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Abstract. In the present paper, we calculate two parameters gk,n and g′k,n
of some P -Q type theta-function ψ(q) for some positive real numbers k and

n. Also, we evaluate Ramanujan-Göllnitz-Gordon continued fraction during

this process.

1. Introduction

Always, it is accurately considered in the sequel that |q| < 1. For q := e2πiz,
Im(z) > 0, define

ψ(q) :=

∞∑
n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

= 2−1q−1/8Θ2(0, z)

and

f(−q) := (q; q)∞ = q−1/24η(z),

where Θ2 is the classical theta-function [16] and η(z) represents the Dedekind
eta-function and

(a; q)∞ :=

∞∏
k=0

(1− aqk).

Recently, J. Yi [13–15] evaluated several new values of φ(q), ψ(q) and f(q) applying
modular identities, transformation formulae for theta-functions and the parame-
ters ck,n and c′k,n is defined as follows:

Definition 1.1. For all k, n ∈ Z, we have

ck,n :=
ψ(−q)

k1/4q(k−1)/8ψ(−qk)
q = e−π

√
n/k, (1.1)

c′k,n :=
ψ(q)

k1/4q(k−1)/8ψ(qk)
q = e−π

√
n/k. (1.2)

Also, the following results holds true.

i. ck,1 = 1,

ii. ck,1/n = c−1
k,n,

iii. ck,n = cn,k.
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The Ramanujan-Göllnitz-Gordan continued fraction H(q) be defined by

H(q) :=
q1/2

1 + q+

q2

1 + q3 +

q4

1 + q5 +...

.

The atop identity was first found by S. Ramanujan in his second notebook [8, p.
229]. H. Göllnitz [6] and B. Gordon [7] reclaimed H(q) without knowing work of
Ramanujan. Ramanujan also documented the following two identities for H(q) in
his second notebook [8, p. 229].

1

H(q)
−H(q) =

φ(q2)

q1/2ψ(q4)

and
1

H(q)
+H(q) =

φ(q)

q1/2ψ(q4)
.

Validation of the atop two identities can be seen in [2, p. 221]. H. H. Chan and S.
S. Huang [5], entrenched several relations for H(q), which are similar to the results
of distinguished Roger-Ramanujan continued fraction and Ramanujan’s cubic con-
tinued fraction. Chan and Huang [5] likewise obtained many accurate formulas for

evaluating H(e−π
√
n/2) in terms of Ramanujan-Weber class invariants. Recently

C. Adiga et. al. [1] obtained many modular identities for the Rogers-Ramanujan
type functions of order eleven which are analogues to Ramanujan’s forty identi-
ties and also they found some partition theoretic interpretations. Inspired by the
atop mentioned work, in the present paper, we find some general formulas for the
explicit calculation of c′2,n, c3,n and c′3,n. In [3], S. Bhargava et al. established the
following:

Lemma 1.1. If

An :=
1
4
√
3

ψ(−q)
ψ(−q3)

q = e−π
√

n/3,

then

i. AnA1/n = 1,
ii. A1 = 1,

iii. H(q) =
1

3
√
3A4

n + 1
.

2. Preliminaries

We state some P -Q type theta-function identities in this section, which we need
in sequel.

Theorem 2.1. [3] If

P :=
ψ(q)

q1/4ψ(q3)
and Q :=

ψ(q3)

q3/4ψ(q9)

then

(PQ)2 +
9

(PQ)2
= 3 + 6

Q2

P 2
+
Q4

P 4
.
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Theorem 2.2. [12] If

P :=
ψ(q)

q1/4ψ(q3)
and Q :=

ψ(q2)

q1/2ψ(q6)

then

P 2 +
3

P 2
=

(
Q

P

)2

+

(
P

Q

)2

.

Theorem 2.3. [12] If

P :=
ψ(q)

q1/8ψ(q2)
and Q :=

ψ(q3)

q3/8ψ(q6)

then

(PQ)2 +
16

(PQ)2
= 4

[(
P

Q

)4

−
(
Q

P

)4
]
+ 9.

Theorem 2.4. [9] If

P := q3/8
ψ(−q)ψ(−q6)
ψ(−q2)ψ(−q3)

and Q := q3/4
ψ(−q2)ψ(−q12)
ψ(−q4)ψ(−q6)

then (√
P

Q
+

√
Q

P

)(√
PQ+

1√
PQ

)
− 8 = 0.

Theorem 2.5. [9] If

P := q1/4
ψ(−q)ψ(−q15)
ψ(−q3)ψ(−q5)

and Q := q1/2
ψ(−q2)ψ(−q30)
ψ(−q6)ψ(−q10)

then (
P

Q

)2

+

(
Q

P

)2

+
P

Q
+
Q

P
−
(

1√
PQ

−
√
PQ

)
×

(√
P

Q
+

√
Q

P
+ 3

√
P

Q
+

3

√
Q

P

)
= PQ+

1

PQ
.

Theorem 2.6. [9] If

P := q1/2
ψ(−q)ψ(−q9)
ψ2(−q3)

and Q := q
ψ(−q2)ψ(−q18)

ψ2(−q6)

then(
P

Q

)4

+

(
Q

P

)4

+

(
P

Q

)2

+

(
Q

P

)2

−
(
3PQ− 1

PQ

)((
P

Q

)3

+

(
Q

P

)3
)

−3

(
3PQ− 1

PQ

)(
P

Q
+
Q

P

)
− 1

(PQ)2
− 9 (PQ)

2 − 6 = 0.
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3. Evaluations of gk,n and g
′

k,n

Theorem 3.1. We have

i. c3,18 =

√
5 + 3

√
2 +

A

3
+

3
√
2B,

ii. c′3,1/9 =
1√
6

√
6
√
32(

√
3 + 1) +

√
6 + 2

6
√
2−

√
2,

where

A =

(
9612 + 6804

√
2− 108

√
99 + 70

√
2

)1/3

,

B =

(
89 + 63

√
2 +

√
99 + 70

√
2

)1/3

.

Proof. On applying the interpretation of c′k,n in Theorem 2.1, we obtain

3
(
c′3,nc

′
3,9n

)2
+

3(
c′3,nc

′
3,9n

)2 = 3 + 6

(
c′3,9n
c′3,n

)2

+

(
c′3,9n
c′3,n

)4

. (3.1)

Setting n = 2 in the above, we obtain

3
(
c′3,2c

′
3,18

)2
+

3(
c′3,2c

′
3,18

)2 = 3 + 6

(
c′3,18
c′3,2

)2

+

(
c′3,18
c′3,2

)4

. (3.2)

From [4], we have

c′3,2 =
(
1 +

√
2
)1/2

. (3.3)

Using (3.3) in (3.2) and after simplification, we obtain c′3,18. Further on setting
n = 1/9 in (3.1), we obtain

3(c′3,1/9c
′
3,1)

2 +
3

(c′3,1/9c
′
3,1)

2
= 3 + 6

(
c′3,1
c′3,1/9

)2

+

(
c′3,1
c′3,1/9

)4

(3.4)

From [4], we have

c′3,1 =

√√
3 + 1√
2

. (3.5)

Using (3.5) in (3.4) and after simplification we obtain c′3,1/9. □

Corollary 3.1. We have

H(e−
√
6π) =

1

4

√
3

(
5 + 3

√
2 +

A

3
+ 3

√
2B

)2

+ 1

.

Proof. On applying Theorem 3.1(i) to Lemma 1.1(iii), we obtain the above result.
□
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Theorem 3.2. We have

c′3,1/2 =
4

√√
3a− a2√
3a− 1

where

a = 1 +
√
2.

Proof. Applying the interpretation of c′k,n in Theorem 2.2, we have

√
3(c′3,n)

2 +

√
3

(c′3,n)
2
=

(
c′3,4n
c′3,n

)2

+

(
c′3,n
c′3,4n

)2

. (3.6)

On setting n = 1/2 in (3.6), we have

√
3(c′3,1/2)

2 +

√
3

(c′3,1/2)
2
=

(
c′3,2
c′3,1/2

)2

+

(
c′3,1/2

c′3,2

)2

. (3.7)

On using (3.3) in (3.7) and after simplification, we obtain c′3,1/2. □

Theorem 3.3. We have

i. c′2,36 =

√√√√9a+
√
418(1 +

√
2)

8(2 +
√
2)

,

ii. c′2,72 =

√
9(2 +

√
2) +

√
2790 + 2116

√
2

8(5 + 2
√
2)

,

where

a =

√√
2− 1 +

√√
2 + 1.

Proof. Applying the interpretation of c′k,n in Theorem 2.3, we obtain

2
(
c′2,nc

′
2,9n

)2
+

8(
c′2,nc

′
2,9n

)2 = 4

( c′2,n
c′2,9n

)2

−

(
c′2,9n
c′2,n

)2
+ 9. (3.8)

Setting n = 4 in the above, we have

2
(
c′2,4c

′
2,36

)2
+

8(
c′2,4c

′
2,36

)2 = 4

( c′2,4
c′2,36

)2

−

(
c′2,36
c′2,4

)2
+ 9. (3.9)

From [4], we have

c′2,4 =

√√√
2− 1 +

√√
2 + 1. (3.10)

On using (3.10) in (3.9) and after simplification, we obtain c′2,36. Further on setting
n = 8 in (3.8), we have

2
(
c′2,8c

′
2,72

)2
+

8(
c′2,8c

′
2,72

)2 = 4

( c′2,8
c′2,72

)2

+

(
c′2,72
c′2,8

)2
+ 9. (3.11)
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From [4], we have

c′2,8 =

√
2 +

√
2. (3.12)

On using (3.12) in (3.11) and after simplification we obtain c′3,72. □

Theorem 3.4. We have

i. c3,4 = 2 +
√
3,

ii. c3,16 = 7 + 4
√
3.

Proof. Applying the interpretation of ck,n in Theorem 2.4, we obtain(√
ck,nck,16n

ck,4n
+

ck,4n√
ck,nck,16n

)(√
ck,n
ck,16n

+

√
ck,16n
ck,n

)
− 8 = 0. (3.13)

On letting k = 3 and n = 1/4 in the above and the definition of ck,n, we obtain

c3,4 +
1

c3,4
− 4 = 0.

On solving, we obtain Theorem 3.4(i). Further, on setting k = 3 and n = 1 in
(3.13), we obtain(

c3,4√
c3,16

+

√
c3,16

c3,4

)(
1

√
c3,16

+
√
c3,16

)
− 8 = 0.

Using c3,4 = 2 +
√
3 and by the definition of ck,n > 1, we obtain Theorem 3.4(ii).

□

Corollary 3.2. We have

i. H(e−2π/
√
3) =

1
4
√
292 + 168

√
3
,

ii. H(e−4π/
√
3) =

1
4
√
56452 + 32592

√
3
.

Proof. On applying Theorem 3.4 to Lemma 1.1(iii), we obtain the result. □

Theorem 3.5. We have

i. c3,10 =

(
√
3 +

√
6

2
− 1√

2
− 1

)1/2 (√
6 +

√
5
)1/4

,

ii. c3,2/5 =

(√
6 +

√
5
)1/4(√

3 +
√
6
2 − 1√

2
− 1
)1/2 .
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Proof. On using the definition of ck,n in Theorem 2.5, we have(
ck,nck,100n
ck,4nck,25n

)2

+

(
ck,4nck,25n
ck,nck,100n

)2

+
ck,nck,100n
ck,4nck,25n

+
ck,4nck,25n
ck,nck,100n

−

((
ck,nck,100n
ck,4nck,25n

)1/2

+

(
ck,4nck,25n
ck,nck,100n

)1/2

+

(
ck,nck,100n
ck,4nck,25n

)3/2

+

(
ck,4nck,25n
ck,nck,100n

)3/2
)

×

((
ck,25nck,100n
ck,nck,4n

)1/2

−
(

ck,ngk,4n
ck,25nck,100n

)1/2
)

=
ck,25nck,100n
ck,nck,4n

+
ck,nck,4n

ck,25nck,100n
.

(3.14)

On letting k = 3, n = 1/10 in (3.14), by the definition hk,n

c23,10
c23,2/5

+
c23,2/5

c23,10
+ 4

(
c3,10
c3,2/5

−
c3,2/5

c3,10

)
− 4 = 0.

Since ck,n is increasing in n, we have
c3,10
c3,2/5

> 1. Hence

c3,10
c3,2/5

=
√
3 +

√
6

2
− 1√

2
− 1. (3.15)

From [3], if

P :=
ψ(−q)

q1/4ψ(−q3)
and Q :=

ψ(−q5)
q5/4ψ(−q15)

then

(PQ)2 +
9

(PQ)2
=

(
Q

P

)3

−
(
P

Q

)3

+ 5

((
Q

P

)2

+

(
P

Q

)2
)

+ 5

(
Q

P
− P

Q

)
.

Applying the interpretation of ck,n in the above, we obtain

3(
c3,10c3,2/5

)2 + 3
(
c3,10c3,2/5

)2
=

(
c3,10
c3,2/5

)3

−
(
c3,2/5

c3,10

)3

+ 5

((
c3,10
c3,2/5

)2

+

(
c3,2/5

c3,10

)2
)

+ 5

(
c3,10
c3,2/5

−
c3,2/5

c3,10

)
. (3.16)

Using (3.15) in (3.16), we obtain

c3,10c3,2/5 =

√√
6 +

√
5. (3.17)

Finally, from (3.15) and (3.17), we obtain the required result. □

Corollary 3.3. We have

i. H(e−π
√

10/3) =
1√

5 +
√
6

4

√
4

16
√
2− 12

√
3− 8

√
6 + 28

,

ii. H(e−π
√

2/15) = 4

√
6 + 4

√
2− 3

√
3− 2

√
6

6 + 4
√
2− 3

√
3 + 3

√
5 +

√
6
.

Proof. Utilizing Theorem 3.5 to Lemma 1.1(iii), we obtain the result. □
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Theorem 3.6. We have

i. c3,6 =
(
(3
√
2− 3)(2 +

√
3)
)1/4

,

ii. c3,2/3 =

(
2 +

√
3

3
√
2− 3

)1/4

.

Proof. Applying the interpretation on ck,n in Theorem 2.6, we have(
ck,nck,36n
ck,4nck,9n

)4

+

(
ck,4nck,9n
ck,nck,36n

)4

+

(
ck,nck,36n
ck,4nck,9n

)2

+

(
ck,4nck,9n
ck,nck,36n

)2

−
(
3
ck,nck,4n
ck,9nck,36n

− ck,9nck,36n
ck,nck,4n

)[(
ck,nck,36n
ck,4nck,9n

)3

+

(
ck,4nck,9n
ck,nck,36n

)3
]

− 3

(
3
ck,nck,4n
ck,9nck,36n

− ck,9nck,36n
ck,nck,4n

)(
ck,nck,36n
ck,4nck,9n

+
ck,4nck,9n
ck,nck,36n

)
−

(
9

(
ck,nck,4n
ck,9nck,36n

)2

+

(
ck,9nck,36n
ck,nck,4n

)2
)

− 6 = 0. (3.18)

On letting k = 3 and n = 1/6 in (3.18), by the definition of ck,n, we obtain(
9
c43,2/3

c43,6
+

c43,6
c43,2/3

)
+ 8

(
3

(
c3,2/3

c3,6

)2

−
(
c3,6
c3,2/3

)2
)

+ 2 = 0.

Since ck,n is increasing in n, we have
c3,6

c3,2/3
> 1. Hence

c3,6
c3,2/3

=

√
3
√
2− 3. (3.19)

Replacing q to −q in Theorem 2.1 and on using the definition of ck,n, we obtain

3(c3,6c3,2/3)
2 +

3

(c3,6c3,2/3)2
= 3 + 6

(
c3,6
c3,2/3

)2

+

(
c3,6
c3,2/3

)4

. (3.20)

Using (3.19) in (3.20), we obtain

c3,6c3,2/3 =

√
2 +

√
3. (3.21)

Finally, from (3.19) and (3.21), we obtain the required result. □

Corollary 3.4. We have

i. H(e−
√
2π) =

1
4
√
18
√
2− 9

√
3 + 9

√
6− 17

,

ii. H(e−
√
2π/3) = 4

√ √
2− 1√

2 +
√
3− 1

.

Proof. Applying Theorem 3.6 to Lemma 1.1(iii), we obtain the result. □
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