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Abstract. Suppose that A(G) represents the adjacency matrix of a graph.
Let s(v) represent the row elements of A(G) that correspond to vertex v of

G. The number of places where the elements of the strings s(u) and s(v)

differ from one another is known as the Hamming distance between u and v.
The total sum of all Hamming distances between every pair of strings is the

graph’s hamming index. A semigraph G is a generalization of a graph G. In

a semigraph, an edge can contain more than two vertices. The hamming
distance and hamming index of a semigraph G are defined in this article.

Also, we determine the hamming distance and hamming index of some classes

of semigraph G generated by A(G).

1. Introduction

Any number of errors up to a certain degree at the receiving end can be removed
and/or fixed in a representation theory of information in binary form without extra
information being presented. The encoder will convert the input message, which
is made up of a string of letters, characters, or symbols from one set, one at a
time, into a string of characters or symbols from another set one to one passion.
Hamming distance is one of the strategies used to encode an input message. For
the binary channel, the encoder will convert a message’s input into a binary string
consist of the set’s symbols 0 and 1 from the set Z2 = {0, 1}.

The set Z2 is a group under binary operation
⊕

addition modulo 2. For any
positive integer n,

Zn
2 = Z2 × Z2 × Z2 × ...× Z2(n factors)

= {x1x2...xn | x1, x2, ..., xn}

Therefore, let x = x1x2...xn where every xi is either 0 or 1 and is know as a
word or string denoted by s(x). The number of 1’s (or sum of all 1’s) in a string x
is called the weight of x, represented as wt(x). If x = x1x2...xn and y = y1y2...yn
are two strings, then the wt(x+ y)(weight of x and y) is computed by adding the
corresponding components of x and y under addition modulo 2. That is xi+yi = 0
if xi = yi and xi + yi = 1 if xi ̸= yi for i = 1, 2, 3, ..., n and it is called hamming
distance between two strings x and y ( also it is the number of i′s such that xi ̸= yi,
1 ≤ i ≤ n) denoted by Hd(x, y) = wt(x + y)[1].The total sum of the Hamming
distances between all string pairs produced by the adjacency matrix of a graph G
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is referred to as Hamming index of G, denoted by HA(G). Let s(vi) and s(vj) be
the strings of vertices vi and vj generated by A(G). Then

HA(G) =
∑

1≤i<j≤n

Hd

(
s(vi), s(vj)

)
If each vertex v ∈ V (G) can be labeled by a string s(v) of a particular length

such that Hd(s(u), s(v)) = dG(u, v) for all u, v ∈ V (G), where dG(u, v) is the
length of the shortest path connecting u and v in G,

A semigraph is a generalization of a graph. E. Sampath Kumar [3] proposed
the idea of a semigraph. According to Frank Harrary, an edge is a 2-tuple of
vertices in a graph that satisfies the condition that two edges, (a, b) and (a′, b′),
are equivalent if and only if either a = a′ and b = b′ or a = b′ and b = a′. Using
this concept, E. Sampath Kumar defined a semigraph as a pair (V,X), where V
is a non-empty set whose components are known as the vertices of G and X is
a set of n-tuples known as the edges of G of different vertices, for various n ≥ 2
matching the conditions:

SG-1 Any two edges of G can have at most one vertex in common.
SG-2 Two edges (a1, a2, a3, ..., ap) and (b1, b2, b3, ..., bq) are said to be

equal if and only if,
• Number of vertices in both edges must be equal, i.e p = q.
• Either ai = bi for 1 ≤ i ≤ p or ai = bp−i+1, 1 ≤ i ≤ p.

If E1 = (u1, u2, ..., uk) and E2 = (uk, uk−1, ..., u1) are two edges, then by SG− II,
it is noted that E1 = E2. The size of an edge is denoted by | E | is the number of
vertices in an edge E.

If E = (v1, v2, v3, ..., vn) is an edge of a semigraph G = (V,X), then we call v1
and vn end vertices, vi, 2 ≤ i ≤ n− 1 as middle vertices and if a vertex is middle
vertex in one edge and end vertex in another edge, then it is called middle end
vertex. In a semigraph G, if two vertices are in same edge, and consecutive in
order, then they are adjacent and consecutive adjacent respectively.

A subedge of an edge E = (v1, v2, v3, ..., vn) is a k-tuple E′ = (vi1 , vi2 , ..., vik),
1 ≤ i1 < i2 < ... < ik ≤ n. We say that E′ is the subedge induced by the set
of vertices {vi1 , vi2 , ..., vik}. A partial edge of E is a (j − i + 1) tuple E(vi, vj) =
(vi, vi+1, vi+2, ..., vj), where 1 ≤ i ≤ n.

A semigraph is complete if any two of its vertices are adjacent, and it is strongly
complete if every vertex is the end vertex of an edge. An edge with cardinality n
forms a complete semigraph on n vertices, and this edge is denoted by the notation
Ec

n. The strongly complete semigraph with one edge of cardinality n − 1 and all
other edges of cardinality 2 is denoted as T 1

n−1. If the cardinality of each edge in
a semigraph G is r, then the semigraph is said to be r − uniform. We obtain
a semigraph that is (m + 2) − uniform and represented by Cn,m by adding m
number of middle vertices to each edge of the graph Cn, where Cn is the cycle
with n vertices. Similarly, we obtain a semigraph that is (m+ 2)− uniform and
denote it by Kn,m by adding m number of middle vertices to each edge of the
graph Kn, where Kn is the full graph with n vertices. More generally, given a
graph G, we may create a semigraph that is (m + 2) − uniform by adding m
middle vertices to each edge of the graph G.
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Example 1.1. Consider a semigraph G with vertex set V={v1, v2, v3, ..., v8} and
edges E1 = {v1, v2, v3, v5}, E2 = {v1, v6}, E3 = {v2, v8, v7}, E5 = {v6, v8, v3, v4}
as shown in Figure 1.

semi.jpg

Figure 1. Semigraph G(V,X)

It is observed that v1, v4, v5, v6, v7 are end vertices, v3 and v8 are middle vertices
and v2 is middle end vertex of G. Among the edges E1 and E5, the sets {v1, v2, v5}
and {v6, v3, v4} are subedges. Also, the set {v8, v3, v4} is a partial edge of E5.

Gaidhani Y.S. et al.[4] have defined adjacency matrix of semigraphs. For a
semigraph G(V,X) with a vertex set V = {v1, v2, v3, ..., vn} and edge set X =
{E1, E2, ..., Em}, an adjacency matrix A(G) = [aij ] of G is a square matrix of
order m, defined as follows,

(i) For every edge Ei = (v1, v2, ..., vk), if vr ∈ Ei then
(a) av1vr

= r − 1
(b) avkvr = k − r, for r = 1, 2, 3, ..., k

(ii) All the remaining entries of A(G) are zero.

Example 1.2. The adjacency matrix of a semigraph in Fig.1 is given below.

A(G) =



v1 v2 v3 v4 v5 v6 v7 v8

v1 0 1 2 0 3 1 0 0
v2 1 0 1 0 2 0 2 1
v3 2 1 0 1 1 2 0 1
v4 0 0 1 0 0 2 0 1
v5 3 2 1 0 0 0 0 0
v6 1 0 2 3 0 0 0 1
v7 0 2 0 0 0 0 0 1
v8 0 1 0 2 0 1 1 0


The Hamming distance is used in telecommunications for error detection and

correction[5]. In coding theory, this can be used to compare data words of equal
length. In biology, it is also used to calculate genetic distance. For more on
semigraph one can refer [6, 7].

The paper is organized as follows. We define Hamming distance and hamming
index of a semigraph generated by its adjacency matrix and obtain some related
results in section 3. We compute hamming index of some standard classes of
semigraph in section 4.
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2. Hamming distance of a semigraph

In this section, we define Hamming distance and Hamming index of a semigraph
G(V,X) generated by the adjacency matrix A(G).

Let G(V,X) be a semigraph with vertex set V = {v1, v2, v3, ..., vn} and edge set
X = {E1, E2, ..., Em}. For a set Zp = {0, 1, 2, ..., p − 1}, where p = max{| E1 |, |
E2 |, ..., | Em |} and a positive integer n, we have,

Zn
p =Zp × Zp × ...× Zp (n factors)

={(x1x2x3...xn) | x1, x2, x3, ...xn ∈ Zp}

Thus every element x ∈ Zn
p can be expressed as n− tuple x = x1, x2, x3, ..., xn

is called a string. The number of x′
is greater than 0 is called weight of x and it is

denoted by wt(x).

wt(x) =

n∑
i=1

xi, xi > 0 (2.1)

The Hamming distance between strings, x = x1x2...xn and y = y1y2...yn of a
semigraph G is the number of positions i′s such that xi ̸= yi, 1 ≤ i ≤ n, it is
denoted by Hds(x, y).

The sum of Hamming distances between all pairs of strings generated by the
adjacency matrix of a semigraph G is called Hamming Index, denoted as HAs(G).
Let s(vi) and s(vj) be the strings of vertices vi and vj generated by A(G). Then

HAs(G) =
∑

1≤i, j≤n

Hds

(
s(vi), s(vj)

)
Theorem 2.1. Consider a semigraph G(V,X), where V = {v1, v2, ..., vn} and
X = {E1, E2, ..., Em}. If there exists a vertex vr adjacent to any two vertices vi
and vj such that | j − r |=| i− r |, then

Hds =

{
| V | −p− q, if vi ∼ vj

| V | −p− q − 2, if vi ̸∼ vj

Where p is the number of common neighbors satisfying the condition | j− r |=|
i− r | and q is the number of non-common neighbors.

Proof. (i) Suppose vi, vj ∈ El. Let s(vi) = x1x2...xn; s(vj) = y1y2...yn. If vertex
vr ∈ El such that | i − r |=| j − r | then, xr = yr. Let p be the number of
vertices for which xr = yr and q be the number of vertices for which both vi,
vj are non-adjacent. Then, s(vi) and s(vj) differ at | V | −p − q places. Hence
Hds(s(vi), s(vj)) =| V | −p− q.
(ii) Suppose vi ̸∼ vj and vi ∈ El, vj ∈ Ek. Let s(vi) = x1x2...xn and s(vj) =
y1y2...yn. For any vertex vr ∈ El, Ek, | i − r |=| j − r |, then xr = yr. Since
vi ̸∼ vj , the entries avivi = avivj = avjvi = avjvj = 0. Hence Hds(s(vi), s(vj)) =|
V | −p− q − 2. □

Lemma 2.2. If u, v ∈ V are any two vertices where u ∈ El, v ∈ Ek and there
no common vertex between El and Ek (i.e El ∩ Ek = 0), then Hds(s(u), s(v)) =
wt(u) + wt(v).
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Proof. Let u ∈ El, v ∈ Ek;El, Ek ∈ X and u ̸∼ v. Then u is non-adjacent to
every vertex of edge Ek and v is non-adjacent to every vertex of edge El. Thus
the entries of A(G) corresponding to the row u\v and columns of V (Ek)\V (El)
are all zero. Let s(u) = x1x2...xn and s(v) = y1y2...yn. If El = {v1, v2, ..., vk}
and Ek = {vi, vi+1, ..., vn} then aut ̸= avt, v1 ≤ t ≤ vk; vi ≤ t ≤ vn and t ̸= u, v.
Therefore,

Hds(s(u), s(v)) = wt(u) + wt(v)

□

Lemma 2.3. Let u, v ∈ El be the end vertices of edge El of a semigraph G =
(V,X) such that u, v ̸∈ X − El. Then

Hds(s(u), s(v)) =

{
| El |, when | El | is even

| El | −1, when | El | is odd

Proof. Let u, v be the end vertices of an edge El = {vi = u, vi+1, ..., vk = v}. Let
s(u) = x1x2...xn and s(v) = y1y2...yn. Since u and v are adjacent only to V (El),
by the definition of adjacency matrix,

s(u) : x1 = 0, x2 = 0, ..., xi = 0, xi+1 = 1, xi+2 = 2, ..., xk−1 = k − 2, xk = k − 1

s(v) : y1 = 0, y2 = 0, ..., yi = k − 1, yi+1 = k − 2, yi+2 = k − 3, ..., yk−1 = 1, yk = 0

(i) When | El | is even, xr ̸= yr, i ≤ r ≤ k. Hence Hds(s(u), s(v)) =| El |

(ii) When | El | is odd, xr = yr, for r =

⌈
|El|
⌉

2 otherwise xr ̸= yr, for i ≤ r ≤ k.
Therefore, Hds(s(u), s(v)) =| El | −1 □

3. Hamming Index of Semigraph

Now we find Hamming index of some well known classes of semigraph.

Theorem 3.1. Hamming index of complete semigraph Ec
n on n vertices is

HAs =

{
2n3−3n2+2n

4 , when n is even
2n3−3n2+2n−1

4 , when n is odd.

Proof. Consider a complete semigraph Ec
n on n vertices. Let v1, v2, ..., vn be the

vertices of Ec
n. Then,

HAs =

n−1∑
i=1

n∑
j=i+1

(s(vi), s(vj))

=Hamming distance of

(
1∑

k=n−1

k

)
pairs.

Let v1 be the initial vertex in Ec
n. Then there will be n− 1 pairs of vertices of the

form (v1, vi), 2 ≤ i ≤ n. If n − 1 is odd, then n+1
2 number of pairs among n − 1

pairs have hamming distance n and remaining n−1
2 number of pairs of vertices

have hamming distance n − 1. If n − 1 is even, then hamming distance between
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n−1
2 pairs of vertices is n and that of n−1

2 number of pairs of vertices is n − 1.
This argument holds for all other pairs of vertices. Therefore hamming index of a
graph Ec

n can be calculated as follows.

(i) If n is even, then there are n2

4 pairs of vertices with hamming distance n and
n(n−2)

4 pairs of vertices with hamming distance n− 1. Thus,

HAs(E
c
n) =

(n2

4

)
(n) +

( (n− 2)n

4

)
(n− 1)

=
n3

4
+

n3 − 3n2 + 2n

4

=
2n3 − 3n2 + 2n

4

(ii) If n is odd, then there are n2−1
4 pairs of vertices having hamming distance

n and n2−2n+1
4 pairs of vertices with hamming distance (n− 1). Hence,

HAs(E
c
n) =

(n2 − 1

4

)
(n) +

(n2 − 2n+ 1

4

)
(n− 1)

=
n3 − n

4
+

n3 − 3n2 + 3n− 1

4

=
2n3 − 3n2 + 2n− 1

4

□

Theorem 3.2. Hamming index of a semigraph Cn,m is

HAs =


(10m3+33m2+30m+C′)n

4 , when n = 3

m2n2(m+ 4)− m2n
4 (2m+ 15) + mn

2 (6n+ 1) +B′, when n = 4

m2n2(m+ 4)− m2n
4 (2m+ 15) + 5

2mn(2n− 3) +A′, when n ≥ 5

where,

A′ =

{
n(8n− 15),m is odd

2n(n− 2),m is even.
B′ =

{
3(n− 4),m is even
23n
4 − 8,m is odd.

C ′ =

{
7,m is odd

8,m is even.

Proof. A semigraph Cn,m has n(m+1) vertices, where m is the number of middle
vertices in an edge. Let El = {l1, l2, ..., ln1

} and Ek = {k1, k2, ..., kn2
} be the

two edges of Cn,m. Hamming distance between pair of vertices of Cn,m can be
calculated using following cases.

1) Hamming distance between pair of vertices of an edge.
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i) When n ≥ 4.
From Theorem 3.1 we have,

HAs(E
c
m+2) =

{
2(m+2)3−3(m+2)2+2(m+2)

4 , when (m+ 2) is even
2(m+2)3−3(m+2)2+2(m+2)−1

4 , when n is odd.

Since every end vertex of Cn,m is adjacent to exactly two edges, the weight
of an end vertex in Cn,m is equal to weight of end vertex in Ec

m+2+(m+1).
An edge in Cn,m has 2m pairs of middle and end vertices together with
a pair of end vertices. Therefore by using Theorem 3.1, sum of Hamming
distance of all pairs of vertices of an edge is,
When m is even,

=

(
2(m+ 2)3 − 3(m+ 2)2 + 2(m+ 2)

4
+ 2(m+ 1)2

)
n

=
(2m3 + 17m2 + 30m+ 16)n

4
.

When m is odd,

=

(
2(m+ 2)3 − 3(m+ 2)2 + 2(m+ 2)− 1

4
+ 2(m+ 1)2

)
n

=
(2m3 + 17m2 + 30m+ 15)n

4
.

ii) When n = 3.
Since all edges are adjacent, the hamming distance between end vertices of
edge in Cn,m is equal to hamming distance of end vertices of Ec

m+2 + 2m.
Also, weight of end vertex in Cn,m is equal to weight of end vertex in
Ec

m+2 + (m+ 1). Therefore, when m is even, hamming distance,

=

(
2(m+ 2)3 − 3(m+ 2)2 + 2(m+ 2)

4
+ 2m(m+ 1) + 2m

)
n

=
(2m3 + 17m2 + 30m+ 8)n

4
.

When m is odd,

=

(
2r3 − 3r2 + 2r − 1

4
+ 2m(r − 1) + 2(r − 2)

)
n

=
(2m3 + 17m2 + 30m+ 7)n

4
.

2) Hamming distance of remaining pair of vertices is given in the following table.
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Type of pair of
vertices (vi, vj)

n p q
Number
of Pairs

Hamming
distance
of pair of
vertices

vi = l1, vj = kn2
;

ln1 = vr = k1;
| El ∩ Ek |= 1;
| i− n1 |=| n2 − 1 |

when
n ≥ 5

1
n(m + 1) −
(4m+ 5)

n 2(2m+ 1)

when
n = 4

2 0 2 n(m+1)−4

vi ∈ El, vj ∈ Ek,
vi, vj are end ver-
tices,
| El ∩ Ek |= 0

n > 5 0
n(m + 1) −
4(m+ 1)− 2

n(n−5)
2

4(m+ 1)

n ≤ 5 all end vertices satisfy | El ∩ Ek |= 1
vi is the end
vertex and vj is
the middle vertex, |
El ∩ Ek |= 1

n ≥ 4 0
n(m+1)−3m−
4

2mn 3m+ 2

n = 3 0 0 mn 3m+ 1
vi is the end
vertex and vj is
the middle vertex, |
El ∩ Ek |= 0

n ≥ 4 0
n(m+1)−3m−
5

mn(n−4) 3(m+ 1)

vi, vj are middle
vertices;
vi = li,vj = kj ;
ln1 = vr = j1;
| El ∩ Ek |= 1;
| i− n1 |=| j − 1 |

n ≥ 3 1
n(m + 1) −
(2m+ 3)

mn 2m

vi, vj are middle
vertices;
vi = li, vj = kj ;
ln1

= vr = j1;
| El ∩ Ek |= 1;
| i− n1 |̸=| j − 1 |

n ≥ 3 0
n(m + 1) −
(2m+ 3)

mn(m −
1)

2m+ 1

vi, vj are middle
vertices;
vi = li, vj = kj ;
| El ∩ Ek |= 0;

n ≥ 4 0
n(m + 1) −
2(m+ 2)

m2n(n−3)
2

2(m+ 1)

n = 3 all end vertices satisfy | El ∩ Ek |= 1
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Thus hamming index of semigraph Cn,m is,

i) When n ≥ 5.

HAs(Cn,m) =
(2m3 + 17m2 + 30m+A1)n

4
+ 2n(2m+ 1) + 2n(n− 5)(m+ 1)+

2mn(3m+ 2) + 3mn(n− 4)(m+ 1) + 2m2n+mn(m− 1)(2m+ 1)

+m2n(m+ 1)(n− 3).

HAs(Cn,m) =m2n2(m+ 4)− m2n

4
(2m+ 15) +

5

2
mn(2n− 3) +A′

ii) When n = 4

HAs(C4,m) =
(2m3 + 17m2 + 30m+A1)n

4
+ 2(n(m+ 1)− 4) + 2mn(3m+ 2)+

3mn(n− 4)(m+ 1) + 2m2n+mn(m− 1)(2m+ 1)+

m2n(m+ 1)(n− 3).

HAs(C4,m) =m2n2(m+ 4)− m2n

4
(2m+ 15) +

mn

2
(6n+ 1) +B′

iii) When n = 3.

HAs(C3,m) =
(2m3 + 17m2 + 30m+ C1)n

4
+mn(3m+ 1) + 2m2n+

mn(m− 1)(2m+ 1)

HAs(C3,m) =
(10m3 + 33m2 + 30m+ C ′)n

4

where,

A1 =

{
16, when m is even

15, when m is odd.
A′ =

{
n(8n− 15), when m is odd

2n(n− 2), when m is even.

B′ =

{
3(n− 4), when m is even
23n
4 − 8, when m is odd.

C ′ = C1 =

{
7, when m is odd

8, when m is even.

□

Theorem 3.3. Hamming index strongly complete semigraph (T 1
k−1) is,

HAs(T
1
k−1) =

{
2m3+13m2+26m+24

4 , when m is even
2m3+13m2+26m+23

4 , when m is odd

Proof. In a semigraph T 1
k−1, a vertex vk is connected to all the vertices of Ec

k−1.
Therefore
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HAs(T
1
k−1) = Hds(E

c
k−1) +

∑
2≤j≤k−2

Hds(vj , vk) +
∑

j=1,k−1

Hds(vj , vk)

By Theorem 3.1 we have,

HAs(E
c
k−1) =

{
2(k−1)3−3(k−1)2+2(k−1)

4 , when k − 1 is even
2(k−1)3−3(k−1)2+2(k−1)−1

4 , when k − 1 is odd.

The vertex vk and middle vertex vj are adjacent to both vj−1 and vj+1 with
a(j−1)k = a(j−1)j and ak(j+1) = aj(j+1). Therefore by Theorem 2.1 we have
|V | = k, p = 2, q = 0. Hence hamming distance ofm pairs of (vk, vj), 2 ≤ j ≤ k−2,
is m(k− 2). Also vk, v1 are adjacent to v2 and vk, vk−1 are adjacent to vk−2 with
a2k = a12 and ak(k−2) = a(k−2)k−1. Therefore hamming distance between the
pairs (vk, v1) and (vk, vk−1) is 2(k − 1). Thus,

when m is even,

HAs =
2(k − 1)3 − 3(k − 1)2 + 2(k − 1)

4
+m(k − 2) + 2(k − 1)

By replacing k-1=m+2,

=
2(m+ 2)3 − 3(m+ 2)2 + 2(m+ 2)

4
+

m(m+ 1) + 2(m+ 2)

Therefore,

HAs =
2m3 + 13m2 + 26m+ 24

4

when m is odd,

HAs =
2(k − 1)3 − 3(k − 1)2 + 2(k − 1)− 1

4
+m(k − 2)+

2(k − 1)

By replacing k-1=m+2,

=
2(m+ 2)3 − 3(m+ 2)2 + 2(m+ 2)− 1

4
+m(m+ 1)+

2(m+ 2)

Therefore,

HAs =
2m3 + 13m2 + 26m+ 23

4

□
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Theorem 3.4. Hamming Index of a semigraph Kn,m is

HAs(Kn,m) =
(m3 + 3m2 + 2m)

4
(n4 − 2n3) +

(3m2 + 10m+D1)n
2

8
+

(2m3 + 3m2 − 6m−D1)n

8
Where,

D1 =

{
7, when m is odd

8, when m is even.

Proof. An (m + 2) uniform Kn,m semigraph has nm(n−1)+2n
2 vertices, where m

is the number of middle vertices in an edge. Let El = {l1, l2, ..., ln1
} and Ej =

{j1, j2, ..., jn2
} be the edges ofKn,m. Then the hamming distance of pair of vertices

can be calculated using following cases.

1) Sum of Hamming distance of pair of vertices of an edge.
Let (vi, vj) be any two vertices in an edge of Kn,m. There are 2m pairs of

middle and end vertices together with a pair of end vertices. The weight of
an end vertex in Kn,m is (n− 2)(m+ 1) more than weight of an end vertex in
Ec

m+2. Therefore sum of hamming distances of all pairs of vertices (vi, vj) of
an edge is,

When m is even,

=

(
2(m+ 2)3 − 3(m+ 2)2 + 2(m+ 2)

4
+ 2m(n− 2)(m+ 1)+

2m(n− 2)

)
(n2 − n)

=
2m3 − 7m2 + 8m2n+ 16mn− 18m+ 8

8
When m is odd,

=

(
2(m+ 2)3 − 3(m+ 2)2 + 2(m+ 2)− 1

4
+ 2m(n− 2)(m+ 1)+

2m(n− 2)

)
(n2 − n)

=
2m3 − 7m2 + 8m2n+ 16mn− 18m+ 7

8
.

2) Hamming distance of remaining pair of (vi, vj) is given below,
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Type of pair of
vertices (vi, vj)

p q
Number of
Pairs

Hamming
distance of
pair of ver-
tices

vi ∈ El is a end
vertex, vj ∈ Ej

is a middle vertex,
vi ̸∼ vj
| Ei ∩ Ej |= 0

0 mn(n−3)
2

mn(n−1)(n−2)
2

n(m+ 1)− 2

vi ∈ El is a end
vertex, vj ∈ Ej

is a middle vertex,
vi ̸∼ vj ,
| Ei ∩ Ej |= 0

0 mn(n−3)
2

mn(n−1)(n−2)
2

n(m+ 1)− 2

vi and vj are mid-
dle vertices
| i− n1 |=| j − 1 |
Ei ∩ Ej = 1

0 n(n−1)−4
2 +n−3

nm(m−1)(n−1)
2 +

(n−2)
2

2m+ 1

vi and vj are mid-
dle vertices
Ei ∩ Ej = 0

0
m(n2−n−4)

2 +
2(n−4)

2

2(m+ 1)
n(n−1)(n−2)

8 +
(n−3)m2

8

vi and vj are mid-
dle vertices
| i− n1 |≠| j − 1 |,
Ei ∩ Ej = 1

1
(n(n−1)−4)m

2 +
n− 3

nm
2 (n−2)(n−1) 2m

Thus hamming sum of semigraph Kn,m is,

=
2m3 − 7m2 + 8m2n+ 16mn− 18m+ 8

8
+

mn(n− 1)(n− 2)(n(m+ 1)− 2)

2
+

(2m+ 1)(nm(m− 1)(n− 1)n− 2)

2
+ nm2(n− 1)(n− 2)+

nm2(m+ 1)(n− 1)(n− 2)(n− 3)

4

=
(m3 + 3m2 + 2m)

4
(n4 − 2n3) +

(3m2 + 10m+D1)n
2

8
+

(2m3 + 3m2 − 6m−D1)n

8

Where,

D1 =

{
7, when m is odd

8, when m is even.

□
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4. Conclusion

This article presents a Hamming distance in a semigraph generated by its adja-
cency matrix. Hamming distance in a semigraph is based on the type of adjacency
in a particular edge. We also computed Hamming index of some known classes of
semigraph. There is a huge scope to compute Hamming index of semigraphs.
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