NEW CLASSES OF SEIDEL EQUIENERGETIC GRAPHS

B. R. RAKSHITH* AND B. J. MANJUNATHA

Abstract

In this paper, we give the complete characterization of the \mathcal{S} eigenvalues of the union of the join graph $G_{1} \vee G_{2}$ and the corona product $G_{1} \circ G_{3}$ when G_{1}, G_{2} and G_{3} are regular graphs. As an application, we give some new methods to construct \mathcal{S}-equienergetic graphs.

1. Introduction

Let Γ be a graph (simple) with vertex set $V(\Gamma)$ and $|V(\Gamma)|=n$. The Seidel matrix of Γ, denoted by $\mathcal{S}(\Gamma)$, is the matrix $\mathcal{S}(\Gamma)=\mathcal{J}_{n}-I_{n}-2 \mathcal{A}(\Gamma)$, where $\mathcal{J}_{n}=\left[a_{i j}\right]_{n \times n}$ with $a_{i j}=1$ for all $1 \leq i, j \leq n$ and $\mathcal{A}(\Gamma)$ is the well-known adjacency matrix of Γ. The eigenvalues of $\mathcal{S}(\Gamma)$ (resp. $\mathcal{A}(\Gamma)$) are called the Seidel eigenvalues or \mathcal{S}-eigenvalues (resp. eigenvalues) of Γ. The (Seidel) spectrum of Γ is the list of all (Seidel) eigenvalues of Γ. For studies on spectral properties of Seidel matrix one may refer to $[4,3,8]$ and therein cited references. The Seidel energy of Γ, denoted by $\mathcal{E}_{\mathcal{S}}(\Gamma)$, is the sum $\sum_{i=1}^{n} \eta_{i}$, where η_{i} 's are the \mathcal{S} - eigenvalues of Γ. Two graphs Γ_{1} and Γ_{2} of same order having distinct Seidel spectrum are called Seidel equienegertic (simply, \mathcal{S}-equienergetic) if $\mathcal{E}_{\mathcal{S}}\left(\Gamma_{1}\right)=\mathcal{E}_{\mathcal{S}}\left(\Gamma_{2}\right)$. Some methods to construct \mathcal{S}-equienergetic graphs are given in [7,10]. Recent studies on Seidel energy can be found in $[9,2]$ and therein cited references.

The join of graphs Γ_{1} and Γ_{2}, denoted by $\Gamma_{1} \vee \Gamma_{2}$, is obtained by taking one copies of Γ_{1}, Γ_{2} and then joining each vertex of Γ_{1} with every vertices of $\Gamma_{2}[5]$. In [7], \mathcal{S}-spectrum of $\Gamma_{1} \vee \Gamma_{2}$ is computed when Γ_{1} and Γ_{2} are regular graphs. The corona product [6] of two graphs Γ_{1} and Γ_{2}, denoted by $\Gamma_{1} \circ \Gamma_{2}$, is obtained by taking $\left|V\left(\Gamma_{1}\right)\right|$ copies of Γ_{2} and then joining the i-th vertex of Γ_{1} with all vertices of the i th copy of Γ_{2}. The \mathcal{S} - eigenvalues and the pertaining Seidel eigenvectors of corona product are described completely in [1]. With this motivation, here we give the complete characterization of the \mathcal{S}-eigenvalues of the graph $\left(G_{1} \vee G_{2}\right) \cup\left(G_{1} \circ G_{3}\right)$, i.e., the union of the join graph $G_{1} \vee G_{2}$ and the corona product $G_{1} \circ G_{3}$ when G_{1}, G_{2} and G_{3} are regular graphs. As an application, we give some new methods to construct \mathcal{S}-equienergetic graphs.

2. Main Results

Let $J_{p \times q}$ be the $p \times q$ matrix given by $J_{p \times q}=\left[a_{i j}\right]$, where $a_{i j}=1$. Denote by $\mathbb{1}_{p}$, the column matrix $\left[\begin{array}{llll}1 & 1 & \ldots & 1\end{array}\right]^{T}$ with p elements. Let $e(p, k)$ be the

[^0]column matrix of size p whose only non-zero entry is at its k-th position and is equal to 1 . The zero column matrix of order p is denoted by $\mathbf{0}_{p}$. The following theorem describes the \mathcal{S}-eigenvalues of $\left(G_{1} \vee G_{2}\right) \cup\left(G_{1} \circ G_{3}\right)$ when G_{1}, G_{2} and G_{3} are regular graphs.
Theorem 2.1. Let G_{i} be an r_{i}-regular graph on n_{i} vertices for $i=1,2,3$. Let $\lambda_{i j}, j=1,2, \ldots, n_{i}$ be the spectrum of G_{i} Then the Seidel spectrum of $\left(G_{1} \vee G_{2}\right) \cup$ $\left(G_{1} \circ G_{3}\right)$ consists of:
(i) $-1-2 \lambda_{3 j}, j=2,3, \ldots, n_{3}$ with multiplicity n_{1}.
(ii) $-1-2 r_{3}-2 t$, where $2 t=\lambda_{1 j}-r_{3} \pm \sqrt{\left(\lambda_{1 j}-r_{3}\right)^{2}+4 n_{3}}$ and $j=2,3, \ldots, n_{1}$.
(iii) $-1-2 \lambda_{2 j}, j=2,3, \ldots, n_{3}$.
(iv) Three roots of the polynomial
\[

\operatorname{det}\left($$
\begin{array}{ccc}
-1-2 r_{3}+n_{1} n_{3}-t & n_{1}-2 & n_{2} \\
\left(n_{1}-2\right) n_{3} & n_{1}-1-2 r_{1}-t & -n_{2} \\
n_{1} n_{3} & -n_{1} & n_{2}-1-2 r_{2}-t
\end{array}
$$\right)=0
\]

Proof. Let $\Gamma=\left(G_{1} \vee G_{2}\right) \cup\left(G_{1} \circ G_{3}\right)$. The \mathcal{S}-matrix of $\left(G_{1} \vee G_{2}\right) \cup\left(G_{1} \circ G_{3}\right)$ is given by

$$
\left[\begin{array}{c|c|c}
I_{n_{1}} \otimes \mathcal{S}\left(G_{3}\right)+\left(J_{n_{1}}-I_{n_{1}}\right) \otimes J_{n_{3}} & \left(J_{n_{1}}-2 I_{n_{1}}\right) \otimes \mathbb{1}_{n_{3}} & J_{n_{1} \times n_{2}} \otimes \mathbb{1}_{n_{3}} \\
\hline\left(J_{n_{1}}-2 I_{n_{1}}\right) \otimes \mathbb{1}_{n_{3}}^{T} & \mathcal{S}\left(G_{1}\right) & -J_{n_{1} \times n_{2}} \\
\hline J_{n_{2} \times n_{1}} \otimes \mathbb{1}_{n_{3}}^{T} & -J_{n_{2} \times n_{1}} & \mathcal{S}\left(G_{2}\right)
\end{array}\right] .
$$

Let $i=1,2,3$ and $\left\{Z_{i j}: j=1,2, \ldots, n_{i}\right\}$ be a set of orthogonal eigenvectors of the adjacency matrix $\mathcal{A}\left(G_{i}\right)$ corresponding to the eigenvalues $\lambda_{i j}, j=1,2, \ldots, n_{i}$. Since G_{i} for $i=1,2,3$ is regular, we can assume that $Z_{i 1}=\mathbb{1}_{n_{i}}$.
For $j=2,3, \ldots, n_{3}$ and $k=1,2, \ldots, n_{1}$, we have

$$
\mathcal{S}\left[\begin{array}{c}
e\left(n_{1}, k\right) \otimes Z_{3 j} \\
\mathbf{0}_{n_{1}} \\
\mathbf{0}_{n_{2}}
\end{array}\right]=\eta_{k j}\left[\begin{array}{c}
e\left(n_{1}, k\right) \otimes Z_{3 j} \\
\mathbf{0}_{n_{1}} \\
\mathbf{0}_{n_{2}}
\end{array}\right]
$$

where $\eta_{k j}=-1-2 \lambda_{3 j}$. Thus, $\left[\begin{array}{c}e\left(n_{1}, k\right) \otimes Z_{3 j} \\ \mathbf{0}_{n_{1}} \\ \mathbf{0}_{n_{2}}\end{array}\right], k=1,2, \ldots, n_{1}$ and $j=$ $2,3, \ldots, n_{3}$ form a set of $n_{1}\left(n_{3}-1\right)$ orthogonal eigenvectors corresponding to the eigenvalue $\eta_{k j}$.
Further, let $j=2,3, \ldots, n_{1}$ and δ_{j} be some scalar. Then
$\mathcal{S}\left[\begin{array}{c}Z_{1 j} \otimes \mathbb{1}_{n_{3}} \\ \delta_{j} Z_{1 j} \\ \mathbf{0}_{n_{2}}\end{array}\right]=\left[\begin{array}{c}\left(-1-2 r_{3}-2 \delta_{j}\right) Z_{1 j} \otimes \mathbb{1}_{n_{3}} \\ \left(-2 n_{3}-\left(1+2 \lambda_{1 j}\right) \delta_{j}\right) Z_{1 j} \\ \mathbf{0}_{n_{2}}\end{array}\right]=\left(-1-2 r_{3}-2 \delta_{j}\right)\left[\begin{array}{c}Z_{1 j} \otimes \mathbb{1}_{n_{3}} \\ \delta_{j} Z_{1 j} \\ \mathbf{0}_{n_{2}}\end{array}\right]$
for $2 \delta_{j}=\lambda_{1 j}-r_{3} \pm \sqrt{\left(\lambda_{1 j}-r_{3}\right)^{2}+4 n_{3}}$. Thus, $\left[\begin{array}{c}Z_{1 j} \otimes \mathbb{1}_{n_{3}} \\ \delta_{j} Z_{1 j} \\ \mathbf{0}_{n_{2}}\end{array}\right] j=2,3, \ldots, n_{1}$ form a set of $2\left(n_{1}-1\right)$ orthogonal eigenvectors of \mathcal{S} corresponding to the eigenvalue $\left(-1-2 r_{3}-2 \delta_{j}\right)\left[\begin{array}{c}Z_{1 j} \otimes \mathbb{1}_{n_{3}} \\ \delta_{j} Z_{1 j} \\ \mathbf{0}_{n_{2}}\end{array}\right]$.

Also, for $j=2,3, \ldots, n_{3}$, we have

$$
S\left[\begin{array}{c}
\mathbf{0}_{n_{1} n_{3}} \\
\mathbf{0}_{n_{1}} \\
Z_{2 j}
\end{array}\right]=\left(-1-2 \lambda_{2 j}\right)\left[\begin{array}{c}
\mathbf{0}_{n_{1} n_{3}} \\
\mathbf{0}_{n_{1}} \\
Z_{2 j}
\end{array}\right]
$$

Thus, $\left[\begin{array}{c}\mathbf{0}_{n_{1} n_{3}} \\ \mathbf{0}_{n_{1}} \\ Z_{2 j}\end{array}\right]$ for $j=2,3, \ldots, n_{3}$ form a set of $n_{2}-1$ orthogonal eigenvectors corresponding to the eigenvalue $-1-2 \lambda_{2 j}$.
Henceforth, we have listed $n_{1} n_{3}+n_{1}+n_{2}-3$ orthogonal eigenvectors of \mathcal{S}. Since the order of the graph Γ is $n_{1} n_{3}+n_{1}+n_{2}$, we need to determine 3 more \mathcal{S}-eigenvalues of Γ. Let these \mathcal{S}-eigenvalues be ζ_{i} for $i=1,2,3$ corresponding to the eigenvectors X_{i}. Observe that the listed $n_{1} n_{3}+n_{1}+n_{2}-3$ orthogonal eigenvectors of S along with the vectors $\left[\begin{array}{c}\mathbb{1}_{n_{1}} \otimes \mathbb{1}_{n_{3}} \\ \mathbf{0}_{n_{1}} \\ \mathbf{0}_{n_{2}}\end{array}\right],\left[\begin{array}{c}\mathbf{0}_{n_{1} n_{3}} \\ \mathbb{1}_{n_{1}} \\ \mathbf{0}_{n_{2}}\end{array}\right]$ and $\left[\begin{array}{c}\mathbf{0}_{n_{1} n_{3}} \\ n_{1} \\ \mathbb{1}_{n_{2}}\end{array}\right]$ form an orthogonal set of n vectors. Thus, $X_{i}=\left[\begin{array}{c}a_{i} \mathbb{1}_{n_{1}} \otimes \mathbb{1}_{n_{3}} \\ b_{i} \mathbb{1}_{n_{1}} \\ c_{i} \mathbb{1}_{n_{2}}\end{array}\right]$ for some scalars a_{i}, b_{i} and c_{i}. Therefore, from the equation, $\mathcal{S} X_{i}=\zeta_{i} X_{i}$, we get

$$
\operatorname{det}\left(\begin{array}{ccc}
-1-2 r_{3}+n_{1} n_{3}-\zeta_{i} & n_{1}-2 & n_{2} \\
\left(n_{1}-2\right) n_{3} & n_{1}-1-2 r_{1}-\zeta_{i} & -n_{2} \\
n_{1} n_{3} & -n_{1} & n_{2}-1-2 r_{2}-\zeta_{i}
\end{array}\right)=0
$$

Thus the three more eigenvalues of \mathcal{S} are roots of above polynomial equation in ζ_{i}.

Corollary 2.2. Let Γ_{1} and Γ_{2} be arbitrary regular graphs. Let Γ_{3} and Γ_{4} be two \mathcal{S}-equienergetic r-regular graphs. Then the graphs
(i) $\left(\Gamma_{1} \vee \Gamma_{3}\right) \cup\left(\Gamma_{1} \circ \Gamma_{2}\right)$ and $\left(\Gamma_{1} \vee \Gamma_{4}\right) \cup\left(\Gamma_{1} \circ \Gamma_{2}\right)$ are \mathcal{S}-equienergetic.
(ii) $\left(\Gamma_{1} \vee \Gamma_{2}\right) \cup\left(\Gamma_{1} \circ \Gamma_{3}\right)$ and $\left(\Gamma_{1} \vee \Gamma_{2}\right) \cup\left(\Gamma_{1} \circ \Gamma_{4}\right)$ are \mathcal{S}-equienergetic.

Lemma 2.3. [7] The graphs as shown in Figure 1 are \mathcal{S}-equienergetic 3-regular graphs on 12 vertices.

Figure 1. \mathcal{S}-equienergetic graphs Γ_{1} and Γ_{2} on 12 vertices.

Corollary 2.4. There exists \mathcal{S}-equienergetic graph on $2 n$ vertices for $n>12$.

Proof. Let Γ_{1} and Γ_{2} be graphs as shown in Fig. 1. Then by Lemma 2.3, Γ_{1} and Γ_{2} are S-equienergetic 3-regular graphs on 12 vertices. Therefore by Corollary 2.4 the graphs $\left(\overline{K_{m}} \vee \Gamma_{1}\right) \cup\left(\overline{K_{m}} \circ K_{1}\right)$ and $\left(\overline{K_{m}} \vee \Gamma_{2}\right) \cup\left(\overline{K_{m}} \circ K_{1}\right)$ are \mathcal{S}-equienergetic graphs on $2 m+12$ vertices for all $m \geq 1$.

References

1. Adiga C., Malpashree R., Rakshith B. R.: Seidel spectrum of corona and neigh-borhood corona of two graphs, Indian J. Math. 59 (2017) 21-34.
2. Akbari S., Einollahzadeh M., Karkhaneei M. M., Nematollahi M. A.: Proof of a conjecture on the Seidel energy of graphs, European Journal of Combinatorics 86 (2020) 103078.
3. Akbari S., Askari J., Das K. C.: Some properties of eigenvalues of the Seidel matrix, Linear Multilinear Algebra, 70 (2020) 2150-2161.
4. Cheng M.-J., Cui S.-Y., Tian G.-X.: The Seidel spectrum of two variants of join operations, Discrete Math. Alg. Appl. 15 (2023) 2250106.
5. Cvetković D. M., Doob M., Sachs H.: Spectra of Graphs-Theory and Application, Academic Press, New York 1980.
6. Frucht R., Harary F.: On the corona of two graphs, Aequationes Math. 4 (1970) 322-325.
7. Ramane H. S., Gundloor M. M., Hosamani S. M.: Seidel equienergetic graphs, Bull. Math. Sci. Appl. 16 (2016) 62-69.
8. Rizzolo D.: Determinants of Seidel matrices and a conjecture of Ghorbani, Linear Algebra Appl. 579 (2019) 51-54.
9. Tian G.-X., Li Y., Cui S.-Y.: The change of Seidel energy of tripartite Turan graph due to edge deletion, Linear Multilinear Algebra, 70 (2021) 4597-4614.
10. Vaidya S. K., Popat K. M.: Some New Results on Seidel Equienergetic Graphs, Kyungpook Math. J. 59 (2019) 335-340.
B. R. Rakshith (* Corresponding author): Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, India.

Email address: ranmsc08@yahoo.co.in; rakshith.br@manipal.edu
B. J. Manjunatha: ${ }^{1}$ Department of Mathematics, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru-570 006, India.
2 Department of Mathematics Vidyavardhaka College of Engineering Mysuru-570 002, India.

Email address: manjubj@sjce.ac.in

[^0]: 2000 Mathematics Subject Classification. 05C50.
 Key words and phrases. Seidel matrix, Seidel spectrum, Seidel energy, Seidel equienergetic graphs.

