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Abstract. A time-changed fractional mixed fractional Brownian motion by

inverse α-stable subordinator with index α ∈ (0, 1) is an iterated process

LH1H2
Tα (a, b) constructed as the superposition of fractional mixed fractional

Brownian motion NH1H2 (a, b) and an independent inverse α-stable subordi-

nator Tα. In this paper we prove that the process LH1H2
Tα (a, b) exhibit long

range dependence property under some condition on the Hirst indices H1 and

H2 of tow independents fractional Brownian motions.

1. Introduction

A mixed fractional Brownian motion (mfBm for short) of parameters a, b and
H is the process MH(a, b) = {MH

t (a, b), t ≥ 0}, defined on the probability space
(Ω,F , P ) by

MH
t (a, b) = aBt + bBH

t , t ≥ 0,

where B = {Bt, t ≥ 0} is a Brownian motion, BH =
{
BH

t , t ≥ 0
}
is an independent

fractional Brownian motion of Hurst index H ∈ (0, 1) and a, b two real constants.
The mfBm was introduced by Cheridito [6], with stationary increments exhibit a
long-range dependence for H > 1

2 . The mfBm has been discussed in [6] to present a
stochastic model of the discounted stock price in some arbitrage-free and complete
financial markets. This model is the process

Xt = X0 exp{µt+ σ(aBt + bBH
t )},

where µ is the rate of the return and σ is the volatility. We refer also to [8, 17, 31]
for further information and applications on the mfBm.

The time-changed mixed fractional Brownian motion by inverse α-stable sub-
ordinator with index α ∈ (0, 1) is defined as below

LH
Tα(a, b) = {MH

Tα
t
(a, b), t ≥ 0},

where the parent process MH(a, b) is a mfBm with parameters a, b, H ∈ (0, 1) and
Tα = {Tα

t , t ≥ 0} is an inverse α-stable subordinator assumed to be independent of

both Brownian and fractional Brownian motion. If H = 1
2 , the process L

1
2

Tα(0, 1)
is called subordinated Brownian motion, it was investigated in [9, 19, 22, 26].
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When a = 0, b = 1 then LH
Tα(0, 1) it is the process considered in [15, 16] called

subordinated fractional Brownian motion.
Time-changed process is constructed by taking superposition of tow indepen-

dent stochastic systems. The evolution of time in external process is replaced
by a non-decreasing stochastic process, called subordinator. The resulting time-
changed process very often retain important properties of the external process,
however certain characteristics might change. This idea of subordination was in-
troduced by Bochner [5] and was explored in many papers (see [11, 12, 15, 21]).

The time-changed mixed fractional Brownian motion has been discussed in [10]
to present a stochastic Black-Scholes model, whose price of the underlying stock
is the process

St = S0 exp{µTα
t + σ(aBTα

t
+ bBH

Tα
t
)},

where µ is the rate of the return, σ is the volatility and Tα is the α-inverse
stable subordinator. Also the time-changed processes have found many interesting
applications, for example in finance [10, 14, 27, 29, 32].

C. Elnouty [8] propose a generalisation of the mfBm called fractional mixed
fractional Brownian motion (fmfBm) of parameters a, b and H1, H2 ∈ (0, 1). A

fmfBm is a processNH1H2(a, b) = {NH1H2
t (a, b), t ≥ 0}, defined on the probability

space (Ω,F , P ) by

NH1H2
t (a, b) = aBH1

t + bBH2
t , t ≥ 0,

where BH1 = {BH1
t , t ≥ 0} and BH2 = {BH2

t , t ≥ 0 are independents fractional
Brownian motions and a, b real constants not both equal to zero. Also the fmfBm
was study by Miao, Y et al. [25].

The time-changed fractional mixed fractional Brownian motion is defined as
{NH1H2

βt
(a, b), t ≥ 0}, where the parent process NH1H2(a, b) is a fmfBm with

parameters a, b, and H1, H2 ∈ (0, 1) and the subordinator β = {βt, t ≥ 0} is
assumed to be independent of both fractional Brownian motions BH1 and BH2 .

Our goal in this parer is to study the main properties of the time-changed frac-
tional mixed fractional Brownian motion by inverse α-stable subordinator paying
attention to the long range dependence property.

2. Main results and proofs

We begin by defining the inverse α-stable subordinator.

Definition 2.1. The inverse α-stable subordinator Tα = {Tα
t , t ≥ 0} is defined

in the following way

Tα
t = inf{r > 0, ηαr ≥ t}, (2.1)

where ηα = {ηαr , r ≥ 0} is the α-stable subordinator [28, 30] with Laplace trans-
form

E(e−uηα
r ) = e−ruα

, α ∈ (0, 1).

The inverse α-stable subordinator is a non-decreasing Lévy process, starting from
zero, has a stationary and independent increments with α-self similar. Specially,
when α ↑ 1, Tα

t reduces to the physical time t.
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Let Tα be an inverse α-stable subordinator with index α ∈ (0, 1). From [18, 20],
we know that

E(Tα
t ) =

tα

Γ(α+ 1)
and E((Tα

t )
n) =

tnαn!

Γ(nα+ 1)
.

Lemma 2.2. Let Tα be an inverse α-stable subordinator with index α ∈ (0, 1) and
BH be a fBm. Then, by α-self-similar and non-decreasing sample path of Tα

t , we
have

E(BTα
t
)2 =

tα

Γ(α+ 1)
and E(BH

Tα
t
)2 =

(
tα

Γ(α+ 1)

)2H

.

Proof. See [14, 20]. □

Definition 2.3. Let NH1H2(a, b) = {NH1H2
t (a, b), t ≥ 0} be a fmfBm of parame-

ters a, b and H1, H2 ∈ (0, 1) and let Tα be an inverse α-stable subordinator with
index α ∈ (0, 1). The subordinated of NH1H2(a, b) by means of Tα is the process

LH1H2

Tα (a, b) = {LH1H2

Tα
t

, t ≥ 0} defined by:

LH1H2

Tα
t

= NH1H2

Tα
t

(a, b) = aBH1

Tα
t
+ bBH2

Tα
t
, (2.2)

where the subordinator Tα
t is assumed to be independent of both fractional Braow-

nian motions BH1 , BH2 and a, b real constants not both equal to zero.

Remark 2.4. When α ↑ 1, the processes BTα
t
and BH

Tα
t
degenerate to Bt and BH

t .

Notation 2.5. Let U and V be two centered random variables defined on the same
probability space. Let

Corr(U, V ) =
Cov(U, V )√
E(U2)E(V 2)

, (2.3)

denote the correlation coefficient between U and V.

Now we discuss the long range dependent behavior of LH1H2

Tα (a, b).

Definition 2.6. A finite variance stationary process {Xt, t ≥ 0} is said to have
long range dependence property [7], if

∑∞
k=0 γk = ∞, where

γk = Cov(Xk, Xk+1).

In the following definition we give the equivalent definition for a non-stationary
process {Xt, t ≥ 0}.

Definition 2.7. Let s > 0 be fixed and t > s. Then process {Xt, t ≥ 0} is said
to have long range dependence property property if

Corr(Xt, Xs) ∼ c(s)t−d, as t → ∞,

where c(s) is a constant depending on s and d ∈ (0, 1).

The main result can be stated as follows.
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Theorem 2.8. Let NH1H2(a, b) = {NH1H2
t (a, b), t ≥ 0} be the fractional mixed

fractional Brownian motion of parameters a, b, H1 and H2 with H1 < H2. Let
Tα = {Tα

t , t ≥ 0} be an inverse α-stable subordinator with index α ∈ (0, 1)
assumed to be independent of both fractional Brownian motions BH1 and BH2 .
Then the time-changed fractional mixed fractional Brownian motion by means of
Tα has long range dependence property if 0 < 2αH1 − αH2 < 1.

Proof. Let Tα = {Tα
t , t ≥ 0} be an inverse α-stable subordinator with index

α ∈ (0, 1) assumed to be independent of BHi , i = 1, 2. Let LH1H2

Tα (a, b) be the
time-changed fractional mixed fractional Brownian motion by means of the in-
verse α-stable subordinator Tα with index α ∈ (0, 1). The process LH1H2

Tα (a, b) is
not stationary hence Definition 2.7 will be used to establish the long range depen-
dence property.

Step 1: Let s > 0 be fixed and let s ≤ t. Since BH1 and BH2 has stationary
increments, then we have

Cov(LH1H2

Tα
t

, LH1H2

Tα
s

) = E(LH1H2

Tα
t

LH1H2

Tα
s

)

=
1

2
E
[
(LH1H2

Tα
t

)2 + (LH1H2

Tα
s

)2 − (LH1H2

Tα
t

− LH1H2

Tα
s

)2
]

=
1

2
E
[
(NH1H2

Tα
t

(a, b))2 + (NH1H2

Tα
s

(a, b))2
]

−1

2
E
[
(NH1H2

Tα
t

(a, b)−NH1H2

Tα
s

(a, b))2
]

=
1

2
E
[
(aBH1

Tα
t
+ bBH2

Tα
t
)2 + (aBH1

Tα
s
+ bBH2

Tα
s
)2
]

−1

2
E

[(
a(BH1

Tα
t
−BH1

Tα
s
) + b(BH2

Tα
t
−BH2

Tα
s
)
)2

]
=

1

2
E
[
(aBH1

Tα
t
+ bBH2

Tα
t
)2 + (aBH1

Tα
s
+ bBH2

Tα
s
)2
]

−1

2
E
[
(aBH1

Tα
t−s

+ bBH2

Tα
t−s

)2
]

=
1

2
E
[
(aBH1

Tα
t
+ (bBH2

Tα
t
)2 + 2(aBH1

Tα
t
bBH2

Tα
t
)
]

+
1

2
E
[
(aBH1

Tα
s
)2 + (bBH2

Tα
s
)2 + 2(aBH1

Tα
s
bBH2

Tα
s
)
]

−1

2
E
[
(aBH1

Tα
t−s

)2 + (bBH2

Tα
t−s

)2 + 2(aBH1

Tα
t−s

bBH2

Tα
t−s

)
]
.

Since BH1
t and BH2

t are independent and using Lemma 2.2 we get

E(LH1H2

Tα
t

LH1H2

Tα
s

) =
a2

2

[
E(BH1

Tα
t
)2 + E(BH1

Tα
s
)2 − E(BH1

Tα
t−s

)2
]

+
b2

2

[
E(BH2

Tα
t
)2 + E(BH2

Tα
s
)2 − E(BH2

Tα
t−s

)2
]
.
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Hence,

E(LH1H2

Tα
t

LH1H2

Tα
s

) =
a2

2

[(
tα

Γ(α+ 1)

)2H1

+

(
sα

Γ(α+ 1)

)2H1

−
(

(t− s)α

Γ(α+ 1)

)2H1
]

+
b2

2

[(
tα

Γ(α+ 1)

)2H2

+

(
sα

Γ(α+ 1)

)2H2

−
(

(t− s)α

Γ(α+ 1)

)2H2
]

=
a2

[
t2αH1 + s2αH1 − (t− s)2αH1

]
2[Γ(α+ 1)]2H1

+
b2

[
t2αH2 + s2αH2 − (t− s)2αH2

]
2[Γ(α+ 1)]2H2

.

Hence for all s ≤ t and H1 < H2 we have

E(LH1H2

Tα
t

LH1H2

Tα
s

) =
a2

[
t2αH1 + s2αH1 − (t− s)2αH1

]
2[Γ(α+ 1)]2H1

+
b2

[
t2αH2 + s2αH2 − (t− s)2αH2

]
2[Γ(α+ 1)]2H2

.

Step 2: Let s be fixed. Then by Taylor’s expansion we have for large t

E(LH1H2

Tα
t

LH1H2

Tα
s

) ∼ a2

2[Γ(α+ 1)]2H1
t2αH1

[
2αH1

s

t
+ s2αH1t−2αH1 +O(t−2)

]
+

b2

2[Γ(α+ 1)]2H2
t2αH2

[
2αH2

s

t
+ s2αH2t−2αH2 +O(t−2)

]
∼ a2t2αH1

2[Γ(α+ 1)]2H1

[
2αH1

s

t
+ (

s

t
)2αH1 +O(t−2)

]
+

b2t2αH2

2[Γ(α+ 1)]2H2

[
2αH2

s

t
+ (

s

t
)2αH2 +O(t−2)

]
∼ a2αs

(Γ(α+ 1))2H1
t2αH1−1 +

b2αs

(Γ(α+ 1))2H2
t2αH2−1.

Then for fixed s and large t, LH1H2

Tα
t

satisfies

E(LH1H2

Tα
t

LH1H2

Tα
s

) ∼ a2αs

(Γ(α+ 1))2H1
t2αH1−1 +

b2αs

(Γ(α+ 1))2H2
t2αH2−1.

Step 3: Let H1 < H2. Using Eqs. (2.3), (2.4) and by Taylor’s expansion we get,
as t → ∞

Corr(LH1H2

Tα
t

, LH1H2

Tα
s

) ∼
a2αs

(Γ(α+1))2H1
t2αH1−1 + b2αs

(Γ(α+1))2H2
t2αH2−1[

a2α
(Γ(α+1))2H1

t2αH1 + b2α
(Γ(α+1))2H2

t2αH2

] 1
2

[E(LTα

s )2]
1
2

=

a2αs
(Γ(α+1))2H1

t2αH1−1 + b2αs
(Γ(α+1))2H2

t2αH2−1

|b|α
1
2 tαH2

(Γ(α+1))H2

[
a2

2b2(Γ(α+1))1−2H2
t2αH1−2αH2 + 1

] 1
2

[E(LTα

s )2]
1
2

∼ a2α
1
2 st2αH1−αH2−1

|b|(Γ(α+ 1))2H1−H2 [E(LTα

s )2]
1
2

+
|b|α 1

2 stαH2−1

(Γ(α+ 1))H2 [E(LTα

s )2]
1
2

.

Hence, for every H1 < H2 we have

Corr(LH1H2

Tα
t

, LH1H2

Tα
s

) ∼ a2α
1
2 s t2αH1−αH2−1

|b|(Γ(α+ 1))2H1−H2 [E(LTα

s )2]
1
2

+
|b|α 1

2 s tαH2−1

(Γ(α+ 1))H2 [E(LTα

s )2]
1
2

.(2.4)
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Then the correlation function of the stochastic process LH1H2

Tα
t

decays like a mixture

of power law t−(2αH1−αH2−1)+t−(1−αH2). Since 0 < 2αH1−αH2 < 1 then the first
term tends to zero as t → ∞. Then the time-changed process LH1H2

Tα (a, b) exhibits
long range dependence property for all H1 < H2 and 0 < 2αH1 − αH2 < 1. □

Remark 2.9. When a = 0 and b = 1 in Eqs. (2.4) and (2.4) we get

E(LH1H2

Tα
t

LH1H2

Tα
s

) = E(BH2

Tα
t
BH2

Tα
s
) ∼ αst2αH2−1

(Γ(α+ 1))2H2
, as t → ∞,

Corr(LH1H2

Tα
t

, LH1H2

Tα
s

) ∼ α
1
2 stαH2−1

(Γ(α+ 1))H2

√
E(BH2

Tα
s
)2
, as t → ∞.

Hence we obtain the following result.

Corollary 2.10. The fractional Brownian motion time changed by inverse α-
stable subordinator with index α ∈ (0, 1) is of long range dependence for the Hurst
index H ∈ (0, 1).

Similar result as Corollary 2.10 was obtained in [15] ([16]) in the case of frac-
tional Brownian motion time changed by tempered stable subordinator (gamma
subordinator).

As application to the original process we obtain the following. .

Corollary 2.11. Let H2 = H > H1 = 1
2 . When α ↑ 1, in Eqs. (2.4) and (2.4) we

have, as t → ∞

lim
α→1

E(LH1H2

Tα
t

LH1H2

Tα
s

) =
a2s

2
+ b2st2H−1,

lim
α→1

Corr(LH
Tα
t
, LH1H2

Tα
s

) =
a2s t−H

2|b|
√

E(NH1H2
s (a, b))2

+
|b|s tH−1√

E(NH1H2
s (a, b))2

.

Hence using Remark 2.4 and Corollary 2.11 we can see that the mixed fractional
Brownian motion of parameters a, b and H has long range dependence property
for all H > 1

2 in sense of Definition 2.7.

Remark 2.12. (1) Let H ∈ (0, 1). Then

Corr(BH
t , BH

s ) ∼ stH−1√
E(BH

s )2
, as t → ∞. (2.5)

Indeed, we take a = 0 and b = 1 in Eq. (2.4). When α ↑ 1 and using
Remark 2.4 we obtain Eq. (2.5).

(2) When α ↑ 1, in Eq. (2.4) we have

lim
α→1

E(LH1H2

Tα
t

LH1H2

Tα
s

) =
a2

2

[
t2H1 + s2H1 − (t− s)2H1

]
+

b2

2

[
t2H2 + s2H2 − (t− s)2H2

]
.

Corollary 2.13. The fractional mixed fractional Brownian motion has long range
dependence for every 0 < H1 < H2 < 1.
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The idea, used results for the time-changed process to obtain a results for the
original one is already investigated in [11].

The fmfBm has been further generalized by Thäle in 2009 [31] to the general-
ized mixed fractional Brownian motion. A generalized mixed fractional Brownian
motion of parameters H = (H1, H2, ...,Hn) and α = (α1, α2, ..., αn) is a stochastic

process Z = {ZH,α
t , t ≥ 0} defined by

ZH,α
t =

n∑
i=1

αiB
Hi
t

Forthcoming work, we will investigate the long range dependence property of the
time-changed generalized mixed fractional Brownian motion by inverse α-stable
subordinator [24].
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