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Abstract. Theorems on the existence and uniqueness of global solutions,
Lagrange stability and instability (solutions have finite escape time), ulti-
mate boundedness (dissipativity), Lyapunov stability, instability and asymp-
totic stability (including asymptotic stability in the large) for time-varying
semilinear differential-algebraic equations are proved. Various useful remarks
concerning the application of the obtained theorems are given.

1. Introduction

Differential algebraic equations (DAEs) are a convenient abstract form for the
representation of many dynamic models of real objects and processes in radio-
electronics, robotics, control theory, economics, chemistry and ecology [1, 2, 3, 4, 5].
Differential equations (DEs) of this type have been studied in many works (see
[1, 3, 2, 4, 5, 6, 7] and references therein). For instance, the global solvability
of semilinear DAEs was studied in [6, 1, 2, 4], and in [2, 4, 5, 8] the Lyapunov
stability of semilinear and nonlinear DAEs was studied using various approaches
to the research.

Ultimately bounded systems of ordinary differential equations (ODEs), which
are also called dissipative systems and D-systems, were studied in [14, 15]. Asymp-
totic stability in the large or complete stability for ODE systems was considered
in [16, 14]. The theorems from [15] and [16] are applied in this paper. Also, the
results from [14] relative to the continuation of solutions and the Lagrange stabil-
ity of ODEs are used. These results are based on the application of differential
inequalities and functions of the Lyapunov function type. In general, Lyapunov’s
second method and the methods based on it are used, as well as time-varying
spectral projectors and the operator G(t), constructed using them, from [13, 1]
are applied (see Section 2).

Date: Date of Submission June 02, 2020; Date of Acceptance June 30, 2020, Communicated
by Yuri E. Gliklikh .

2010 Mathematics Subject Classification. Primary 34A09, 34D23; Secondary 34D20, 34A12.
Key words and phrases. implicit differential equation, differential-algebraic equation, non-

invertible operator, time-varying, global solvability, Lyapunov stability, Lagrange stability,
instability.

The research is supported by the grant of the National Academy of Sciences of Ukraine (state
registration number 0119U102376, project “Qualitative, asymptotic and numerical analysis of
various classes of differential equations and dynamical systems, their classification, and practical
application”).

1

Global and Stochastic Analysis
Vol. 7 No. 2 (July-December, 2020

169



2 MARIA FILIPKOVSKA (FILIPKOVSKAYA)

In this paper, time-varying semilinear DAEs with the characteristic pencils
regular for each t are considered. The conditions of global solvability, Lagrange
stability and instability, Lyapunov stability, instability and asymptotic stability
(including asymptotic stability in the large) are obtained. This work extends and
generalizes the results obtained in [9, 10, 11, 12].

The following classical notation is used in the paper: δij is the Kronecker delta,
IX is the identity operator in the space X ; KerA and R(A) are the kernel (the
null-space) and the range (the image) of the operator A.

The following classical definitions are also used in the paper. Let D ⊂ R
n be

a region containing the origin. A function W ∈ C(D,R) is called positive definite
if W (x) > 0 for all x 6= 0 and W (0) = 0. A function V ∈ C([t+,∞) × D,R) is
called positive definite if V (t, 0) ≡ 0 and there exists a positive definite function
W ∈ C(D,R) such that V (t, x) ≥ W (x) for all x 6= 0, t ∈ [t+,∞).

2. Problem setting and preliminaries

Consider implicit differential equations

d

dt
[A(t)x(t)] + B(t)x(t) = f(t, x(t)), (2.1)

A(t)
d

dt
x(t) +B(t)x(t) = f(t, x(t)), (2.2)

with the initial condition

x(t0) = x0, (2.3)

where A, B : [t+,∞) → L(Rn), f : [t+,∞) × R
n → R

n and t0 ≥ t+ ≥ 0. The
operators A(t), B(t) may be degenerate. Equations of the type (2.1), (2.2) with
the degenerate operatorA(t) are called time-varying (nonautonomous) differential-
algebraic equations (DAEs) and are also called degenerate differential equations,
algebraic-differential systems and descriptor systems.

In the terminology of DAEs, equations of the form (2.1), (2.2) are commonly re-
ferred to as semilinear, but they are sometimes called nonlinear (since the function
f is nonlinear).

A function x ∈ C([t0, t1),R
n) is a solution of the initial value problem

(the Cauchy problem) (2.1), (2.3) on an interval [t0, t1) ⊆ [t+,∞) if Ax ∈
C1([t0, t1),R

n), x(t) satisfies the equation (2.1) on [t0, t1) and the initial condition
(2.3). A function x ∈ C1([t0, t1),R

n) is a solution of the initial value problem
(2.2), (2.3) on [t0, t1) ⊆ [t+,∞) if x(t) satisfies (2.2) on [t0, t1) and (2.3).

The operator pencil λA(t) + B(t) (λ is a complex parameter) corresponds to
the left side of the equations (2.1), (2.2). Let for each t ≥ t+ the pencil be regular
(det(λA(t) + B(t)) 6≡ 0), i.e., for each t ≥ t+ the set of its regular points is not
empty (the set of regular points of the pencil λA(t) + B(t) is the set of regular
points of its complex extension) . For the regular points λ of the pencil, there
exists the resolvent R(λ, t) = (λA(t) +B(t))−1. It is assumed that for each t ≥ t+
the pencil is regular and the following condition is satisfied: there exist functions
C1 : [t+,∞) → (0,∞), C2 : [t+,∞) → (0,∞) such that

‖R(λ, t)‖ ≤ C1(t), |λ| ≥ C2(t), (2.4)
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EXISTENCE, BOUNDEDNESS AND STABILITY OF SOLUTIONS OF A DAE 3

for all t ∈ [t+,∞). Thus, for each t ≥ t+ the pencil λA(t)+B(t) is a regular pencil
of index not higher than 1 (see the definition, for example, in [17, Section 2]).
The condition (2.4) means that either the point µ = 0 is a simple pole of the
resolvent (A(t)+µB(t))−1 (this is equivalent to the fact that λ = ∞ is a removable
singular point of the resolvent R(λ, t)), or µ = 0 is a regular point of the pencil
A(t) + µB(t).

The definitions and facts presented in this section will be used hereinafter.
Below is the information from [1, Subsection 3.3], [13], which will be used

hereinafter. If the regular pencil satisfies (2.4), then for each t ∈ [t+,∞) there
exist the two pairs of mutually complementary projectors

P1(t) =
1

2πi

∮

|λ|=C2(t)

R(λ, t) dλA(t), P2(t) = IRn − P1(t),

Q1(t) =
1

2πi

∮

|λ|=C2(t)

A(t)R(λ, t) dλ, Q2(t) = IRn −Q1(t)

(2.5)

(Pi(t)Pj(t)=δijPi(t), P1(t)+P2(t)=ERn , Qi(t)Qj(t)=δijQi(t), Q1(t)+Q2(t)=ERn ,
i, j = 1, 2), which generate the direct decompositions of spaces

R
n = X1(t)+̇X2(t), Xj(t) = Pj(t)R

n,

R
n = Y1(t)+̇Y2(t), Yj(t) = Qj(t)R

n, j = 1, 2,
(2.6)

such that the pairs of subspaces X1(t), Y1(t) and X2(t), Y2(t) are invariant under
A(t), B(t) (i.e., A(t), B(t) : Xj(t) → Yj(t), j = 1, 2). The restricted operators
Aj(t) = A(t)|Xj(t)

: Xj(t) → Yj(t), Bj(t) = B(t)|Xj(t)
: Xj(t) → Yj(t) (j = 1, 2)

are such that A2(t) = 0 and A−1
1 (t), B−1

2 (t) exist (if X1(t) 6= {0}, X2(t) 6= {0}
respectively). The subspaces Xi(t), Yj(t) are such that Y1(t) = R(A(t)), X2(t) =
KerA(t), Y2(t) = B(t)X2(t) and X1(t) = R(λ, t)Y1(t), |λ| ≥ C2(t). The projectors
are real (since A(t) and B(t) are real) and satisfy the properties:

A(t)P1(t) = Q1(t)A(t) = A(t), A(t)P2(t) = Q2(t)A(t) = 0,

B(t)Pj(t) = Qj(t)B(t), j = 1, 2.
(2.7)

Using the spectral projectors, for each t ∈ [t+,∞) we obtain the auxiliary operator

G(t) = A(t) +B(t)P2(t) = A(t) +Q2(t)B(t) ∈ L(Rn) (2.8)

such that G(t)Xj(t) = Yj(t) [1, Subsection 3.3], [13]. This operator has the inverse

G−1(t) = A−1
1 (t)Q1(t) + B−1

2 (t)Q2(t) ∈ L(Rn) (G−1(t) : Yj(t) → Xj(t)) with
the properties G−1(t)A(t)P1(t) = G−1(t)A(t) = P1(t), G

−1(t)B(t)P2(t) = P2(t),
A(t)G−1(t)Q1(t) = A(t)G−1(t) = Q1(t), B(t)G−1(t)Q2(t) = Q2(t).

The projectors Pi(t), Qi(t) (i = 1, 2) and the operators G(t), G−1(t) as
operator functions have the same degree of smoothness as the operator func-
tions A(t), B(t) and the function C2(t) [1, Subsection 3.3]. Suppose that
A,B ∈ C1([t+,∞), L(Rn)) and C2 ∈ C1([t+,∞), (0,∞)), then Pi, Qi, G,G−1 ∈
C1([t+,∞), L(Rn)), i.e., Pi(t), Qi(t), G(t) and G−1(t) are continuously differen-
tiable as operator functions on [t+,∞).
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For each t any vector x ∈ R
n can be uniquely represented (with respect to the

decomposition (2.6)) in the form

x = P1(t)x + P2(t)x = xp1
(t) + xp2

(t), xpi
(t) = Pi(t)x ∈ Xi(t). (2.9)

Note that the DAE (2.1) is equivalent to A(t)[P1(t)x(t)]
′ + A′(t)[P1(t)x(t)] +

B(t)x(t) = f(t, x(t)). Using the projectors Q1(t), Q2(t) and taking into account
(2.7), we reduce the DAE (2.1) to the equivalent system

A(t)P1(t)[P1(t)x(t)]
′ +Q1(t)A

′(t)P1(t)x(t) +B(t)P1(t)x(t) =

= Q1(t)f(t, x(t)), (2.10)

B(t)P2(t)x(t) = Q2(t)[f(t, x(t)) −A′(t)P1(t)x(t)]. (2.11)

Using the operator G−1(t) and the equality P1(t)[P1(t)x(t)]
′ = [P1(t)x(t)]

′ −
P ′
1(t)P1(t)x(t), we transform (2.10), (2.11) to the following system equivalent to

the DAE (2.1):

[P1(t)x(t)]
′ =

[
P ′
1(t)−G−1(t)Q1(t)[A

′(t) +B(t)]
]
P1(t)x(t)+

+G−1(t)Q1(t)f(t, P1(t)x(t) + P2(t)x(t)), (2.12)

G−1(t)Q2(t)[f(t, P1(t)x(t) + P2(t)x(t)) −A′(t)P1(t)x(t)] − P2(t)x(t) = 0. (2.13)

Taking into account the notation xpi
(t) = Pi(t)x(t) from (2.9), the system (2.12),

(2.13) can be rewritten in the form

x′
p1
(t) =

[
P ′
1(t)−G−1(t)Q1(t)[A

′(t) +B(t)]
]
xp1

(t)+

+G−1(t)Q1(t)f(t, xp1
(t) + xp2

(t)), (2.14)

G−1(t)Q2(t)[f(t, xp1
(t) + xp2

(t)) −A′(t)xp1
(t)]− xp2

(t) = 0. (2.15)

Similarly, the DAE (2.2) is reduced to the equivalent system

A(t)P1(t)x
′(t) +B(t)P1(t)x(t) = Q1(t)f(t, x(t)), (2.16)

B(t)P2(t)x(t) = Q2(t)f(t, x(t)), (2.17)

and then is reduced to the equivalent system

[P1(t)x(t)]
′ = G−1(t)[−B(t)P1(t)x(t) +Q1(t)f(t, x(t))] + P ′

1(t)x(t),

G−1(t)Q2(t)f(t, x(t)) − P2(t)x(t) = 0,

which can be rewritten in the form

x′
p1
(t) = G−1(t)[−B(t)xp1

(t) +Q1(t)f(t, xp1
(t) + xp2

(t))]+

+ P ′
1(t)(xp1

(t) + xp2
(t)), (2.18)

G−1(t)Q2(t)f(t, xp1
(t) + xp2

(t))− xp2
(t) = 0. (2.19)

Remark 2.1. Introduce the manifolds

Lt+={(t, x)∈ [t+,∞)×R
n | Q2(t)[A

′(t)P1(t)x+B(t)P2(t)x − f(t, x)]=0}, (2.20)

L̂t+={(t, x) ∈ [t+,∞)× R
n | Q2(t)[B(t)P2(t)x− f(t, x)]=0}. (2.21)

The consistency condition (t0, x0) ∈ Lt+ ((t0, x0) ∈ L̂t+) for the initial values t0,
x0 is one of the necessary conditions for the existence of a solution of the initial
value problem (2.1), (2.3) (the initial value problem (2.2), (2.3)). The initial point
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(t0, x0) (the initial values t0, x0) satisfying this condition is called a consistent
initial point (consistent initial values).

Generally, in the formulas (2.20), (2.21) the number t+ is a parameter. In
particular, in what follows we will use the notation LT for a manifold having the
form Lt+ , where t+ = T .

It is clear that the graphs of the solutions x(t) of the DAEs (2.1) and (2.2) (i.e.,
the sets of points (t, x(t)), where t from the domain of definition of the solution

x(t)) must lie in the manifolds Lt+ and L̂t+ , respectively.
Remark 2.1 is obvious, given the equivalence of the DAE (2.1) and DAE (2.2)

to the systems (2.10), (2.11) and (2.16), (2.17) , respectively.

Consider the differential inequalities

v′ ≤ χ(t, v), v′ ≥ χ(t, v), (2.22)

where χ ∈ C([t+,∞) × (0,∞),R) (in what follows, we are only interested in
positive scalar functions v ∈ C1([t+,∞), (0,∞)) satisfying one of the inequalities).
Assume that χ(t, v) = k(t)U(v), where U ∈ C((0,∞),R) is a positive function,
k ∈ C([t+,∞),R), then the inequalities (2.22) take the form

v′ ≤ k(t)U(v), (2.23)

v′ ≥ k(t)U(v), (2.24)

and the following cases are possible [14, p. 109]: if
∞∫
c

dv

U(v)
= ∞ (c > 0 is some

constant), then the inequality (2.23) has no positive solutions v(t) with finite es-
cape time (i.e., v(t) exists on some finite interval and is unbounded [14, p. 107]);

if
∞∫
c

dv

U(v)
= ∞ and

∞∫
t0

k(t)dt < ∞ (t0 ≥ t+ is some number), then the inequal-

ity (2.23) has no unbounded positive solutions for t ≥ t+; if
∞∫
c

dv

U(v)
< ∞ and

∞∫
t0

k(t)dt = ∞, then the inequality (2.24) has no positive solutions defined in the

future (i.e., defined for all t ≥ t+ [14, p. 107]).

Definition 2.2. Consider an operator functionH : J → L(X), whereX is a finite-
dimensional linear space or Hilbert space and J ⊆ R is an interval. The following
definitions are introduced by analogy with that of [18, p. 50–51], [18, p. 209].
We call an operator H(t) ∈ L(X) (t ∈ J), self-adjoint for every t ∈ J , simply
self-adjoint. The self-adjoint operator H(t) ∈ L(X) (t ∈ J) is called positive if
(H(t)x, x) > 0 for all t ∈ J , x 6= 0. The self-adjoint operator H(t) is called
positive definite or uniformly positive if there exists a constant H0 > 0 such that
(H(t)x, x) ≥ H0‖x‖

2 for all t, x. An operator function H : J → L(X) is called
self-adjoint if the operator H(t) is self-adjoint. The self-adjoint operator function
H : J → L(X) is called positive if the operator H(t) is positive, and positive
definite or uniformly positive if H(t) is positive definite.

If X is a finite-dimensional linear space and a self-adjoint operator H ∈ L(X)
is time-invariant and positive ((Hx, x) > 0 for all x 6= 0), then it is also positive
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definite. Clearly, (Hx, x) ≥ H0‖x‖
2, where H0 = inf

‖x‖=1
(Hx, x) > 0 [18]. For a

time-varying operator H(t), H0 = inf
‖x‖=1, t∈[t+,∞)

(H(t)x, x) can be taken.

3. Lagrange stability and global solvability of the DAEs

The definitions of solutions defined in the future and with finite escape time,
and the Lagrange stability of an equation are given for an explicit ODE in [14].
Similar definitions for DAEs are given below [11].

A solution x(t) of the initial value problem (2.1), (2.3) is called global or defined
in the future if it exists on [t0,∞).

A solution x(t) of (2.1), (2.3) is called Lagrange stable if it is global and bounded,
i.e., sup

t∈[t0,∞)

‖x(t)‖ < ∞.

A solution x(t) of the initial value problem (2.1), (2.3) has a finite escape time
if it exists on some finite interval [t0, T ) and is unbounded, i.e., there exists T > t0
(T < ∞) such that lim

t→T−0
‖x(t)‖ = ∞.

A solution x(t) of (2.1), (2.3) is called Lagrange unstable if it has a finite escape
time. If the solution is Lagrange unstable, then it is also said to be blow-up in
finite time.

The equation (2.1) is Lagrange stable for the initial point (t0, x0) if for this
initial point the solution of the initial value problem (2.1), (2.3) is Lagrange stable.
The equation (2.1) is called Lagrange stable if every solution of the initial value
problem (2.1), (2.3) is Lagrange stable (i.e., the equation is Lagrange stable for
every consistent initial point).

The equation (2.1) is Lagrange unstable for the initial point (t0, x0) if for this
initial point the solution of the initial value problem (2.1), (2.3) is Lagrange unsta-
ble. The equation (2.1) is called Lagrange unstable if every solution of the initial
value problem (2.1), (2.3) is Lagrange unstable.

Similar definitions hold for the initial value problem (2.2), (2.3).

3.1. Existence and uniqueness of global solutions.

Theorem 3.1 (Global solvability of the DAE (2.1)).

Let f ∈C([t+,∞)×R
n,Rn),

∂f

∂x
∈C([t+,∞)×R

n, L(Rn)), A, B∈C1([t+,∞),

L(Rn)), the pencil λA(t)+B(t) satisfy (2.4), where C2 ∈ C1([t+,∞), (0,∞)), and
the following conditions be satisfied:

1) for each t ∈ [t+,∞) and each xp1
(t) ∈ X1(t) there exists a unique

xp2
(t)∈X2(t) such that

(t, xp1
(t) + xp2

(t)) ∈ Lt+ ; (3.1)

2) for any fixed t∗ ∈ [t+,∞), x∗
p1
(t∗) ∈ X1(t∗), x∗

p2
(t∗) ∈ X2(t∗) such that

(t∗, x
∗
p1
(t∗) + x∗

p2
(t∗)) ∈ Lt+ the operator Φt∗,x∗

p1
(t∗),x∗

p2
(t∗) defined by

Φt∗,x∗
p1

(t∗),x∗
p2

(t∗) =

=

[
∂

∂x

[
Q2(t∗)f(t∗, x

∗
p1
(t∗) + x∗

p2
(t∗))

]
−B(t∗)

]
P2(t∗) : X2(t∗) → Y2(t∗) (3.2)
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is invertible;
3) there exist a number R > 0, a positive definite function V ∈C1([t+,∞) ×

U c
R(0),R), where U c

R(0) = {z ∈ R
n | ‖z‖ ≥ R}, and a function χ ∈

C([t+,∞)× (0,∞),R) such that:
3.1) V (t, z) → ∞ uniformly in t on every finite time interval [a, b) ⊂

[t+,∞) as ‖z‖ → ∞,
3.2) for all t ∈ [t+,∞), xp1

(t) ∈ X1(t), xp2
(t) ∈ X2(t) such that

(t, xp1
(t) + xp2

(t)) ∈ Lt+, ‖xp1
(t)‖ ≥ R the following inequality

holds:

V ′
(2.14)(t, xp1

(t)) ≤ χ
(
t, V (t, xp1

(t))
)
, (3.3)

where

V ′
(2.14)(t, xp1

(t)) =
∂V

∂t
(t, xp1

(t))+

(
∂V

∂z
(t, xp1

(t)),
[
P ′
1(t)−G−1(t)Q1(t)[A

′(t)+

+ B(t)]
]
xp1

(t) +G−1(t)Q1(t)f(t, xp1
(t) + xp2

(t))

)
(3.4)

is the derivative of V along the trajectories of the equation (2.14)
(where xp1

(t) = z(t)),
3.3) the differential inequality

v′ ≤ χ(t, v), t ≥ t+, (3.5)

has no positive solutions v(t) with finite escape time.

Then for each initial point (t0, x0) ∈ Lt+ there exists a unique global solution of
the initial value problem (2.1), (2.3).

Proof. As shown above, the DAE (2.1) is equivalent to the system (2.12), (2.13)
or (2.14), (2.15). Consider the mappings Π, F ∈ C([t+,∞)×R

n×R
n,Rn) defined

as

Π(t, z, u) =
[
P ′
1(t)−G−1(t)Q1(t)[A

′(t) +B(t)]
]
P1(t)z+

+G−1(t)Q1(t)f(t, P1(t)z + P2(t)u), (3.6)

F (t, z, u) = G−1(t)Q2(t)
[
f(t, P1(t)z + P2(t)u)−A′(t)z

]
− u. (3.7)

They have continuous partial derivatives with respect to z, u on [t+,∞)×R
n×R

n.
Write the partial derivatives of F (t, z, u) with respect to z, u:

∂

∂z
F (t, z, u) = G−1(t)

[
∂

∂x

[
Q2(t)f(t, P1(t)z+P2(t)u)

]
−Q2(t)A

′(t)

]
P1(t), (3.8)

∂

∂u
F (t, z, u) = G−1(t)

∂

∂x

[
Q2(t)f(t, P1(t)z + P2(t)u)

]
P2(t)− IRn =

= G−1(t)Φt,P1(t)z,P2(t)uP2(t)− P1(t), (3.9)
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where Φt,P1(t)z,P2(t)u is the operator (3.2), and denote Φ̃t,z,u = Φt,P1(t)z,P2(t)u.
Consider the system

z′(t) = Π(t, z(t), u(t)), (3.10)

F (t, z(t), u(t)) = 0. (3.11)

Lemma 3.2. If a function x(t) is a solution of the DAE (2.1) on [t0, t1)
and satisfies the initial condition (2.3), then the functions z(t) = P1(t)x(t),
u(t)=P2(t)x(t) are a solution of the system (3.10), (3.11) on [t0, t1) and satisfy
the initial conditions z(t0) = P1(t0)x0, u(t0) = P2(t0)x0, and z ∈C1([t0, t1),R

n),
u∈C([t0, t1),R

n).
Conversely, if functions z ∈ C1([t0, t1),R

n), u ∈ C([t0, t1),R
n) are a so-

lution of the system (3.10), (3.11) on [t0, t1) and satisfy the initial conditions
z(t0) = P1(t0)x0, u(t0) = P2(t0)x0, then P1(t)z(t) = z(t), P2(t)u(t) = u(t) and
the function x(t) = z(t)+u(t) is a solution of the DAE (2.1) on [t0, t1) and satisfies
(2.3).

Proof. Let x(t) be a solution of the DAE (2.1) on [t0, t1) and satisfy (2.3). No-
tice that (t0, x0) ∈ Lt+ since (2.1) is equivalent to the system (2.10), (2.11) and
x(t0) = x0 satisfies (2.11) at t = t0 (see Remark 2.1). Since (2.1) is equivalent to
(2.12), (2.13), then z(t) = P1(t)x(t), u(t) = P2(t)x(t) are a solution of the sys-
tem (2.12), (2.13) on [t0, t1) and consequently are a solution of the system (3.10),
(3.11). It is clear that z(t0) = P1(t0)x0 and u(t0) = P2(t0)x0. The smoothness of
z(t), u(t) follows from the smoothness of x(t) and the projectors Pi(t).

Now let z ∈ C1([t0, t1),R
n), u ∈ C([t0, t1),R

n) be a solution of the system
(3.10), (3.11) on [t0, t1) and z(t0) = P1(t0)x0, u(t0) = P2(t0)x0. Obviously,
(t0, x0) ∈ Lt+ . Multiplying (3.11) by P1(t) and P2(t), we get that P1(t)u(t) ≡ 0
and P2(t)u(t) ≡ u(t). Multiplying (3.10) by P2(t), we get that z(t) satisfies
the equation P2(t)z

′(t) = P2(t)P
′
1(t)P1(t)z(t). Since P2(t)z

′(t) = [P2(t)z(t)]
′ −

P ′
2(t)z(t), P2(t)P

′
1(t) = −P ′

2(t)P1(t) and z(t0) ∈ X1(t0), then P2(t)z(t) satisfies the
equation [P2(t)z(t)]

′ = P ′
2(t)[P2(t)z(t)] and the initial condition P2(t0)z(t0) = 0.

Consequently, P2(t)z(t) ≡ 0 and therefore P1(t)z(t) ≡ z(t). Thus, the function
x(t) = z(t) + u(t) is such that P1(t)x(t) = z(t) and P2(t)x(t) = u(t). Therefore,
the function x(t) = z(t) + u(t) is a solution of the system (2.12), (2.13) on [t0, t1)
and x(t0) = x0. Hence, it is a solution of (2.1) on [t0, t1) and satisfies (2.3). �

As shown in the proof of Lemma 3.2, if u(t) ∈ R
n satisfies (3.11), i.e.,

F (t, z(t), u(t)) = 0, then u(t) = P2(t)u(t), i.e., u(t) ∈ X2(t).

Lemma 3.3. For each t ∈ [t+,∞) and each z ∈ R
n there exists a unique u ∈ X2(t)

such that

F (t, z, u) = 0. (3.12)

Proof. Notice that F (t, z, u) = F (t, P1(t)z, u) for any z ∈ R
n, since Q2(t)A

′(t) =
Q2(t)A

′(t)P1(t), and that (t, xp1
(t)+xp2

(t)) belongs to Lt+ if and only if t, xp1
(t),

xp2
(t) satisfy (2.15) or the equivalent condition F (t, xp1

(t), xp2
(t)) = 0. Therefore,

by virtue of the condition 1), for each t ∈ [t+,∞) and each z ∈ R
n there exists a

unique u = xp2
(t) ∈ X2(t) such that (t, P1(t)z+ u) ∈ Lt+ (i.e., F (t, z, u) = 0). �
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Take any initial point (t0, x0) ∈ Lt+ and any fixed t∗ ∈ [t0,∞), z∗ ∈ R
n, where

z∗ = P1(t∗)x0 for t∗ = t0. By Lemma 3.3, there exists a unique u∗ ∈ X2(t∗)
(u∗ = P2(t∗)x0 for t∗ = t0) such that F (t∗, z∗, u∗) = 0. Since the operator

Φ̃t,z,u is invertible for each point (t, z, u) = (t∗, z∗, u∗) such that u∗ ∈ X2(t∗) and
F (t∗, z∗, u∗) = 0 (i.e., (t∗, P1(t∗)z∗ + u∗) ∈ Lt0), then for such points (t, z, u) =
(t∗, z∗, u∗) the operator

Ψt,z,u =
∂

∂u
F (t, z, u) = G−1(t)Φ̃t,z,uP2(t)− P1(t) ∈ L(Rn) (3.13)

has the inverse

[Ψt,z,u]
−1

=
[
Φ̃t,z,u

]−1

G(t)P2(t)− P1(t) ∈ L(Rn).

Using the implicit function theorems, we obtain the following statement:
There exist an interval Uδ1(t∗) = {t ∈ (t0,∞) | |t − t∗| < δ1} (Uδ1(t0) =
[t0, t0 + δ1) for t∗ = t0), neighborhoods Uδ2(z∗), Uδ3(u∗) ⊂ R

n and a unique
function ν(t, z) ∈ C(Uδ1(t∗) × Uδ2(z∗), Uδ3(u∗)) which is continuously differen-
tiable in z and such that F (t, z, ν(t, z)) = 0 for (t, z) ∈ Uδ1(t∗) × Uδ2(z∗), and
ν(t∗, z∗) = u∗. Since F (t, z, ν(t, z)) = 0, i.e., u = ν(t, z) is a solution of (3.12),
then ν(t, z) = P2(t)ν(t, z) ∈ X2(t) for each (t, z) ∈ Uδ1(t∗) × Uδ2(z∗). Thus,
it is proved that in some neighborhood U(t∗, z∗) of each (t∗, z∗) ∈ [t0,∞) × R

n

(where z∗ = P1(t∗)x0 for t∗ = t0) there exists a unique solution u = νt∗,z∗(t, z)
of the equation (3.12), continuous in (t, z), continuously differentiable in z and
such that νt∗,z∗(t, z) ∈ X2(t) for each (t, z) ∈ U(t∗, z∗). Introduce the function
η : [t0,∞) × R

n → R
n defined by η(t, z) = νt∗,z∗(t, z) at the point (t, z) = (t∗, z∗)

for each (t∗, z∗) ∈ [t0,∞) × R
n. Then the function u = η(t, z) is continuous in

(t, z), continuously differentiable in z, a solution of (3.12) and η(t, z) ∈ X2(t) for
(t, z) ∈ [t0,∞) × R

n. Prove the uniqueness of u = η(t, z). Suppose there exists
a function u = µ(t, z) having the same properties as u = η(t, z) at some point
(t̃, z̃) ∈ [t0,∞) × R

n. By Lemma 3.3, there exists a unique ũ ∈ X2(t̃) such that
(t, z, u) = (t̃, z̃, ũ) satisfies (3.12). Consequently, η(t̃, z̃) = µ(t̃, z̃) = ũ. It is sim-
ilarly proved that if the point (t̃, z̃) belongs to the intersection of neighborhoods
U1(t1, z1), U2(t2, z2) of some points (t1, z1), (t2, z2) ∈ [t0,∞) × R

n in which the
solutions u = νt1,z1(t, z) and u = νt2,z2(t, z) of (3.12) are defined respectively, then

νt1,z1(t̃, z̃) = νt2,z2(t̃, z̃) = η(t̃, z̃) = ũ. Since this holds for any (t̃, z̃) ∈ [t0,∞)×R
n,

there exists the unique function u = η(t, z) with the above properties.

Substitute the function u = η(t, z) in (3.6) and denote Π̃(t, z) = Π(t, z, η(t, z)).
Then (3.10) takes the form

z′(t) = Π̃(t, z(t)). (3.14)

By the properties of η and Π, the function Π̃ is continuous in (t, z) and continuously
differentiable in z on [t0,∞)× R

n. Hence, there exists a unique solution z = ζ(t)
of (3.14) satisfying the initial condition ζ(t0) = z0, where z0 = P1(t0)x0, on some
interval [t0, α). By the extension theorems (continuation theorems), there exists
the maximal interval of existence [t0, ω) (ω ≤ ∞) for the solution z = ζ(t) of the
initial value problem (3.14), ζ(t0) = z0, and the solution ζ(t) is unique on this
interval. Since the functions z = ζ(t), u = η(t, ζ(t)) are the solution of the system
(3.10), (3.11) on [t0, ω) and satisfy the initial conditions ζ(t0) = z0 = P1(t0)x0,
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η(t0, z0) = P2(t0)x0, then, by Lemma 3.2, ζ(t) = P1(t)ζ(t) ∈ X1(t), η(t, ζ(t)) =
P2(t)η(t, ζ(t)) ∈ X2(t) for all t ∈ [t0, ω), and the function x(t) = ζ(t) + η(t, ζ(t))
is a solution of (2.1) on [t0, ω) and satisfies (2.3). The uniqueness of the solution
z = ζ(t), u = γ(t) of the system (3.10), (3.11) and, accordingly, the solution x(t) of
the equation (2.1) on [t0, ω) follows from the uniqueness of the solution u = η(t, z)
of (3.12) and the solution z = ζ(t) of (3.14).

By virtue of the extension theorems, either ω = ∞, i.e., the maximal interval of
existence for the solution z = ζ(t) of (3.14) coincides with [t0,∞), or ω < ∞ and
lim

t→ω−0
‖ζ(t)‖ = ∞, i.e., the solution has the finite escape time [t0, ω). We prove

that ω = ∞. Recall that ζ(t) = P1(t)x(t) = xp1
(t), η(t, ζ(t)) = P2(t)x(t) = xp2

(t),
where x(t) = ζ(t) + η(t, ζ(t)) is a solution of the DAE (2.1), the DAE (2.1) is
equivalent to the system (2.14), (2.15), and, accordingly, xp1

(t) = ζ(t), xp2
(t) =

η(t, ζ(t)) is a solution of (2.14), (2.15) (z = ζ(t) is a solution of the equation
(3.14) which coincides with (2.14) for xp1

(t) = P1(t)z(t), xp2
(t) = η(t, z(t))).

Assume that ω < ∞ (then lim
t→ω−0

‖ζ(t)‖ = ∞). Then there exists t1 ∈ (t0, ω) such

that for each t ∈ [t1, ω) the solution ζ(t) belongs to U c
1R0

= {x ∈ R
n | (t, x) ∈

Lt0 , ‖P1(t)x‖ ≥ R0 > R} ⊂ U c
R(0). By virtue of the condition 3), for all t ≥ t1

the derivative of V along the trajectories of the equation (3.14) satisfy

V ′
(3.14)(t, ζ(t)) =

∂V

∂t
(t, ζ(t)) +

(
∂V

∂z
(t, ζ(t)), Π̃(t, ζ(t))

)
≤ χ

(
t, V (t, ζ(t))

)
. (3.15)

Therefore, for t ≥ t1 the function v(t) = V (t, ζ(t)) is a positive solution of the
differential inequality (3.5), which has the finite escape time (since ζ(t) has the
finite escape time). This contradicts the condition 3). Consequently, ω = ∞ and
the solution ζ(t) is global.

Thus, it is proved that the function x(t) = ζ(t) + η(t, ζ(t)) is a unique solution
of the initial value problem (2.1), (2.3) on [t0,∞). Since (t0, x0) is an arbitrary
point from Lt+ , the existence of a unique global solution is proved for each initial
point (t0, x0) ∈ Lt+ . �

Denote the right-hand side of the equation (2.14) by

Π̂(t, xp1
(t) + xp2

(t)) =
[
P ′
1(t)−G−1(t)Q1(t)[A

′(t) +B(t)]
]
xp1

(t)+

+G−1(t)Q1(t)f(t, xp1
(t) + xp2

(t))

(recall that any element x ∈ R
n can be uniquely represented in the form

x = xp1
(t) + xp2

(t) (2.9), where xpi
(t) = Pi(t)x). Then the equation (2.14)

or (2.12) is written as x′
p1
(t) = Π̂(t, xp1

(t) + xp2
(t)) or [P1(t)x(t)]

′ = Π̂(t, x(t)).
Consider the equation

x′
p1
(t) =Π̂T (t, xp1

(t) + xp2
(t)),

Π̂T (t, xp1
(t) + xp2

(t)) =

{
Π̂(t, xp1

(t) + xp2
(t)), t ∈ [t+, T ],

Π̂(T, xp1
(T ) + xp2

(T )), t > T,

(3.16)

where T > t+ is a parameter. The function Π̂T (t, x) is called the truncation of

Π̂(t, x) over t.
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Remark 3.4. Theorem 3.1 remains valid if the condition 3) is replaced by the
following:

3) there exists a positive definite function V ∈ C1([t+,∞)×U c
R(0),R) (where

U c
R(0) = {z ∈ R

n | ‖z‖ ≥ R}, R > 0 is some number) and for each T > 0
there exist a number RT ≥ R and a function χT ∈ C([t+,∞)× (0,∞),R)
such that:
3.1) V (t, z) → ∞ uniformly in t on every finite time interval [a, b) ⊂

[t+,∞) as ‖z‖ → ∞,
3.2) for all t ∈ [t+,∞), xp1

(t) ∈ X1(t), xp2
(t) ∈ X2(t) such that

(t, xp1
(t) + xp2

(t)) ∈ Lt+ , ‖xp1
(t)‖ ≥ RT , the following inequality

holds:

V ′
(3.16)(t, xp1

(t)) ≤ χT

(
t, V (t, xp1

(t))
)
, (3.17)

where V ′
(3.16)(t, xp1

(t)) =
∂V

∂t
(t, xp1

(t)) +
(
∂V

∂z
(t, xp1

(t)), Π̂T (t, xp1
(t) + xp2

(t))

)
is the derivative of V

along the trajectories of the equation (3.16),
3.3) the differential inequality v′ ≤ χT (t, v), t ≥ t+, has no positive

solutions v(t) with finite escape time.

Since the solution of the equation with the truncation coincides with the solution
of the original equation with the same initial values on the interval [t+, T ], where
the right-hand sides of the equations coincide, then the proof of the remark is
easily derived from the proof of the theorem if we consider T = ω in it.

A system of s pairwise disjoint projectors {Θk}
s
k=1 (the projectors are one-

dimensional), Θk ∈ L(Z), the sum of which is the identity operator IZ in an

s-dimensional linear space Z, i.e., ΘiΘj = δij Θi and IZ =
s∑

k=1

Θk, is called an

additive resolution of the identity in Z [10]. The additive resolution of the identity
generates the decomposition Z = Z1+̇ · · · +̇Zs into the direct sum of the one-
dimensional subspaces Zk = Θk Z, and the system {zk∈Z}sk=1 of the vectors such
that zk 6= 0 and zk = Θk zk forms a basis of Z. Note that the property of basis
invertibility does not depend on the choice of an additive resolution of the identity
or a basis of Z.

The following definition agrees with the one introduced in [10].

Definition 3.5. An operator function Φ: D → L(W,Z), where W , Z are s-
dimensional linear spaces and D ⊂ W , is called basis invertible on an interval
J ⊂ D, if for some additive resolution of the identity {Θk}

s
k=1 in the space Z and

for any set {wk}sk=1 of elements wk ∈ J the operator Λ =
s∑

k=1

ΘkΦ(w
k) ∈ L(W,Z)

has the inverse Λ−1 ∈ L(Z,W ).

It follows from the basis invertibility of the mapping Φ on the interval J that Φ
is invertible on this interval, but the converse is not true (see [11, Example 2.1])
unless the spaces W , Z are one-dimensional.
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The global solvability theorem is given below, taking into account the following
remark. If in Theorem 3.1 we replace the requirement of invertibility by the
requirement of basis invertibility in the condition 2), then the uniqueness of xp2

(t)
in the condition 1) is not required.

Remark 3.6. Notice that rankPj(t) = rankQj(t) = dimXj(t) = dim Yj(t),
j = 1, 2, and dimY1(t) = rankA(t), and that, by virtue of the smoothness of Pj(t)
and Qj(t), the dimensions of the subspaces Xj(t) = Pj(t)R

n and Yj(t) = Qj(t)R
n

are constant (see [20, p. 34, Lemma 4.10]): dimX1(t) = dimY1(t) = const and
dimX2(t) = dimY2(t) = const for all t ∈ [t+,∞). Denote dimX2(t) = dimY2(t) =
d, then dimX1(t) = dimY1(t) = n− d, t ∈ [t+,∞).

Theorem 3.7 (Global solvability of the DAE (2.1)).

Let f ∈ C([t+,∞)× R
n,Rn),

∂f

∂x
∈ C([t+,∞)×R

n, L(Rn)), A,B ∈ C1([t+,∞),

L(Rn)), the pencil λA(t)+B(t) satisfy (2.4), where C2 ∈ C1([t+,∞), (0,∞)), and
the following conditions be satisfied:

1) for each t ∈ [t+,∞), xp1
(t) ∈ X1(t) there exists xp2

(t) ∈ X2(t) such that
(3.1);

2) for any fixed t∗ ∈ [t+,∞), x∗
p1
(t∗) ∈ X1(t∗), xi

p2
(t∗) ∈ X2(t∗) such

that (t∗, x
∗
p1
(t∗) + xi

p2
(t∗)) ∈ Lt+, i = 1, 2, the operator function

Φt∗,x∗
p1

(t∗)(xp2
(t∗)) defined by

Φt∗,x∗
p1

(t∗) : X2(t∗) → L(X2(t∗), Y2(t∗)),

Φt∗,x∗
p1

(t∗)(xp2
(t∗))=

[
∂

∂x

[
Q2(t∗)f(t∗, x

∗
p1
(t∗) + xp2

(t∗))
]
−B(t∗)

]
P2(t∗),

(3.18)

is basis invertible on [x1
p2
(t∗), x

2
p2
(t∗)];

3) it coincides with the condition 3) of Theorem 3.1.

Then for each initial point (t0, x0) ∈ Lt+ there exists a unique global solution of
the initial value problem (2.1), (2.3).

Proof. As in the proof of Theorem 3.1, consider the mappings (3.6), (3.7) and the
system (3.10), (3.11). The partial derivative of the mapping F (t, z, u) (3.7) with
respect to z, u have the form (3.8), (3.9), where in (3.9) the operator Φt,P1(t)z,P2(t)u

is replaced by the operator function Φt,P1(t)z(P2(t)u) (3.18), i.e.,

∂

∂u
F (t, z, u) = G−1(t)

∂

∂x

[
Q2(t)f(t, P1(t)z + P2(t)u)

]
P2(t)− IRn =

= G−1(t)Φt,P1(t)z(P2(t)u)P2(t)− P1(t),

Denote Φ̃t,z(u) = Φt,P1(t)z(P2(t)u) and introduce the operator function

Ψt,z : R
n → L(Rn), Ψt,z(u) =

∂

∂u
F (t, z, u) = G−1(t)Φ̃t,z(u)P2(t)− P1(t). (3.19)

By virtue of the basis invertibility of (3.18) for any fixed t∗ ∈ [t+,∞), z∗ ∈ R
n,

ui
∗ ∈ X2(t∗) (i = 1, 2) such that F (t∗, z∗, u

i
∗) = 0 (i.e., (t∗, P1(t∗)z∗ + ui

∗) ∈ Lt+),

the operator function Φ̃t∗,z∗ is basis invertible on [u1
∗, u

2
∗]. This property is needed

to prove Lemma 3.3 (see below). It also follows from the basis invertibility of
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Φ̃t∗,z∗(u) that there exists the inverse operator
[
Φ̃t∗,z∗(u∗)

]−1

for any fixed t∗ ∈

[t+,∞), z∗ ∈ R
n, u∗ ∈ X2(t∗) such that F (t∗, z∗, u∗) = 0 and, consequently, for

such points (t∗, z∗, u∗) the operator Ψt∗,z∗(u∗) has the inverse [Ψt∗,z∗(u∗)]
−1 =[

Φ̃t∗,z∗(u∗)
]−1

G(t∗)P2(t∗)− P1(t∗) ∈ L(Rn).

Lemmas 3.2 and 3.3 remain valid, but the proof of Lemma 3.3 changes.

Lemma (Lemma 3.3). For each t ∈ [t+,∞) and each z ∈ R
n there exists a unique

u ∈ X2(t) such that (3.12).

Proof. By virtue of the condition 1) (here the existence of a unique xp2
(t) is not

required, unlike the condition 1) of Theorem 3.1), for each t ∈ [t+,∞) and each
z ∈ R

n there exists u ∈ X2(t) such that (t, P1(t)z + u) ∈ Lt+ , i.e., F (t, z, u) = 0.
We prove the uniqueness of such u. Consider arbitrary fixed t∗ ∈ [t+,∞), z∗ ∈ R

n,
ui
∗ ∈ X2(t∗), i = 1, 2, such that F (t∗, z∗, u

i
∗) = 0. The basis invertibility of

Φ̃t∗,z∗(u) on [u1
∗, u

2
∗] means that for any set of points {uk}

d
k=1 ⊂ [u1

∗, u
2
∗], the

operator

Λ1 =
d∑

k=1

Θ̃k(t∗)Φ̃t∗,z∗(uk) ∈ L(X2(t∗), Y2(t∗)), (3.20)

where {Θ̃k(t∗)}
d
k=1 is some additive resolution of the identity in Y2(t∗) (d =

dimY2(t) = dimX2(t), t ∈ [t+,∞), see Remark 3.6), has the inverse Λ−1
1 ∈

L(Y2(t∗), X2(t∗)). Since Q2(t∗) (restricted to Y2(t∗)) is the identity in Y2(t∗)

(because Q2(t∗)y∗ = y∗ for any y∗ ∈ Y2(t∗)), we choose {Θ̃k(t∗)}
d
k=1 such

that
d∑

k=1

Θ̃k(t∗) = Q2(t∗)|Y2(t∗)
, i.e., {Θ̃k(t∗)}

d
k=1 is an additive resolution of

the identity Q2(t∗)|Y2(t∗)
in Y2(t∗). Then the system {Θk(t∗)}

d
k=1 of the projec-

tors Θk(t∗) = G−1(t∗)Θ̃k(t∗)G(t∗)
∣∣∣
X2(t∗)

is an additive resolution of the identity

P2(t∗)|X2(t∗)
in X2(t∗) (

d∑
k=1

Θk(t∗) = P2(t∗)|X2(t∗)
). Note that F (t∗, z∗, u∗) =

P2(t∗)F (t∗, z∗, u∗) for any t∗ ∈ [t+,∞), z∗ ∈ R
n, u∗ ∈ X2(t∗). The projec-

tions Fk(t∗, z∗, u∗) = Θk(t∗)F (t∗, z∗, u∗) = Θk(t∗)P2(t∗)F (t∗, z∗, u∗), where u∗ ∈
X2(t∗), are the functions with values in the one-dimensional spaces Θk(t∗)X2(t∗)
isomorphic to R. By the formula of finite increments [19], there exists a point
uk ∈ [u1

∗, u
2
∗] such that Fk(t∗, z∗, u

2
∗)−Fk(t∗, z∗, u

1
∗) =

∂
∂u

Fk(t∗, z∗, uk)(u
2
∗ − u1

∗) =

Θk(t∗)P2(t∗)
∂
∂u

F (t∗, z∗, uk)(u
2
∗ − u1

∗) = Θk(t∗)P2(t∗)Ψt∗,z∗(uk)(u
2
∗ − u1

∗), k = 1, d.
By summing the obtained expressions over k and taking into account that

F (t∗, z∗, u
i
∗) = 0 (i = 1, 2), we obtain that

d∑
k=1

Θk(t∗)P2(t∗)Ψt∗,z∗(uk)(u
2
∗ − u1

∗) =

G−1(t∗)
d∑

k=1

Θ̃k(t∗)Φ̃t∗,z∗(uk)(u
2
∗ − u1

∗) = G−1(t∗)Λ1(u
2
∗ − u1

∗) = 0. Since there

exists Λ−1
1 , then u2

∗ = u1
∗. �

The further proof of the theorem coincides with the proof of Theorem 3.1 located
below Lemma 3.3. �
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3.2. Lagrange stability.

Theorem 3.8 (Lagrange stability of the DAE (2.1)).

Let f ∈ C([t+,∞) × R
n,Rn),

∂f

∂x
∈ C([t+,∞) × R

n, L(Rn)), A,B ∈

C1([t+,∞), L(Rn)), the pencil λA(t) + B(t) satisfy (2.4), where C2 ∈
C1([t+,∞), (0,∞)), the requirements 1), 2) of Theorem 3.1 or 1), 2) of Theo-
rem 3.7 be fulfilled, and

3) there exists a number R > 0, a positive definite function
V ∈ C1([t+,∞)× U c

R(0),R), where U c
R(0) = {z ∈ R

n | ‖z‖ ≥ R}, and
a function χ ∈ C([t+,∞)× (0,∞),R) such that:
3.1) V (t, z) → ∞ uniformly in t on [t+,∞) as ‖z‖ → ∞;
3.2) for all t ∈ [t+,∞), xp1

(t) ∈ X1(t), xp2
(t) ∈ X2(t) such that

(t, xp1
(t) + xp2

(t)) ∈ Lt+, ‖xp1
(t)‖ ≥ R, the inequality (3.3) holds;

3.3) the differential inequality (3.5) has no unbounded positive solutions
v(t) for t ∈ [t+,∞).

Let one of the following conditions be also satisfied:

4.a) for all (t, xp1
(t) + xp2

(t)) ∈ Lt+ , ‖xp1
(t)‖ ≤ M < ∞, M = const > 0

(M is an arbitrary constant), there exists a constant
KM = K(M) > 0, independent of t, xp2

(t), such that
‖G−1(t)Q2(t)[f(t, xp1

(t) + xp2
(t))−A′(t)xp1

(t)]‖ ≤ KM < ∞;
4.b) for all (t, xp1

(t) + xp2
(t)) ∈ Lt+ , ‖xp1

(t)‖ ≤ M < ∞, M = const > 0,
there exists a constant KM = K(M) > 0, independent of t, xp2

(t),
such that ‖xp2

(t)‖ ≤ KM < ∞;
4.c) for each t∗ ∈ [t+,∞) there exists x̃p2

(t∗) ∈ X2(t∗) such that
for any fixed x∗

pi
(t∗) ∈ Xi(t∗) satisfying (t∗, x

∗
p1
(t∗) + x∗

p2
(t∗))∈Lt+

the operator function Φt∗,x∗
p1

(t∗)(xp2
(t∗)) (3.18) is basis invert-

ible on (x̃p2
(t∗), x

∗
p2
(t∗)] and the corresponding inverse opera-

tor is bounded uniformly in t∗, xp2
(t∗) (i.e., the operator

Λ−1
1 =

[
d∑

k=1

Θ̃k(t∗)Φt∗,x∗
p1

(t∗)(xp2,k(t∗))

]−1

inverse to (3.20), where

z∗ = x∗
p1
(t∗) and {uk = xp2,k(t∗)}

d
k=1 is an arbitrary set of the ele-

ments from (x̃p2
(t∗), x

∗
p2
(t∗)], is bounded uniformly in t∗, xp2,k(t∗) on

[t+,∞), (x̃p2
(t∗), x

∗
p2
(t∗)] ), and, in addition, sup

t∗∈[t+,∞)

‖x̃p2
(t∗)‖<∞,

sup
t≥t+, ‖xp1

(t)‖≤M<∞,M= const

‖G−1(t)Q2(t)[f(t, xp1
(t)+ x̃p2

(t∗))−A′(t)xp1
(t)]‖<∞.

(3.21)

Then the DAE (2.1) is Lagrange stable.

Proof. As in the proof of Theorem 3.1, we prove that z = ζ(t) and u = η(t, ζ(t))
(ζ(t) ∈ X1(t), η(t, ζ(t)) ∈ X2(t), (t, ζ(t) + η(t, ζ(t))) ∈ Lt0 for all t ∈ [t0,∞)) are
the unique solution of the system (3.10), (3.11) on [t0,∞) satisfying the initial
conditions ζ(t0) = P1(t0)x0, η(t0, ζ(t0)) = P2(t0)x0 (where (t0, x0) ∈ Lt+), and
x(t) = ζ(t) + η(t, ζ(t)) is the unique solution of the initial value problem (2.1),
(2.3).

182



EXISTENCE, BOUNDEDNESS AND STABILITY OF SOLUTIONS OF A DAE 15

By virtue of 3) the solution z = ζ(t) of (3.14) is bounded on [t0,∞). Indeed, if
ζ(t) is unbounded on [t0,∞), then there exists a sequence {tk}

∞
k=1 ⊂ [t0,∞) such

that tk → ∞ as k → ∞ and ‖ζ(tk)‖ → ∞ as k → ∞. Then v(t) = V (t, ζ(t)) is the
unbounded positive solution of the inequality (3.5) for t ≥ t1, which contradicts
the condition 3). Thus, there exists a constant M > 0 such that

‖ζ(t)‖ ≤ M, t ∈ [t0,∞). (3.22)

Since the equation (3.11) can be rewritten as u(t) =
G−1(t)Q2(t)

[
f(t, P1(t)z(t) + P2(t)u(t)) −A′(t)z(t)

]
, then

η(t, ζ(t)) = G−1(t)Q2(t)
[
f(t, ζ(t) + η(t, ζ(t))) −A′(t)ζ(t)

]
. (3.23)

Hence, by (3.22) and the condition 4.a) there exists a constant KM > 0 such that
for all t ∈ [t0,∞) the following estimate holds:

‖η(t, ζ(t))‖ ≤ KM < ∞. (3.24)

By (3.22) and 4.b) we also obtain that there exists a constant KM > 0 such
that (3.24) for any t ∈ [t0,∞).

Now we prove the boundedness of ‖η(t, ζ(t))‖ using the condition 4.c). Take
arbitrary fixed t∗ ∈ [t+,∞), z∗ ∈ R

n, u∗ ∈ X2(t∗) satisfying the condition
F (t∗, z∗, u∗) = 0 (i.e., (t∗, P1(t∗)z∗ + u∗) ∈ Lt+). By virtue of the condition 4.c),
there exists an element ũ∗ = ũ(t∗) ∈ X2(t∗) such that the operator function

Φ̃t∗,z∗(u) = Φt∗,P1(t∗)z∗(P2(t∗)u) (3.18) is basis invertible on (ũ∗, u∗] and the cor-

responding inverse operator, i.e., the operator Λ−1
1 =

[
d∑

k=1

Θ̃k(t∗)Φ̃t∗,z∗(uk)

]−1

=

Λ−1
1 (t∗, z∗, uk) ∈ L(Y2(t∗), X2(t∗)) inverse to the operator (3.20), where {uk}

d
k=1

is an arbitrary set of the elements uk ∈ (ũ∗, u∗] (d = dimX2(t∗)) and {Θ̃k(t∗)}
d
k=1

is an additive resolution of the identity in Y2(t∗), is bounded uniformly in t∗,
uk on [t+,∞), (ũ∗, u∗]. As in the proof of Lemma (see p. 13), we choose

{Θ̃k(t∗)}
d
k=1 such that

d∑
k=1

Θ̃k(t∗) = Q2(t∗)|Y2(t∗)
and take the additive res-

olution of the
{
Θk(t∗) = G−1(t∗)Θ̃k(t∗)G(t∗)

∣∣
X2(t∗)

}d

k=1
in X2(t∗). Also, con-

sider the projections Fk(t∗, z∗, u) = Θk(t∗)F (t∗, z∗, u) = Θk(t∗)P2(t∗)F (t∗, z∗, u),
where u ∈ X2(t∗). By the formula of finite increments, there exists a point
uk ∈ (ũ∗, u∗] such that Fk(t∗, z∗, u∗)−Fk(t∗, z∗, ũ∗) =

∂
∂u

Fk(t∗, z∗, uk)(u∗ − ũ∗) =
Θk(t∗)P2(t∗)Ψt∗,z∗(uk)(u∗ − ũ∗), where the operator function Ψt,z is defined in

(3.19), k = 1, d. Since Fk(t∗, z∗, u∗) = 0, then, by summing the obtained equal-
ities over k, we obtain that there exists a set {uk}

d
k=1 ⊂ (ũ∗, u∗] such that

−F (t∗, z∗, ũ∗) = G−1(t∗)Λ1(u∗ − ũ∗). Since there exists Λ−1
1 , then u∗ = ũ∗ −

Λ−1
1 G(t∗)F (t∗, z∗, ũ∗) = ũ∗ −Λ−1

1

(
Q2(t∗)

[
f(t∗, P1(t∗)z∗ +P2(t∗)ũ∗)−A′(t∗)z∗

]
−

G(t∗)ũ∗

)
. This holds for any fixed t∗ ∈ [t+,∞), z∗ ∈ R

n, u∗ ∈ X2(t∗) satisfying
F (t∗, z∗, u∗) = 0. Therefore, for each t∗ ∈ [t0,∞) the equality η(t∗, ζ(t∗)) = ũ∗ −
Λ−1
1 G(t∗)F (t∗, z∗, ũ∗) = ũ∗ − Λ−1

1 G(t∗)
(
G−1(t∗)Q2(t∗)

[
f(t∗, ζ(t∗) + P2(t∗)ũ∗) −

A′(t∗)ζ(t∗)
]
− ũ∗

)
is fulfilled. By virtue of the condition 4.c), the set of the el-

ements ũ∗ = ũ(t∗) is bounded, i.e., there exists a constant M̃ < ∞ such that
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‖ũ∗‖ = ‖ũ(t∗)‖ ≤ M̃ for each t∗ ∈ [t+,∞). From the continuity of the non-
linear mapping Λ−1

1 = Λ−1
1 (t∗, z∗, uk) in t∗, z∗ and the compactness of the ball

‖ζ(t∗)‖ ≤ M , t∗ ∈ [t0,∞), where z = ζ(t) ∈ C([t0,∞),Rn) (ζ(t) ∈ X1(t)),
it follows that Λ−1

1 is uniformly continuous in z∗ (in P1(t∗)z∗) and is bounded
on ‖z∗‖ = ‖ζ(t∗)‖ ≤ M . By the condition 4.c), Λ−1

1 = Λ−1
1 (t∗, z∗, uk) ∈

L(Y2(t∗), X2(t∗)) is bounded uniformly in t∗, uk on [t+,∞), (ũ∗, u∗]. There-
fore, there exists a constant N > 0, independent of t∗, z∗, uk, such that
‖Λ−1

1 ‖ ≤ N for each t∗ ∈ [t+,∞), each z∗ ∈ R
n and each u∗ ∈ X2(t∗) satis-

fying F (t∗, z∗, u∗) = 0 and for any set {uk}
d
k=1 ⊂ (ũ∗, u∗]. Thus, ‖η(t∗, ζ(t∗))‖ ≤

M̃(1+N‖G(t∗)‖)+‖G−1(t∗)Q2(t∗)
[
f(t∗, ζ(t∗)+P2(t∗)ũ∗)−A′(t∗)ζ(t∗)

]
‖ for each

t∗ ∈ [t+,∞). Then it follows from (3.22), (3.21) that there exists a constant
KM > 0 such that ‖η(t∗, ζ(t∗))‖ ≤ KM for all t∗ ∈ [t+,∞).

It follows from the above that ‖x(t)‖ = ‖ζ(t) + γ(t)‖ ≤ M + KM for all t ∈
[t0,∞), i.e., the solution x(t) is bounded on [t0,∞) and therefore Lagrange stable.
Since for every consistent initial point (t0, x0) (i.e., for (t0, x0) ∈ Lt+) there exists
a unique solution of the initial value problem (2.1), (2.3) which is Lagrange stable,
then every solution of (2.1), (2.3) is Lagrange stable (recall that the initial value
problem (2.1), (2.3) has a solution only for the initial points (t0, x0) ∈ Lt+). Thus,
the equation (2.1) is Lagrange stable. �

Remark 3.9. The condition 4.a) is a corollary of the condition 4.b), since the
equation Q2(t)[A

′(t)P1(t)x + B(t)P2(t)x − f(t, x)] = 0 determining Lt+ can be

rewritten as G−1(t)Q2(t)[f(t, xp1
(t) + xp2

(t)) − A′(t)xp1
(t)] = xp2

(t) (see (2.15)).
However, it can occur that xp2

(t) needs to be expressed from this equation in a
different way to get the estimate ‖xp2

(t)‖ ≤ KM .

3.3. Lagrange instability.

Theorem 3.10 (Lagrange instability of the DAE (2.1)).

Let f ∈ C([t+,∞) × R
n,Rn),

∂f

∂x
∈ C([t+,∞) × R

n, L(Rn)), A,B ∈

C1([t+,∞), L(Rn)) and the pencil λA(t) + B(t) satisfy (2.4), where C2 ∈
C1([t+,∞), (0,∞)). Let the requirements 1), 2) of Theorem 3.1 or 1), 2) of The-
orem 3.7 be fulfilled, and

3) there exists a region Ω ⊂ R
n such that 0 6∈ Ω and the component P1(t)x(t)

of each existing solution x(t) with the initial point (t0, x0) ∈ Lt+, where
P1(t0)x0 ∈ Ω, remains all the time in Ω;

4) there exist a positive definite function V ∈ C1([t+,∞)×Ω,R) and a function
χ ∈ C([t+,∞)× (0,∞),R) such that:
4.1) for all t ∈ [t+,∞), xp1

(t) ∈ X1(t), xp2
(t) ∈ X2(t) such that

(t, xp1
(t) + xp2

(t)) ∈ Lt+, xp1
(t) ∈ Ω, the inequality

V ′
(2.14)(t, xp1

(t)) ≥ χ
(
t, V (t, xp1

(t))
)

(3.25)

holds (V ′
(2.14)(t, xp1

(t)) has the form (3.4)),

4.2) the differential inequality

v′ ≥ χ(t, v), t ≥ t+, (3.26)
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has no positive solutions defined in the future (i.e., defined for all
t ≥ t+).

Then for each initial point (t0, x0) ∈ Lt+ such that P1(t0)x0 ∈ Ω, there exists a
unique global solution of the initial value problem (2.1), (2.3) and this solution is
Lagrange unstable.

Proof. It is proved in the same way as in Theorem 3.1 that there exists the unique
solution z = ζ(t) of (3.14) on [t0, ω) which satisfies the initial condition ζ(t0) =
P1(t0)x0, where [t0, ω) is the maximal interval of existence. Further, as in the
proof of Theorem 3.1 (see p. 9) we obtain that there exists the unique solution
x(t) = ζ(t) + η(t, ζ(t)) of (2.1) on [t0, ω) which satisfies (2.3). Recall that z = ζ(t)
and u = η(t, ζ(t)) (ζ(t) ∈ X1(t), η(t, ζ(t)) ∈ X2(t)) are the unique solution of
the system (3.10), (3.11) on [t0, ω) which satisfies the initial conditions ζ(t0) =
P1(t0)x0, η(t0, ζ(t0)) = P2(t0)x0.

Prove that the solution x(t) is Lagrange unstable, i.e., has a finite escape time
(ω < ∞). By the condition 3) there exists the region Ω ⊂ R

n such that 0 6∈ Ω
and the component P1(t)x(t) = xp1

(t) of each existing solution x(t) with the
initial point (t0, x0) ∈ Lt+ , where P1(t0)x0 ∈ Ω, remains all the time in Ω. Since
ζ(t) = P1(t)x(t), each solution ζ(t) of the equation (3.14) starting in Ω remains all
the time in it. By virtue of the condition 4), for all t ≥ t0, ζ(t) ∈ Ω the inequality

V ′
(3.14)(t, ζ(t)) ≥ χ

(
t, V (t, ζ(t))

)

holds. Therefore, for t ≥ t0 the function v(t) = V (t, ζ(t)) is a positive solu-
tion of (3.26). Since, by the condition 4), the inequality (3.26) has no positive
solution defined in the future, then, as in the proof the theorem [14, p. 109, The-
orem XIV], we obtain that the solution ζ(t) has a finite escape time, i.e., ω < ∞
and lim

t→ω−0
‖ζ(t)‖ = ∞. Hence, the solution x(t) = ζ(t) + η(t, ζ(t)) of the initial

value problem (2.1), (2.3) also has the finite escape time [t0, ω). �

The Lagrange instability theorem gives conditions under which the DAE has
no global solutions (for consistent initial points (t0, x0), where the component
P1(t0)x0 from a certain region Ω).

Note that the Lagrange instability of a solution implies its Lyapunov instability,
but in general the Lyapunov instability of a solution does not imply its Lagrange
instability.

4. Dissipativity or ultimate boundedness of the DAE

Definition 4.1. Solutions of the equation (2.1) are called ultimately bounded,
if there exists a constant K > 0 (the constant is independent of the choice of a
solution, i.e. the choice of t0, x0) and for each solution x(t) with an initial point
(t0, x0) there exists a number τ = τ(t0, x0) ≥ t0 such that ‖x(t)‖ < K for all
t ∈ [t0 + τ,∞).

The equation (2.1) is called ultimately bounded or dissipative, if for any consis-
tent initial point (t0, x0) there exists a global solution of the initial value problem
(2.1), (2.3) and all solutions are ultimately bounded.
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Definition 4.2. If in Definition 4.1 the number τ does not depend on the choice of
t0, i.e., τ = τ(x0), then the solutions of the equation (2.1) are called uniformly ulti-
mately bounded and, accordingly, the equation (2.1) is called uniformly ultimately
bounded or uniformly dissipative.

Analogous definitions hold for the DAE (2.2).

Theorem 4.3 (uniform ultimate boundedness (dissipativity) of the DAE (2.1)).

Let f ∈ C([t+,∞) × R
n,Rn),

∂f

∂x
∈ C([t+,∞) × R

n, L(Rn)), A,B ∈

C1([t+,∞), L(Rn)), the pencil λA(t) + B(t) satisfy (2.4), where C2 ∈
C1([t+,∞), (0,∞)), and the requirements 1), 2) of Theorem 3.1 or 1), 2) of The-
orem 3.7 be fulfilled. Let the following conditions be also fulfilled:

3) there exist a number R > 0, a positive definite function V ∈ C1([t+,∞) ×
U c
R(0),R) (U c

R(0) = {z ∈ R
n | ‖z‖ ≥ R} ) and functions Uj ∈ C([0,∞)),

j = 0, 1, 2, such that U0(r) is non-decreasing and U0(r) → +∞ as r → +∞,
U1(r) is increasing, U2(r) > 0 for r > 0, and for all t ∈ [t+,∞), xp1

(t) ∈
X1(t), xp2

(t) ∈ X2(t) such that (t, xp1
(t) + xp2

(t)) ∈ Lt+, ‖xp1
(t)‖ ≥ R

the condition U0(‖xp1
(t)‖) ≤ V (t, xp1

(t)) ≤ U1(‖xp1
(t)‖) and one of the

following inequalities hold:
3.a) V ′

(2.14)(t, xp1
(t)) ≤ −U2

(
‖xp1

(t)‖
)

(V ′
(2.14)(t, xp1

(t)) has the form

(3.4));
3.b) V ′

(2.14)(t, xp1
(t)) ≤ −U2

(
(H(t)xp1

(t), xp1
(t))

)
,

where H ∈ C([t+,∞), L(Rn)) is some positive definite self-adjoint op-
erator function such that sup

t∈[t+,∞)

‖H(t)‖ < ∞;

3.c) V ′
(2.14)(t, xp1

(t)) ≤ −C V (t, xp1
(t)),

where C > 0 is some constant;
4) there exist a constant c > 0 and a number T > t+ such that

‖G−1(t)Q2(t)[f(t, xp1
(t) + xp2

(t)) − A′(t)xp1
(t)]‖ ≤ c ‖xp1

(t)‖ for all
(t, xp1

(t) + xp2
(t)) ∈ LT .

Then the DAE (2.1) is uniformly ultimately bounded (uniformly dissipative).

Proof. As in the proof of Theorem 3.1 or 3.7 we obtain that for each initial point
(t0, x0) ∈ Lt+ there exists the unique global solution x(t) = ζ(t) + η(t, ζ(t))
of the initial value problem (2.1), (2.3), where ζ(t) = P1(t)x(t) = xp1

(t),
η(t, ζ(t)) = P2(t)x(t) = xp2

(t). Indeed, since, By virtue of 3), the inequal-
ity V ′

(3.14)(t, ζ(t)) ≤ −U2

(
‖ζ(t)‖

)
, or V ′

(3.14)(t, ζ(t)) ≤ −U2

(
(H(t)ζ(t), ζ(t))

)
, or

V ′
(3.14)(t, ζ(t)) ≤ −C V (t, ζ(t)) holds instead of (3.15), then the inequality v′ ≤ 0

which also has no positive solutions with finite escape time holds instead of (3.5).
By virtue of the condition 3) with the inequalities 3.a) and 3.c), as in the proofs
of Yoshizawa’s theorem [15, Theorem 10.4] and its corollary, we obtain that solu-
tions of the equation (3.14) are uniformly ultimately bounded, i.e., there exists a
constant N > 0 and for each solution z = ζ(t) satisfying ζ(t0) = P1(t0)x0, there
exists a number τ1 = τ1(x0) ≥ t0 such that ‖ζ(t)‖ < N for all t ≥ t0 + τ1. It
is easy to verify that from the condition 3) with the inequality 3.b) it also fol-
lows that solutions of (3.14) are uniformly ultimately bounded. Note that, due to
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the properties of the operator H(t), there exist constants H0, H1 > 0 such that
H0‖z‖

2 ≤ (H(t)z, z) ≤ H1‖z‖
2 for all t ∈ [t+,∞), z ∈ R

n. By virtue of the
condition 4) and the equality (3.23) there exists a constant c > 0 and a number
τ2 = τ2(x0) > t0 such that ‖η(t, ζ(t))‖ ≤ c ‖ζ(t)‖ < cN for all t ≥ τ2. Thus, for
each solution with the initial point (t0, x0) there exists a number τ = τ(x0) ≥ t0
such that ‖x(t)‖ ≤ ‖ζ(t)‖+‖η(t, ζ(t))‖ < (1+c)N for all t ∈ [t0+τ,∞), where the
constant (1+ c)N > 0 is independent of t0, x0. Hence, the DAE (2.1) is uniformly
ultimately bounded. �

5. Lyapunov stability, asymptotic stability and instability

Consider the DAEs (2.1) and (2.2), where f(t, 0) ≡ 0. They are called DAEs of
perturbed motion and have the equilibrium state (stationary solution) x∗(t) ≡ 0.

Recall that (t0, x0) ∈ Lt+ ((t0, x0) ∈ L̂t+) is called a consistent initial point for
the initial value problem (2.1), (2.3) ((2.2), (2.3)) (see Remark 2.1). Obviously,

the point (t, 0) belongs to Lt+ and L̂t+ for each t ∈ [t+,∞) (if f(t, 0) ≡ 0).
Let f : [t+,∞)× Ux

R(0) → R
n, where Ux

R(0) = {x ∈ R
n | ‖x‖ < R}.

Definition 5.1. The equilibrium state x∗(t) ≡ 0 of the DAE (2.1), where
f(t, 0) ≡ 0, is called Lyapunov stable or simply stable if for any ε > 0 (ε < R),
t0 ∈ [t+,∞) there exists a number δ = δ(ε, t0) > 0 (δ ≤ ε) such that for any con-
sistent initial point (t0, x0) satisfying the condition ‖x0‖ < δ there exists a global
solution x(t) of the initial value problem (2.1), (2.3) and this solution satisfies the

inequality ‖x(t)‖ < ε for all t ∈ [t0,∞). If, in addition, there exists δ̃ = δ̃(t0) > 0

(δ̃ ≤ δ) such that for each solution x(t) with an initial point (t0, x0) satisfying the

condition ‖x0‖ < δ̃ the requirement lim
t→∞

x(t) = 0 is satisfied, then the equilibrium

state x∗(t) ≡ 0 is called asymptotically Lyapunov stable or simply asymptotically
stable.

If in Definition 5.1 δ is independent of t0, i.e., δ = δ(ε), then the equilibrium
state is called uniformly Lyapunov stable or uniformly stable (on [t+,∞)).

Definition 5.2. The equilibrium state x∗(t) ≡ 0 of the DAE (2.1), where
f(t, 0) ≡ 0, is called Lyapunov unstable or simply unstable if for some ε > 0
(ε < R), t0 ∈ [t+,∞) and any δ > 0 there exist a solution xδ(t) of the initial
value problem (2.1), (2.3) and a time moment t1 > t0 such that ‖x0‖ < δ and
‖xδ(t1)‖ ≥ ε.

Definition 5.3. Consider the DAE (2.1), where f(t, x) is defined on [t+,∞)×R
n

and f(t, 0) ≡ 0. If the equilibrium state x∗(t) ≡ 0 of the DAE is asymptotically
stable and, moreover, for each point (t0, x0) ∈ Lt+ (i.e. for each consistent initial
point) there exists a global solution x(t) of the initial value problem (2.1), (2.3)
and lim

t→∞
x(t) = 0, then the equilibrium state x∗(t) ≡ 0 is called asymptotically

stable in the large, and the DAE is called completely stable or asymptotically stable.

Similar definitions hold for the DAE (2.2) (f(t, 0) ≡ 0).
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Theorem 5.4 (Lyapunov stability and asymptotic stability of the equilibrium
state of the DAE (2.1)).

Let f ∈ C([t+,∞) × Ux
R(0),R

n) (Ux
R(0) = {x ∈ R

n | ‖x‖ < R}), f(t, 0) ≡ 0,
∂f

∂x
∈ C([t+,∞) × Ux

R(0), L(R
n)), A,B ∈ C1([t+,∞), L(Rn)) and the pen-

cil λA(t) +B(t) satisfy (2.4), where C2 ∈ C1([t+,∞), (0,∞)). Let for each
t∗ ∈ [t+,∞) and x∗

p1
(t∗) = 0, x∗

p2
(t∗) = 0 the operator (3.2) has the inverse.

Then the following statements are true:

1. Let there exist numbers r1, r2 > 0, r1 + r2 < R, and a pos-
itive definite function V ∈ C1([t+,∞)×Br1(0),R), where
Br1(0) = {z ∈ R

n | ‖z‖ ≤ r1}, such that for all t ∈ [t+,∞) and
x ∈ B

xp1
,xp2

r1,r2 (0) = {x ∈ R
n | ‖xpi

(t)‖ ≤ ri, xpi
(t) = Pi(t)x, i = 1, 2} the in-

equality
V ′
(2.14)(t, xp1

(t)) ≤ 0 (5.1)

holds (V ′
(2.14)(t, xp1

(t)) has the form (3.4)).

Then the equilibrium state x∗(t) ≡ 0 of the DAE (2.1) is Lyapunov stable.
2. Let there exist numbers r1, r2 > 0, r1 + r2 < R, and positive definite functions

V ∈ C1([t+,∞) × Br1(0),R), W ∈ C(Br1(0),R), U ∈ C(Br1(0),R) such that
V (t, z) ≤ W (z) for all t ∈ [t+,∞), z ∈ Br1(0), and for all t ∈ [t+,∞), x ∈

B
xp1

,xp2
r1,r2 (0), xp1

(t) 6= 0, the following inequality holds:

V ′
(2.14)(t, xp1

(t)) ≤ −U
(
xp1

(t)
)
. (5.2)

Let for some T > t+, G
−1(t)Q2(t)[f(t, P1(t)x+P2(t)x)−A′(t)P1(t)x]→ 0

uniformly in t on [T,∞) as x→ 0.
(5.3)

Then the equilibrium state x∗(t) ≡ 0 of the DAE (2.1) is asymptotically stable.

Proof. The proof of the statement 1.
Recall that the DAE (2.1) is equivalent to the system (2.12), (2.13) or (2.14),

(2.15). Consider the mappings (3.6), (3.7) and the system (3.10), (3.11). Obvi-
ously, f(t, 0) ≡ 0 if and only if Π(t, 0, 0) ≡ 0 and F (t, 0, 0) ≡ 0. We will assume
that A(t) is not equal to zero or invertible for all t, because in the case when A(t)
is invertible (for all t), the DAE (2.1) can be reduced to an explicit ODE and
then the classical Lyapunov theorems can be used, and in the case when A(t) is
identically equal to zero, the DAE becomes an algebraic equation (in the sense
that it does not contain a derivative) and the implicit function theorems as well
as the constructions similar to those given below are used. Thus, the theorem
remains true for these special cases, but the proof of the theorem is of interest
precisely to the DAE (degenerate DE). Therefore, in what follows, it is assumed
that X1(t) 6= {0} and X2(t) 6= {0}. Recall that the dimensions of the subspaces
X1(t) and X2(t) are constant for all t ∈ [t+,∞) (see Remark 3.6).

It is clear that there exist some regions Dz, Du ⊂ R
n containing the origin

for which the mappings Π, F are defined, i.e., P1(t)D
z + P2(t)D

u ⊂ Ux
R(0) and

Π(t, z, u) : [t+,∞)×Dz×Du → R
n, F (t, z, u) : [t+,∞)×Dz×Du → R

n. The map-
pings Π, F ∈ C([t+,∞)×Dz ×Du,Rn) are continuously differentiable in z, u and
the partial derivatives of F (t, z, u) have the form (3.8), (3.9), where Φt,P1(t)z,P2(t)u

is the operator (3.2). Denote Φ̃t,z,u = Φt,P1(t)z,P2(t)u as in Theorem 3.1.
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Clearly, Lemma 3.2 remains valid. Note that if u(t) ∈ R
n satisfy (3.11), i.e.,

F (t, z(t), u(t)) = 0, then u(t) ∈ X2(t).

By the theorem condition, for each t∗ ∈ [t+,∞) the operator Φ̃t∗,0,0 =
Φt∗,0,0 is invertible. Therefore, for each point (t, z, u) = (t∗, 0, 0) the opera-

tor Ψt,z,u = ∂
∂u

F (t, z, u) (3.13) is invertible. Let t∗ ∈ [t+,∞) be an arbitrary
fixed element. Since F (t∗, 0, 0) = 0 and the conditions of the implicit func-
tion theorems are satisfied, then there exist neighborhoods Uσ1

(t∗) × Uz
δ1
(0) ⊂

[t+,∞) × Dz (Uσ1
(t+) = [t+, t+ + σ1)), Uu

γ1
(0) ⊂ Du and a unique function

u = µ(t, z) ∈ C(Uσ1
(t∗) × Uz

δ1
(0), Uu

γ1
(0)) which is continuously differentiable in

z on Uσ1
(t∗) × Uz

δ1
(0), satisfies the equation (3.12) (i.e., F (t, z, µ(t, z)) = 0 for

(t, z) ∈ Uσ1
(t∗) × Uz

δ1
(0)) and µ(t∗, 0) = 0. Since u = µ(t, z) satisfies (3.12) for

(t, z) ∈ Uσ1
(t∗)×Uz

δ1
(0), then µ(t, z) ∈ X2(t) and (t, P1(t)z+µ(t, z)) ∈ Lt+ for each

(t, z) ∈ Uσ1
(t∗) × Uz

δ1
(0). Thus, the following statement similar to Lemma 3.3 is

proved: For each t ∈ [t+,∞) and each z from the sufficiently small neighborhood
Uz
δ1
(0) there exists a unique u from the sufficiently small neighborhood Uu

γ1
(0),

satisfying (3.12). Since the obtained implicit function u = µ(t, z) is continuous at
the point (t∗, 0), then for every ε1 > 0 there are σ̃1 = σ̃1(ε1, t∗) > 0 (σ̃1 ≤ σ1),

δ̃1 = δ̃1(ε1, t∗) > 0 (δ̃1 ≤ δ1) such that ‖µ(t, z)‖ < ε1 for (t, z) ∈ Uσ̃1
(t∗)× Uz

δ̃1
(0)

and therefore ‖u‖ < ε1 for u = µ(t, z). Thus, the following lemma is proved.

Lemma 5.5. For any εu > 0, t ∈ [t+,∞) and any z ∈ Uz
δ∗
(0), where δ∗ > 0

is sufficiently small, there exists a unique u ∈ Uu
εu
(0) satisfying (3.12) and this u

belongs to X2(t) (i.e., ‖u‖ < εu, F (t, z, u) = 0 and u = P2(t)u).

Let ε > 0 (ε < R) is an arbitrary number. We represent it as the sum ε = εz+εu
of numbers εz > 0, εu > 0 which will be indicated below.

Using the implicit function theorems and Lemma 5.5, we obtain the follow-
ing statement. For any fixed t∗ ∈ [t0,∞) there exist an interval Uσ2

(t∗) ⊂ [t+,∞)
(σ2 = σ2(εu, t∗), Uσ2

(t+) = [t+, t++σ2)), a neighborhood Uz
δ2
(0) (δ2 = δ2(εu, t∗) ≤

εz) and a unique function νt∗(t, z) ∈ C(Uσ2
(t∗)× Uz

δ2
(0), Uu

εu
(0)) which is a solu-

tion of the equation (3.12) with respect to u (i.e., F (t, z, νt∗(t, z)) = 0 for (t, z) ∈
Uσ2

(t∗)×Uz
δ2
(0)), is continuously differentiable in z and belongs to X2(t) for each

(t, z) ∈ Uσ2
(t∗)× Uz

δ2
(0), as well as satisfies the equality νt∗(t∗, 0) = 0. Introduce

the function u = η(t, z) : [t+,∞)×Uz
δ2
(0) → Uu

εu
(0) and define by η(t, z) = νt∗(t, z)

at the point (t, z) = (t∗, z∗) for each point (t∗, z∗) ∈ [t+,∞) × Uz
δ2
(0). Then the

function u = η(t, z) is continuous in (t, z), continuously differentiable in z, a unique
solution of the equation (3.12) and η(t, z) ∈ X2(t) for each (t, z) ∈ [t+,∞)×Uz

δ2
(0).

Obviously, η(t, 0) ≡ 0.

Substitute the introduced function u = η(t, z) in (3.6) and denote Π̃(t, z) =
Π(t, z, η(t, z)). Then the equation (3.10) takes the form (3.14). By the properties

of η and Π, the function Π̃ is continuous in (t, z) and continuously differentiable

in z on [t+,∞) × Uz
δ2
(0), and Π̃(t, 0) ≡ 0. Clearly, for each initial point (t0, z0) ∈

[t+,∞)× Uz
δ2
(0) there exists a unique local solution of (3.14).

Take any initial value t0 ∈ [t+,∞) and choose any consistent initial value
x0, i.e., (t0, x0) ∈ Lt+ (F (t0, P1(t0)x0, P2(t0)x0) = 0), satisfying the condition
‖x0‖ < δ ≤ ε, where δ = δ(ε, t0) > 0 is chosen so that ‖P1(t0)x0‖ < δz ≤
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min{εz, δ2}, δz is a sufficiently small number which will be determined below, and
‖P2(t0)x0‖ < εu. Denote z0 = P1(t0)x0 and u0 = P2(t0)x0. Then η(t0, z0) = u0

since F (t0, z0, u0) = 0. For the chosen initial point (t0, z0) there exists a unique
local solution z = ζ(t) of (3.14) satisfying the initial condition ζ(t0) = z0. Then
the functions z = ζ(t), u = η(t, ζ(t)) are a unique local solution of the system
(3.10), (3.11) satisfying the initial conditions ζ(t0) = z0, η(t0, ζ(t0)) = u0, and by
Lemma 3.2 the function x(t) = ζ(t)+η(t, ζ(t)) (ζ(t) = P1(t)x(t) = xp1

(t) ∈ X1(t),
η(t, ζ(t)) = P2(t)x(t) = xp2

(t) ∈ X2(t)) is a unique local solution of (2.1) satisfying
the initial condition (2.3), where x0 = z0 + u0.

Without loss of generality, we can assume that δ2 ≤ r1 and εu ≤ r2, where
the numbers r1, r2 are defined in the statement 1. By virtue of (5.1), for any
t ∈ [t0,∞) and z ∈ X1(t) such that ‖z‖ < δ2 the derivative of V along the
trajectories of (3.14) (see (3.15)) satisfy the inequality

V ′
(3.14)(t, z) ≤ 0. (5.4)

Recall that ‖z0‖ < δz ≤ min{εz, δ2}, where z0 = P1(t0)x0 = ζ(t0). As in the
proof of the classical Lyapunov theorem on stability, we obtain that the number
δz = δz(εz, t0) > 0 can be chosen such that the solution z = ζ(t) has an extension
to [t0,∞) (i.e., is global) and ‖ζ(t)‖ < εz for all t ∈ [t0,∞). This holds for any
εz > 0. Choose δz, εz and εu such that εz+εu = ε, ‖ζ(t)‖ < εz for t ∈ [t0,∞) and
‖η(t, ζ(t))‖ < εu for ‖ζ(t)‖ < εz, t ∈ [t0,∞). Then ‖x(t)‖ = ‖ζ(t) + η(t, ζ(t))‖ <
εz+εu = ε for all t ∈ [t0,∞). Since ε > 0 and t0 ∈ [t+,∞) were chosen arbitrarily,
the statement 1 is proved.

The proof of the statement 2.
The Lyapunov stability of the zero solution is proved in the same way as above.

We show that the solution x(t) = ζ(t) + η(t, ζ(t)) with the initial point (t0, x0),
x0 = z0+u0, constructed in the proof of the statement 1, satisfies the requirement
lim
t→∞

x(t) = 0 for ‖x0‖ < δ and a sufficiently small δ = δ(t0) > 0. As above, δ is

chosen so that ‖z0‖ = ‖P1(t0)x0‖ < δz, where δz is sufficiently small number which
will be defined below. The mentioned δ and δz are different from those chosen in
the proof of the statement 1, but for convenience we retain the previous notation.

Since, by the condition of the statement 2, there exists W ∈ C(Br1(0),R)
such that W (0) = 0 and 0 ≤ V (t, z) ≤ W (z) for all t ∈ [t+,∞), z ∈ Br1(0), then
V (t, z) has an infinitely small upper limit in Br1(0) (see the definition in [16, p. 11,
Def. 1.7]). Since, by virtue of (5.2), the inequality V ′

(3.14)(t, z) ≤ −U(z), the scalar

function U(z) is continuous and positive definite, holds instead of (5.4), then, as in
the proof of the classical Lyapunov theorem on asymptotic stability, we obtain that
the number δz = δz(t0) > 0 can be chosen such that lim

t→∞
ζ(t) = 0. Then, taking

into account the condition (5.3) and the equalities (3.23) and η(t, 0) ≡ 0, we
obtain that lim

t→∞
η(t, ζ(t)) = 0. Consequently, lim

t→∞
x(t) = 0, and the statement 2

is proved. �
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Theorem 5.6 (Complete stability of the DAE (2.1) (asymptotic stability in the
large)).

Let f ∈ C([t+,∞) × R
n,Rn), f(t, 0) ≡ 0,

∂f

∂x
∈ C([t+,∞) × R

n, L(Rn)),

A,B ∈ C1([t+,∞), L(Rn)) and the pencil λA(t) + B(t) satisfy (2.4), where
C2 ∈ C1([t+,∞), (0,∞)). Let the requirements 1), 2) of Theorem 3.1 or 1), 2)
of Theorem 3.7 be satisfied. Let also (5.3) hold, and there exist positive definite
functions V ∈ C1([t+,∞)× R

n,R) and W ∈ C(Rn,R), U ∈ C(Rn,R) such that:

1) V (t, z) ≤ W (z) for all t ∈ [t+,∞), z ∈ R
n;

2) V (t, z) → ∞ uniformly in t on [t+,∞) as ‖z‖ → ∞;
3) for all (t, xp1

(t) + xp2
(t)) ∈ Lt+, xp1

(t) 6= 0 (xpi
(t) = Pi(t)x, i = 1, 2), the

inequality (5.2) holds.

Then the equilibrium state x∗(t) ≡ 0 of the DAE (2.1) is asymptotically stable in
the large (the DAE is completely stable).

Proof. Since the theorem conditions include the conditions of the statement 2 of
Theorem 5.4, the equilibrium state is asymptotically stable. As in the proof of
Theorem 3.1 or 3.7, where v′ ≤ 0 holds instead of (3.5), we obtain that for each
consistent initial point (t0, x0) there exists the unique global solution x(t) = ζ(t)+
η(t, ζ(t)) of the initial value problem (2.1), (2.3), where ζ(t) = P1(t)x(t) = xp1

(t),
η(t, ζ(t)) = P2(t)x(t) = xp2

(t). Prove that lim
t→∞

x(t) = 0.

Since f(t, 0) ≡ 0, then, as in Theorem 5.4, η(t, 0) ≡ 0. Note that
V ′
(3.14)(t, ζ(t)) ≤ −U(ζ(t)), where U(z) is continuous and positive definite, holds

for t ≥ t0, ζ(t) 6= 0 (since (5.2)), and V ′
(3.14)(t, 0) ≡ 0. From the properties of

the function V (t, z) and W (z) it follows that V (t, z) has an infinitely small up-
per limit in R

n (see the definition [16, p. 11, Def. 1.7]). Taking into account the
properties of V (t, z), W (z) and U(z), as in the proof of the Barbashin-Krasovsky
theorem on asymptotic stability in the large [16, p. 36, Theorem 5.2], we obtain
that lim

t→∞
ζ(t) = 0. Then, as in the proof of the statement 2 of Theorem 5.4,

we obtain that lim
t→∞

η(t, ζ(t)) = 0. Therefore, lim
t→∞

x(t) = 0, and the theorem is

proved. �

Notice that in general for a semilinear DAE (of unperturbed motion), as well
as in the ODE case, the Lyapunov stability of a non-stationary solution does not
imply its Lagrange stability. Also, in general, the Lagrange stability of a solution
of a semilinear DAE does not imply its Lyapunov stability.

Theorem 5.7 (Lyapunov instability of the equilibrium state of the DAE (2.1)).
Let f ∈ C([t+,∞) × Ux

R(0),R
n) (Ux

R(0) = {x ∈ R
n | ‖x‖ < R}), f(t, 0) ≡ 0,

∂f

∂x
∈ C([t+,∞) × Ux

R(0), L(R
n)), A,B ∈ C1([t+,∞), L(Rn)) and the pen-

cil λA(t) + B(t) satisfy (2.4), where C2 ∈ C1([t+,∞), (0,∞)). Let for each
t∗ ∈ [t+,∞) the operator (3.2), where x∗

p1
(t∗) = 0 and x∗

p2
(t∗) = 0, has the in-

verse. Let there exist numbers T ≥ t+ and r1, r2 > 0, r1 + r2 < R, and a function
V ∈ C1([T,∞)×Br1(0),R) (Br1(0) = {z ∈ R

n | ‖z‖ ≤ r1}) such that:

1) V (t, z) → 0 uniformly in t on [T,∞) as ‖z‖ → 0;
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2) there exists a positive function U ∈ C(Br1(0), [0,∞)) such that
V ′
(2.14)(t, xp1

(t)) ≥ U
(
xp1

(t)
)
> 0 or V ′

(2.14)(t, xp1
(t)) ≤ −U

(
xp1

(t)
)
< 0 for

all t ∈ [T,∞), x ∈ B
xp1

,xp2
r1,r2 (0), xp1

(t) 6= 0 (V ′
(2.14)(t, xp1

(t)) has the form

(3.4), B
xp1

,xp2
r1,r2 (0) = {x ∈ R

n | ‖xpi
(t)‖ ≤ ri, xpi

(t) = Pi(t)x, i = 1, 2}).
3) for any ∆1,∆2 > 0, ∆i ≤ ri, there exist xp1

(T ) 6= 0, xp2
(T ) such that

‖xpi
(T )‖ < ∆i, i = 1, 2, and V (T, xp1

(T ))V ′
(2.14)(T, xp1

(T )) > 0 (i.e., the

sign of V coincides with the sign of V ′
(2.14) at the point (T, xp1

(T ))).

Then the equilibrium state x∗(t) ≡ 0 of the DAE (2.1) is Lyapunov unstable.

Proof. Let εu > 0 be an arbitrary number satisfying εu ≤ r2, where r2 is defined
in the theorem conditions. As in the proof of the statement 1 of Theorem 5.4
(where εz = r1) we construct the function η(t, z) ∈ C([t+,∞) × Uz

δ2
(0), Uu

εu
(0)),

where 0 < δ2 ≤ r1 (r1 is defined in the conditions of the present theorem) such
that u = η(t, z) is continuously differentiable in z, belongs to X2(t) for each
(t, z) ∈ [t+,∞) × Uz

δ2
(0), satisfy η(t, 0) ≡ 0 and is a unique solution of (3.12).

Substituting the obtained function u = η(t, z) in (3.6) and denoting Π̃(t, z) =

Π(t, z, η(t, z)), we get the equation (3.14). By the properties of Π̃, for each initial
point (t0, z0) ∈ [t+,∞)×Uz

δ2
(0) there exists a unique local solution of this equation.

As in the proof of the statement 1 of Theorem 5.4 we obtain that for any
consistent initial point (t0, x0) satisfying the condition ‖x0‖ < ∆, where ∆ =
δ2 + εu > 0 is chosen so that ‖P1(t0)x0‖ < δ2 and ‖P2(t0)x0‖ < εu, there exists a
unique local solution z = ζ(t), u = η(t, ζ(t)) of the system (3.10), (3.11) satisfying
the initial conditions ζ(t0) = z0 = P1(t0)x0, η(t0, ζ(t0)) = u0 = P2(t0)x0. Then
by Lemma 3.2 the function x(t) = ζ(t) + η(t, ζ(t)) (ζ(t) = P1(t)x(t) = xp1

(t),
η(t, ζ(t)) = P2(t)x(t) = xp2

(t)) is a unique local solution of (2.1) satisfying the
initial condition (2.3), where x0 = z0 + u0.

It follows from the condition 1) that for some numbers M > 0 and δ′2 > 0 the
inequality |V (t, z)| < M holds for all t ∈ [T,∞), ‖z‖ ≤ δ′2 < δ2. Let δz > 0,
δu > 0 (δz < δ′2, δu < εu) be arbitrary (arbitrarily small) numbers. Take the
initial value t0 = T , where T satisfy the theorem conditions. Assume that in
the condition 2) V ′

(2.14)(t, xp1
(t)) ≥ U

(
xp1

(t)
)
> 0. Then, by the condition 3),

one can always find a consistent initial value x0 (i.e., (t0, x0) ∈ Lt+) satisfying
the conditions ‖x0‖ < δ = δz + δu, 0 < ‖P1(t0)x0‖ < δz and ‖P2(t0)x0‖ < δu,
such that V (t0, P1(t0)x0) = m > 0, where m is some number. Therefore, as in
the proof of the classical Lyapunov theorem on instability, we obtain that for the
solution z = ζ(t) of (3.14) satisfying the initial condition ζ(t0) = z0 = P1(t0)x0,
where t0 = T , 0 < ‖z0‖ < δz, there exists t1 > t0 such that ‖ζ(t1)‖ > δ′2.
Hence, for the corresponding solution x(t) = ζ(t) + η(t, ζ(t)) with the initial point
(t0, x0) the inequalities ‖x0‖ < δ and ‖x(t1)‖ > ε = δ′2/‖P1(t1)‖ > 0 hold (since
‖ζ(t1)‖ = ‖P1(t1)x(t1)‖). This proves the theorem. �

Remark 5.8. Since the Lagrange instability of a solution implies its Lyapunov
instability, the theorems on the Lagrange instability of DAEs can also be considered
as the theorems on the Lyapunov instability.
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6. Remarks on the application of the proved theorems, and changes in

the conditions of the theorems for the DAE (2.2)

6.1. Changes in the theorem conditions for the equation (2.2). To obtain
the theorems for the DAE (2.2), it is necessary to make the following changes to
the formulations of the corresponding theorems for the DAE (2.1):

• the manifold Lt+ is replaced by L̂t+ , it is additionally assumed that f(t, x)
is continuously differentiable in t, and the derivative V ′

(2.14)(t, xp1
(t)) is

replaced by

V ′
(2.18)(t, xp1

(t)) =
∂V

∂t
(t, xp1

(t)) +

(
∂V

∂z
(t, xp1

(t)), G−1(t)[−B(t)xp1
(t)+

Q1(t)f(t, xp1
(t) + xp2

(t))] + P ′
1(t)[xp1

(t) + xp2
(t)]

)

everywhere;
• in the condition 4.a) of Theorem 3.8, the inequality
‖G−1(t)Q2(t)[f(t, xp1

(t) + xp2
(t)) − A′(t)xp1

(t)]‖ ≤ KM is replaced
by ‖G−1(t)Q2(t)f(t, xp1

(t) + xp2
(t))‖ ≤ KM ;

• the requirement (3.21) of Theorem 3.8 is replaced by
sup

t≥t+, ‖xp1
(t)‖≤M<∞,M= const

‖G−1(t)Q2(t)f(t, xp1
(t) + x̃p2

(t∗))‖ < ∞;

• in the condition 4) of Theorem 4.3, the inequality ‖G−1(t)Q2(t)[f(t, xp1
(t)+

xp2
(t))−A′(t)xp1

(t)]‖ ≤ c ‖xp1
(t)‖ is replaced by ‖G−1(t)Q2(t)f(t, xp1

(t)+

xp2
(t))‖ ≤ c ‖xp1

(t)‖, and LT is replaced by L̂T ;
• in the condition (5.3) of Theorems 5.4, 5.6, the limit
G−1(t)Q2(t)[f(t, P1(t)x + P2(t)x) − A′(t)P1(t)x] → 0 is replaced by
G−1(t)Q2(t)f(t, P1(t)x+ P2(t)x) → 0.

The proofs of the theorems for (2.2) are carried out in the same way as the proofs
of the corresponding theorems for (2.1).

6.2. Remarks on the form of the functions χ and V . The main difficulty
in applying the obtained theorems lies in constructing suitable functions χ, V and
then in proving that these functions satisfy the theorem conditions.

It is usually convenient to choose the function χ ∈ C([t+,∞)×(0,∞),R), which
is present in Theorems 3.1–3.10 on the global solvability and Lagrange stability
and instability of the DAE, in the form

χ(t, v) = k(t)U(v),

where U ∈ C(0,∞) (i.e., U ∈ C((0,∞),R) is a positive function) and
k ∈ C([t+,∞),R). Then the inequalities (3.3) and (3.25) take the form
V ′
(2.14)(t, xp1

(t)) ≤ k(t)U
(
V (t, xp1

(t))
)
and V ′

(2.14)(t, xp1
(t)) ≥ k(t)U

(
V (t, xp1

(t))
)

respectively, and the theorem conditions can be changed as follows (see explana-
tions in Section 2):

• in Theorems 3.1, 3.7 on the global solvability, it suffices to require that
∞∫
c

dv

U(v)
= ∞ (c > 0 is some constant) instead of the condition 3.3);
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• in Theorem 3.8 on the Lagrange stability, it suffices to require that
∞∫
c

dv

U(v)
= ∞ and

∞∫
t0

k(t)dt < ∞ (t0 ≥ t+ is some number) instead of

the condition 3.3);
• in Theorem 3.10 on the Lagrange instability, it suffices to require that

∞∫
c

dv

U(v)
< ∞ and

∞∫
t0

k(t)dt = ∞ instead of the condition 4.2).

It is often convenient to choose the positive definite scalar function V (t, z),
which we will call a Lyapunov function if it satisfies the theorems on the Lyapunov
stability (asymptotic stability, instability, and asymptotic stability in the large),
and a Lyapunov type function if it satisfies the remaining theorems, in the form

V (t, z) = (H(t)z, z), (6.1)

where H ∈ C1([t+,∞), L(Rn)) is a positive definite self-adjoint operator function.
By the properties of the operator function H(t), the function V (t, z) (6.1) satisfies
the conditions (except for the conditions on the derivative of the function V along
the trajectories of (2.14), which remain in the theorems) of Theorems 3.1, 3.7,
3.8 and 3.10 on the global solvability, Lagrange stability and Lagrange instability,
and the statement 1 on the Lyapunov stability from Theorem 5.4. If, additionally,
sup

t∈[t+,∞)

‖H(t)‖ < ∞, then the function (6.1) also satisfies the conditions (except

for the conditions on the derivative of the function V along the trajectories of
(2.14), which remain in the theorems) of Theorems 4.3, 5.7 and 5.6 on the ultimate
boundedness, Lyapunov instability and asymptotic stability in the large, and the
statement 2 on the asymptotic stability from Theorem 5.4.

If the time-invariant self-adjoint operator H ∈ L(Rn) is taken in (6.1) (i.e.,
V (t, z) ≡ V (z) = (Hz, z)), it suffices to require that it be positive (in all theorems).

The derivative (3.4) of the function V (6.1) along the trajectories of (2.14) has
the form

V ′
(2.14)(t, xp1

(t)) =
(
H ′(t)xp1

(t), xp1
(t)

)
+ 2

(
H(t)xp1

(t),
[
P ′
1(t)−

−G−1(t)Q1(t)[A
′(t) +B(t)]

]
xp1

(t) +G−1(t)Q1(t)f(t, xp1
(t) + xp2

(t))
)
.

The derivative of V (6.1) along the trajectories of (2.18) has the form

V ′
(2.18)(t, xp1

(t)) =
(
H ′(t)xp1

(t), xp1
(t)

)
+ 2

(
H(t)xp1

(t), G−1(t)[−B(t)xp1
(t)+

+Q1(t)f(t, xp1
(t) + xp2

(t))] + P ′
1(t)[xp1

(t) + xp2
(t)]

)
.
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