Received: 29th March 2023

Revised: 14th May 2023

Accepted: 20th May 2023

NEW CLASSES OF SEIDEL EQUIENERGETIC GRAPHS

B. R. RAKSHITH* AND B. J. MANJUNATHA

ABSTRACT. In this paper, we give the complete characterization of the Seigenvalues of the union of the join graph $G_1 \vee G_2$ and the corona product $G_1 \circ G_3$ when G_1 , G_2 and G_3 are regular graphs. As an application, we give some new methods to construct S-equienergetic graphs.

1. Introduction

Let Γ be a graph (simple) with vertex set $V(\Gamma)$ and $|V(\Gamma)| = n$. The Seidel matrix of Γ , denoted by $\mathcal{S}(\Gamma)$, is the matrix $\mathcal{S}(\Gamma) = \mathcal{J}_n - I_n - 2\mathcal{A}(\Gamma)$, where $\mathcal{J}_n = [a_{ij}]_{n \times n}$ with $a_{ij} = 1$ for all $1 \leq i, j \leq n$ and $\mathcal{A}(\Gamma)$ is the well-known adjacency matrix of Γ . The eigenvalues of $\mathcal{S}(\Gamma)$ (resp. $\mathcal{A}(\Gamma)$) are called the Seidel eigenvalues or \mathcal{S} -eigenvalues (resp. eigenvalues) of Γ . The (Seidel) spectrum of Γ is the list of all (Seidel) eigenvalues of Γ . For studies on spectral properties of Seidel matrix one may refer to [4, 3, 8] and therein cited references. The Seidel energy of Γ , denoted by $\mathcal{E}_{\mathcal{S}}(\Gamma)$, is the sum $\sum_{i=1}^{n} \eta_i$, where η_i 's are the \mathcal{S} - eigenvalues of Γ . Two graphs Γ_1 and Γ_2 of same order having distinct Seidel spectrum are called Seidel equienegertic (simply, \mathcal{S} -equienergetic) if $\mathcal{E}_{\mathcal{S}}(\Gamma_1) = \mathcal{E}_{\mathcal{S}}(\Gamma_2)$. Some methods to construct \mathcal{S} -equienergetic graphs are given in [7, 10]. Recent studies on Seidel energy can be found in [9, 2] and therein cited references.

The join of graphs Γ_1 and Γ_2 , denoted by $\Gamma_1 \vee \Gamma_2$, is obtained by taking one copies of Γ_1 , Γ_2 and then joining each vertex of Γ_1 with every vertices of Γ_2 [5]. In [7], \mathcal{S} -spectrum of $\Gamma_1 \vee \Gamma_2$ is computed when Γ_1 and Γ_2 are regular graphs. The corona product [6] of two graphs Γ_1 and Γ_2 , denoted by $\Gamma_1 \circ \Gamma_2$, is obtained by taking $|V(\Gamma_1)|$ copies of Γ_2 and then joining the *i*-th vertex of Γ_1 with all vertices of the *i*th copy of Γ_2 . The \mathcal{S} - eigenvalues and the pertaining Seidel eigenvectors of corona product are described completely in [1]. With this motivation, here we give the complete characterization of the \mathcal{S} -eigenvalues of the graph $(G_1 \vee G_2) \cup (G_1 \circ G_3)$, i.e., the union of the join graph $G_1 \vee G_2$ and the corona product $G_1 \circ G_3$ when G_1, G_2 and G_3 are regular graphs. As an application, we give some new methods to construct \mathcal{S} -equienergetic graphs.

2. Main Results

Let $J_{p \times q}$ be the $p \times q$ matrix given by $J_{p \times q} = [a_{ij}]$, where $a_{ij} = 1$. Denote by $\mathbb{1}_p$, the column matrix $\begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix}^T$ with p elements. Let e(p,k) be the

²⁰⁰⁰ Mathematics Subject Classification. 05C50.

Key words and phrases. Seidel matrix, Seidel spectrum, Seidel energy, Seidel equienergetic graphs.

column matrix of size p whose only non-zero entry is at its k-th position and is equal to 1. The zero column matrix of order p is denoted by $\mathbf{0}_p$. The following theorem describes the S-eigenvalues of $(G_1 \vee G_2) \cup (G_1 \circ G_3)$ when G_1, G_2 and G_3 are regular graphs.

Theorem 2.1. Let G_i be an r_i -regular graph on n_i vertices for i = 1, 2, 3. Let $\lambda_{ij}, j = 1, 2, ..., n_i$ be the spectrum of G_i Then the Seidel spectrum of $(G_1 \vee G_2) \cup (G_1 \circ G_3)$ consists of:

(i) $-1 - 2\lambda_{3j}$, $j = 2, 3, ..., n_3$ with multiplicity n_1 .

(*ii*) $-1-2r_3-2t$, where $2t = \lambda_{1j} - r_3 \pm \sqrt{(\lambda_{1j} - r_3)^2 + 4n_3}$ and $j = 2, 3, \dots, n_1$.

(*iii*) $-1 - 2\lambda_{2j}$, $j = 2, 3, ..., n_3$. (*iv*) Three roots of the polynomial

$$\det \begin{pmatrix} -1 - 2r_3 + n_1n_3 - t & n_1 - 2 & n_2 \\ (n_1 - 2)n_3 & n_1 - 1 - 2r_1 - t & -n_2 \\ n_1n_3 & -n_1 & n_2 - 1 - 2r_2 - t \end{pmatrix} = 0.$$

Proof. Let $\Gamma = (G_1 \vee G_2) \cup (G_1 \circ G_3)$. The *S*-matrix of $(G_1 \vee G_2) \cup (G_1 \circ G_3)$ is given by

Γ	$I_{n_1} \otimes \mathcal{S}(G_3) + (J_{n_1} - I_{n_1}) \otimes J_{n_3}$	$(J_{n_1}-2I_{n_1})\otimes \mathbb{1}_{n_3}$	$J_{n_1 \times n_2} \otimes \mathbb{1}_{n_3}$	
	$(J_{n_1} - 2I_{n_1}) \otimes \mathbb{1}_{n_3}^T$	$\mathcal{S}(G_1)$	$-J_{n_1 \times n_2}$	
L	$J_{n_2 \times n_1} \otimes \mathbb{1}_{n_3}^T$	$-J_{n_2 \times n_1}$	$\mathcal{S}(G_2)$	

Let i = 1, 2, 3 and $\{Z_{ij} : j = 1, 2, ..., n_i\}$ be a set of orthogonal eigenvectors of the adjacency matrix $\mathcal{A}(G_i)$ corresponding to the eigenvalues $\lambda_{ij}, j = 1, 2, ..., n_i$. Since G_i for i = 1, 2, 3 is regular, we can assume that $Z_{i1} = \mathbb{1}_{n_i}$. For $j = 2, 3, ..., n_3$ and $k = 1, 2, ..., n_1$, we have

$$\mathcal{S}\begin{bmatrix} e(n_1,k) \otimes Z_{3j} \\ \mathbf{0}_{n_1} \\ \mathbf{0}_{n_2} \end{bmatrix} = \eta_{kj} \begin{bmatrix} e(n_1,k) \otimes Z_{3j} \\ \mathbf{0}_{n_1} \\ \mathbf{0}_{n_2} \end{bmatrix},$$

where $\eta_{kj} = -1 - 2\lambda_{3j}$. Thus, $\begin{bmatrix} e(n_1,k) \otimes Z_{3j} \\ \mathbf{0}_{n_1} \\ \mathbf{0}_{n_2} \end{bmatrix}$, $k = 1, 2, \dots, n_1$ and $j = \mathbf{0}_{n_2}$

2,3,..., n_3 form a set of $n_1(n_3 - 1)$ orthogonal eigenvectors corresponding to the eigenvalue η_{kj} .

Further, let $j = 2, 3, ..., n_1$ and δ_j be some scalar. Then

$$\mathcal{S} \begin{bmatrix} Z_{1j} \otimes \mathbb{1}_{n_3} \\ \delta_j Z_{1j} \\ \mathbf{0}_{n_2} \end{bmatrix} = \begin{bmatrix} (-1 - 2r_3 - 2\delta_j)Z_{1j} \otimes \mathbb{1}_{n_3} \\ (-2n_3 - (1 + 2\lambda_{1j})\delta_j)Z_{1j} \\ \mathbf{0}_{n_2} \end{bmatrix} = (-1 - 2r_3 - 2\delta_j) \begin{bmatrix} Z_{1j} \otimes \mathbb{1}_{n_3} \\ \delta_j Z_{1j} \\ \mathbf{0}_{n_2} \end{bmatrix}$$
for $2\delta_j = \lambda_{1j} - r_3 \pm \sqrt{(\lambda_{1j} - r_3)^2 + 4n_3}$. Thus, $\begin{bmatrix} Z_{1j} \otimes \mathbb{1}_{n_3} \\ \delta_j Z_{1j} \end{bmatrix} j = 2, 3, \dots, n_1$

form a set of $2(n_1-1)$ orthogonal eigenvectors of \mathcal{S} corresponding to the eigenvalue $\begin{bmatrix} Z_{1j} \otimes \mathbb{1}_{n_3} \end{bmatrix}$

.

$$\begin{pmatrix} (-1-2r_3-2\delta_j) \\ 0_{n_2} \end{bmatrix} \begin{bmatrix} Z_{1j} \otimes \mathbb{I}_{n_3} \\ \delta_j Z_{1j} \\ 0_{n_2} \end{bmatrix}$$

Also, for $j = 2, 3, \ldots, n_3$, we have

$$S\begin{bmatrix}\mathbf{0}_{n_1n_3}\\\mathbf{0}_{n_1}\\Z_{2j}\end{bmatrix} = (-1-2\lambda_{2j})\begin{bmatrix}\mathbf{0}_{n_1n_3}\\\mathbf{0}_{n_1}\\Z_{2j}\end{bmatrix}.$$

Thus, $\begin{bmatrix} \mathbf{0}_{n_1 n_3} \\ \mathbf{0}_{n_1} \\ Z_{2j} \end{bmatrix}$ for $j = 2, 3, \dots, n_3$ form a set of $n_2 - 1$ orthogonal eigenvectors

corresponding to the eigenvalue $-1 - 2\lambda_{2j}$.

Henceforth, we have listed $n_1n_3+n_1+n_2-3$ orthogonal eigenvectors of S. Since the order of the graph Γ is $n_1n_3 + n_1 + n_2$, we need to determine 3 more S-eigenvalues of Γ . Let these S-eigenvalues be ζ_i for i = 1, 2, 3 corresponding to the eigenvectors

with the vectors. Thus, $X_i = \begin{bmatrix} a_i \mathbb{1}_{n_1} \otimes \mathbb{1}_{n_3} \\ b_i \mathbb{1}_{n_1} \\ c_i \mathbb{1}_{n_2} \end{bmatrix}$ for some scalars a_i, b_i and c_i .

Therefore, from the equation, $\mathcal{S}X_i = \zeta_i X_i$, we get

$$\det \begin{pmatrix} -1 - 2r_3 + n_1n_3 - \zeta_i & n_1 - 2 & n_2 \\ (n_1 - 2)n_3 & n_1 - 1 - 2r_1 - \zeta_i & -n_2 \\ n_1n_3 & -n_1 & n_2 - 1 - 2r_2 - \zeta_i \end{pmatrix} = 0.$$

Thus the three more eigenvalues of \mathcal{S} are roots of above polynomial equation in ζ_i .

Corollary 2.2. Let Γ_1 and Γ_2 be arbitrary regular graphs. Let Γ_3 and Γ_4 be two S-equienergetic r-regular graphs. Then the graphs

(i) $(\Gamma_1 \vee \Gamma_3) \cup (\Gamma_1 \circ \Gamma_2)$ and $(\Gamma_1 \vee \Gamma_4) \cup (\Gamma_1 \circ \Gamma_2)$ are S-equienergetic. (*ii*) $(\Gamma_1 \vee \Gamma_2) \cup (\Gamma_1 \circ \Gamma_3)$ and $(\Gamma_1 \vee \Gamma_2) \cup (\Gamma_1 \circ \Gamma_4)$ are S-equienergetic.

Lemma 2.3. [7] The graphs as shown in Figure 1 are S-equienergetic 3-regular graphs on 12 vertices.

FIGURE 1. S-equienergetic graphs Γ_1 and Γ_2 on 12 vertices.

Corollary 2.4. There exists S-equienergetic graph on 2n vertices for n > 12.

Proof. Let Γ_1 and Γ_2 be graphs as shown in Fig. 1. Then by Lemma 2.3, Γ_1 and Γ_2 are *S*-equienergetic 3-regular graphs on 12 vertices. Therefore by Corollary 2.4 the graphs $(\overline{K_m} \vee \Gamma_1) \cup (\overline{K_m} \circ K_1)$ and $(\overline{K_m} \vee \Gamma_2) \cup (\overline{K_m} \circ K_1)$ are *S*-equienergetic graphs on 2m + 12 vertices for all $m \geq 1$.

References

- Adiga C., Malpashree R., Rakshith B. R.: Seidel spectrum of corona and neigh-borhood corona of two graphs, *Indian J. Math.* 59 (2017) 21–34.
- Akbari S., Einollahzadeh M., Karkhaneei M. M., Nematollahi M. A.: Proof of a conjecture on the Seidel energy of graphs, *European Journal of Combinatorics* 86 (2020) 103078.
- Akbari S., Askari J., Das K. C.: Some properties of eigenvalues of the Seidel matrix, *Linear Multilinear Algebra*, 70 (2020) 2150-2161.
- Cheng M.-J., Cui S.-Y., Tian G.-X.: The Seidel spectrum of two variants of join operations, Discrete Math. Alg. Appl. 15 (2023) 2250106.
- Cvetković D. M., Doob M., Sachs H.: Spectra of Graphs-Theory and Application, Academic Press, New York 1980.
- 6. Frucht R., Harary F.: On the corona of two graphs, Acquationes Math. 4 (1970) 322-325.
- Ramane H. S., Gundloor M. M., Hosamani S. M.: Seidel equienergetic graphs, Bull. Math. Sci. Appl. 16 (2016) 62–69.
- Rizzolo D.: Determinants of Seidel matrices and a conjecture of Ghorbani, Linear Algebra Appl. 579 (2019) 51–54.
- Tian G.-X., Li Y., Cui S.-Y.: The change of Seidel energy of tripartite Turan graph due to edge deletion, Linear Multilinear Algebra, 70 (2021) 4597-4614.
- Vaidya S. K., Popat K. M.: Some New Results on Seidel Equienergetic Graphs, Kyungpook Math. J. 59 (2019) 335-340.

B. R. RAKSHITH (*CORRESPONDING AUTHOR): DEPARTMENT OF MATHEMATICS, MANIPAL IN-STITUTE OF TECHNOLOGY, MANIPAL ACADEMY OF HIGHER EDUCATION, MANIPAL 576 104, INDIA. *Email address*: ranmsc08@yahoo.co.in; rakshith.br@manipal.edu

B. J. Manjunatha: ¹Department of Mathematics, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru–570 006, India. ² Department of Mathematics Vidyavardhaka College of Engineering Mysuru-570 002, India.

Email address: manjubj@sjce.ac.in