ∈ V (G) : degG(x) + q is even} , DG =

∑
x∈AG

degG(x).

Similarly, for each y ∈ V (H), define

tH(y) =
(degH(y)

2

)
, AH = {y ∈ V (H) : degH(y) + p is even} , DH =

∑
y∈AH

degH(y).

Then the e-twin connectivity index of the join graph G+H is given by

E C (G+H) =
∑

x∈AG

tG(x) +
∑

y∈AH

tH(y) + qDG + pDH +

(
p

2

)
· |AH |+

(
q

2

)
· |AG|.

Proof. In the join graph G + H, each vertex in G is adjacent to every vertex in
H, and vice versa. For x ∈ V (G), degG+H(x) = degG(x) + q, and similarly,
degG+H(y) = degH(y) + p for y ∈ V (H).
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The e-twin connectivity index counts unordered vertex pairs {u, v} ⊂ V (G+H),
which has the number of common neighbors having even degree in G + H. We
classify these pairs into three types:

(1) Pairs within G: For u, v ∈ V (G), the even-degree common neighbors are:

• vertices x ∈ AG that are common neighbors of u and v in G, contributing∑
x∈AG

(
degG(x)

2

)
,

• all vertices y ∈ AH , since every vertex in H is adjacent to all vertices in

G, so shared by all such pairs. For each {u, v} ∈
(
V (G)

2

)
, there are |AH |

such common neighbors. Thus, the total contribution is
(
p
2

)
· |AH |.

(2) Pairs within H: Similarly, for u, v ∈ V (H), the contribution is∑
y∈AH

(
degH(y)

2

)
+

(
q

2

)
· |AG|.

(3) Pairs across G and H: For each pair u ∈ V (G), v ∈ V (H), the common
neighbors are:

• all vertices in G — shared since v ∈ H is adjacent to all of G,
• all vertices in H — shared since u ∈ G is adjacent to all of H.

But only those common neighbors of even degree are being counted here.
Hence,

∑
x∈AG

degG(x) contributes to q such pairs is qDG, and
∑

y∈AH
degH(y)

contributes to p such pairs is pDH .
Summing all these contributions, we get

E C (G+H) =
∑

x∈AG

(degG(x)

2

)
+

∑
y∈AH

(degH(y)

2

)
+ qDG + pDH +

(p
2

)
· |AH |+

(q
2

)
· |AG|.

□

Theorem 4.3.

E C
(
Km +Kn

)
= E C

(
Km+n

)
=


(m+ n)(m+ n− 1)(m+ n− 2)

2
if m+ n odd,

0 if m+ n even.

Proof. We have

Km +Kn
∼= Km+n.

Then, by Theorem 2.3, we get the result. □

Theorem 4.4. Let Pm and Pn be path graphs on m,n ≥ 2 vertices, and let
G = Pm + Pn be their join. Then,

E C (G) =



n(n+ 1) + m(m+ 1) if m and n odd,

n(n+ 1) +
(n− 2)(m+ 2)(m+ 1)

2
if m even and n odd,

(m− 2)(n+ 2)(n+ 1)

2
+ m(m+ 1) if m odd and n even,

(m− 2)(n+ 2)(n+ 1)

2
+

(n− 2)(m+ 2)(m+ 1)

2
if m and n even.
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Proof. In G = Pm + Pn, each vertex of Pm gains n new neighbors and each of Pn

gains m. Thus,

degG(w) =


1 + n if w ∈ {endpoints of Pm},
2 + n if w ∈ {internals of Pm},
1 +m if w ∈ {endpoints of Pn},
2 +m if w ∈ {internals of Pn}.

Now, there are four types of vertices in G and we calculate its contribution to

E C (G). Also, each even-degree vertex w contributes
(
degG(w)

2

)
to E C (G).

Type 1: w ∈ G are endpoints of Pm

Here, degG(w) = 1 + n, is even if and only if n is odd. Then, each such vertex

contributes
(
n+1
2

)
= n(n+1)

2 . Since, there are 2 such vertices, total contribution of
them is n(n+ 1).
Type 2: w ∈ G are internal vertices of Pm

Here, degG(w) = 2 + n, is even if and only if n is even. Then, each of the m − 2
such vertices contributes

(m− 2)

(
n+ 2

2

)
=

(
(m−2)(n+2)(n+1)

2

)
.

Type 3: w ∈ G are endpoints of Pn

Here, degG(w) = 1 + m, is even if and only if m is odd. Then their combined
contribution is

2

(
m+ 1

2

)
= m(m+ 1).

Type 4: w ∈ G are internal vertices of Pn

Here, degG(w) = 2 + m is even if and only if m is even. Then the n − 2 such
vertices contribute

(n− 2)

(
m+ 2

2

)
=

(n− 2)(m+ 2)(m+ 1)

2
.

Now, by combining exactly those terms whose parity-conditions hold gives the
formula for E C (Pm + Pn). □

The join of two cycle graphs Cm and Cn forms a densely connected structure
where each vertex in one cycle is adjacent to every vertex in the other. This
operation significantly alters the degree distribution and introduces new common
neighbors between vertex pairs. The e-twin connectivity index of such a join
reflects how even-degree vertices contribute to local redundancy across the com-
bined graph. The following theorem provides explicit formulas for E C (Cm +Cn),
highlighting the strong dependence of the index on the parity of m and n.
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Theorem 4.5. Let Cm and Cn be cycle graphs of orders m,n ≥ 3, and let G =
Cm + Cn be their join. Then, the e-twin connectivity index of G is given by

E C (Cm + Cn) =



m(n+ 2)(n+ 1)

2
+

n(m+ 2)(m+ 1)

2
if m and n even ,

m(n+ 2)(n+ 1)

2
if m odd and n even,

n(m+ 2)(m+ 1)

2
if m even and n odd,

0 if m and n odd.

Proof. Each vertex in a cycle graph has degree 2. In the join graph G = Cm+Cn,
each vertex of Cm gains n new neighbors, and each vertex of Cn gains m new
neighbors. Thus, the degree of any vertex becomes:

degG(w) =

{
2 + n if w ∈ Cm,

2 +m if w ∈ Cn.

We now count the contribution of vertices of even degree to E C (G). Recall that

a vertex w of even degree contributes
(
degG(w)

2

)
to the e-twin connectivity index.

We analyze the cases based on the parity of m and n.
Case 1: n is even. Then all vertices of Cm have even degree 2+n. Since there

are m such vertices, their total contribution is:

m ·
(
n+ 2

2

)
=

m(n+ 2)(n+ 1)

2
.

Case 2: m is even. Then all vertices of Cn have even degree 2+m. Since there
are n such vertices, their total contribution is:

n ·
(
m+ 2

2

)
=

n(m+ 2)(m+ 1)

2
.

If both m and n are even, we add both contributions. If both are odd, then all
degrees in G are odd and E C (G) = 0.

Hence, the result follows. □

Theorem 4.6. Let Wm and Wn be the wheel graphs of orders m,n ≥ 4, and let
G = Wm +Wn. Then,

E C (G) =



(m− 1)
(
n+3
2

)
+ (n− 1)

(
m+3
2

)
for m and n odd,

2
(
m+n−1

2

)
+ (n− 1)

(
m+3
2

)
for m odd and n even,

2
(
m+n−1

2

)
+ (m− 1)

(
n+3
2

)
for m even and n odd,

0 for m and n even.
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Proof. In the join G = Wm +Wn, each vertex of Wm gains all n vertices of Wn as
new neighbors, and vice versa. Thus,

degG(w) =


(m− 1) + n if w is the center of Wm,

3 + n if w is a rim vertex of Wm,

(n− 1) +m if w is the center of Wn,

3 +m if w is a rim vertex of Wn.

Each even-degree vertex w contributes
(
dG(w)

2

)
to E C (G). Even degree vertices

occurs when (m − 1) + n or 3 + n or 3 +m is even. That is, when (m + n) or n
or m is odd. Hence, the two center vertices (one from Wm, one from Wn) each
contribute

(
m+n−1

2

)
precisely when m + n − 1 is even, i.e., when m + n is odd.

Together they give 2
(
m+n−1

2

)
, which simplifies to

(
m+n−1

2

)
in the piecewise cases

below.
Each of the m − 1 rim-vertices of Wm has degree n + 3, so if n is odd these
contribute (m− 1)

(
n+3
2

)
.

Each of the n − 1 rim-vertices of Wn has degree m + 3, so if m is odd these
contribute (n − 1)

(
m+3
2

)
. Considering the four parity cases for m,n; we get the

result. □

Theorem 4.7. Let Sm and Sn be star graphs on m ≥ 2 and n ≥ 2 vertices (each
with one center and m− 1, respectively. n− 1, leaves), and G = Sm + Sn. Then,

E C (G) =



2
(
m+n−1

2

)
+ (m− 1)

(
n+1
2

)
for m even and n odd,

2
(
m+n−1

2

)
+ (n− 1)

(
m+1
2

)
for m odd and n even,

(m− 1)
(
n+1
2

)
+ (n− 1)

(
m+1
2

)
for m and n odd,

0 for m and n even.

Proof. In the join G = Sm + Sn, each center gains all n (respectively m) vertices
of the other star, so its degree becomes (m− 1) + n = m+ n− 1. Each leaf of Sm

(resp. Sn) gains n (resp. m) new neighbors, so its degree is 1 + n (resp. 1 + m).

Since, each even-degree vertex w contributes
(
degG(w)

2

)
to E C (G),

• The two centers contribute 2
(
m+n−1

2

)
exactly when m+n−1 is even, that

is when m+ n odd.
• The m − 1 leaves of Sm contribute (m − 1)

(
n+1
2

)
exactly when n + 1 is

even, that is when n odd.
• The n−1 leaves of Sn contribute (n−1)

(
m+1
2

)
exactly when m+1 is even,

that is when m odd.

Summing these contributions under the four parity - conditions of m,n, we get
the result. □

The join of a complete graph and a path graph, denoted Km + Pn, yields a
highly connected structure combining dense and linear components. Studying the
e-twin connectivity index of such graphs offers insight into how the interaction
between fully connected and sequential substructures affects local redundancy.
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The following theorem provides closed-form expressions for E C (Km + Pn), with
values determined by the parity of m and n.

Theorem 4.8. Let G = Km +Pn be the join of the complete graph on m vertices
and the path graph on n vertices, with m,n ≥ 2. Then its e-twin connectivity index
is

E C (Km + Pn) =



m
(
m+n−1

2

)
+ (n− 2)

(
m+2
2

)
for m even and n odd,

(n− 2)
(
m+2
2

)
for m and n even,

m
(
m+n−1

2

)
+ 2

(
m+1
2

)
for m odd and n even,

2
(
m+1
2

)
for m and n odd.

Proof. Let A = V (Km), |A| = m, B = V (Pn), |B| = n.

degG(w) =


(m− 1) + n if w ∈ A,

m+ 2 if w ∈ B is an internal vertex,

m+ 1 if w ∈ B is an endvertex.
Thus, each of the m vertices in A has degree m+ n− 1. In the path Pn there are
n− 2 internal vertices (of degree m+ 2 in G) and 2 endpoints (of degree m+ 1).
For w ∈ A, deg(w) is even if m+n− 1 is even, that is, if n is odd when m is even,
or if n is even when m is odd. For, w ∈ B, deg(w) = m + 2 (internals) is even if
m is even, deg(w) = m+ 1 (endpoints) is even if m is odd. Thus,

E C (G) =
∑
w∈A

deg(w) even

(
m+ n− 1

2

)
+

∑
w∈B

deg(w) even

(
degG(w)

2

)
.

Then there are four cases:

• Case 1: m even, n odd. degA(w) = m+ n− 1 is even, internals are even,
endpoints are odd.

E C (G) = m

(
m+ n− 1

2

)
+ (n− 2)

(
m+ 2

2

)
.

• Case 2: m even, n even. degA(w) = m+n− 1 is odd, internals are even,
endpoints are odd.

E C (G) = (n− 2)

(
m+ 2

2

)
.

• Case 3: m odd, n even. degA(w) = m+ n− 1 is even, internals are odd,
endpoints are even.

E C (G) = m

(
m+ n− 1

2

)
+ 2

(
m+ 1

2

)
.

• Case 4: m odd, n odd. degA(w) = m + n − 1 is odd, internals are odd,
endpoints are even.

E C (G) = 2

(
m+ 1

2

)
.

Thus, the result. □
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Theorem 4.9. Let Km be the complete graph on m ≥ 2 vertices and Cn be the
cycle graph on n ≥ 3 vertices. Let G = Km + Cn be their join. Then the e-twin
connectivity index of G is given by :

E C (Km+Cn) =



n(m+ 2)(m+ 1)

2
if m even and m+ n even,

n(m+ 2)(m+ 1)

2
+

m(m+ n− 1)(m+ n− 2)

2
if m even and m+ n odd,

m(m+ n− 1)(m+ n− 2)

2
if m odd and m+ n odd,

0 if m odd and m+ n even.

Proof. The e-twin connectivity index of a graph G is given by:

E C (G) =
∑

v∈V (G)
deg(v) even

(
deg(v)

2

)
.

In the join G = Km + Cn, the degrees of vertices change as follows:

• Each vertex v ∈ Km has degree deg(v) = m− 1 + n = m+ n− 1.
• Each vertex u ∈ Cn has degree deg(u) = 2 +m = m+ 2.

Now consider the contribution of each set of vertices to the e-twin connectivity
index. The vertices in Km contribute if deg(v) = m+ n− 1 is even, i.e., if m+ n
is odd. The vertices in Cn contribute if deg(u) = m+ 2 is even, i.e., if m is even.
Hence, the total e-twin connectivity index becomes:

• If m is even and m+ n is even: only Cn contributes,

E C (G) = n ·
(
m+ 2

2

)
=

n(m+ 2)(m+ 1)

2
.

• If m is even and m+ n is odd: both Km and Cn contribute,

E C (G) = n ·
(
m+ 2

2

)
+m ·

(
m+ n− 1

2

)
=

n(m+ 2)(m+ 1)

2
+

m(m+ n− 1)(m+ n− 2)

2
.

• If m is odd and m+ n is odd: only Km contributes,

E C (G) = m ·
(
m+ n− 1

2

)
=

m(m+ n− 1)(m+ n− 2)

2
.

• If m is odd and m + n is even: no contribution (all degrees are odd), so
E C (G) = 0.

Thus, the result. □
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Theorem 4.10. Let G = Km+Wn be the join of the complete graph on m vertices
and the wheel graph of order n ≥ 4. Then

E C (Km +Wn) =



(n− 1)
(m+3

2

)
if m and n odd,

m
(m+n−1

2

)
+

(m+n−1
2

)
+ (n− 1)

(m+3
2

)
if m odd and n even,

m
(m+n−1

2

)
+

(m+n−1
2

)
if m even and n odd,

0 if m and n even.

Proof. Let A = V (Km), |A| = m, B = V (Wn), |B| = n. In the join
G = Km +Wn each vertex in A acquires all n vertices of Wn as new neighbours,
and likewise each vertex in B acquires the m vertices of Km. Hence the degrees
in G are

degG(w) =


(m− 1) + n if w ∈ A,

(n− 1) +m if w is the center of Wn,

3 +m if w is a rim-vertex of Wn.

Since,

E C (G) =
∑

w∈V (G)
degG(w) even

(
degG(w)

2

)
,

we will check the even degree vertices. A vertex in A has even degree if m− 1+n
is even, then its contribution to e-twin connectivity index is m

(
m−1+n

2

)
.

The center of Wn has even degree if m + n − 1 is even, then its contribution to
e-twin connectivity index is

(
m+n−1

2

)
.

A rim-vertex of Wn has even degree if m + 3 is even. That is if m is odd. Then,
they contribute (n−1)

(
m+3
2

)
. Summing these three terms we get the formula. □

Theorem 4.11. Let G = Km+Sn be the join of the complete graph on m vertices
and the star graph on n vertices (n ≥ 2). Then

E C (Km + Sn) =



0 if m and n even,

(m+ 1)
(
m+n−1

2

)
if m even and n odd,

(m+ 1)
(
m+n−1

2

)
+ (n− 1)

(
m+1
2

)
if m odd and n even,

(n− 1)
(
m+1
2

)
if m and n odd.

Proof. Let A = V (Km), B = V (Sn), with |A| = m and Sn has one center and
n− 1 leaves. In the join G = Km + Sn,

degG(w) =


(m− 1) + n if w ∈ A,

m+ (n− 1) if w is the center of Sn,

m+ 1 if w is a leaf of Sn.
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Since,

E C (G) =
∑

w∈V (G)
degG(w) even

(
degG(w)

2

)
,

we will check the even degree vertices. A vertex in A has even degree if m+ n is
odd. Each contributes

(
m+n−1

2

)
. Hence, their total contribution is m

(
m+n−1

2

)
.

The center of Sn contributes
(
m+n−1

2

)
) when m + n is odd. The leaves of Sn

contributes
(
m+1
2

)
when m is odd. Their total contribution is (n − 1)

(
m+1
2

)
.

Summing these three contributions we get the result. □

5. Conclusion

The e-twin connectivity index is a new graph invariant based on the concept of
even-degree common neighbors. It is a topological invariant that counts, for each
unordered pair of vertices, the number of their shared neighbors of even degree. In
this paper we calculated the e-twin connectivity index of tensor product and join
of some standard graphs like complete graphs, paths, cycles, stars and wheels. By
focusing on two fundamental graph operations — the tensor product and the join
— we derived closed - form expressions for E C (G×H) and E C (G+H) in terms
of the degree sequences of G and H. Our results reveal how parity constraints
in the individual factors propagate through these constructions, yielding simple
combinatorial formulas when one or both factors are among the classical families
Kn, Pn, Cn,Wn and Sn.
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