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Abstract. The paper studies a stochastic mathematical model based on the

improved modified Boussinesq equation (IMBq) with random initial data.
This equation is used to describe wave propagation in shallow water with

conservation of mass in layer and taking into account capillary effects, as well

as to study deformation waves in thin elastic rods. The time derivative is
understood in the sense of the Nelson–Gliklikh derivative. A theorem on the

existence and uniqueness of a solution for an inhomogeneous equation with

random initial data with zero mathematical expectations is proved. Sufficient
conditions for solving the problem of optimal control in mathematical models

with random initial data are found.

1. Introduction

Let D ⊂ Rn be a bounded domain with boundary D of class C∞, n ∈ N \ {1},
T ∈ R+. In the cylinder D× (0, T ) we consider the modified Boussinesq equation

(λ−∆)
◦
x
(2)

−α2∆x−∆(x3) = u(s, t), (1.1)

with homogeneous Dirichlet boundary conditions

x(s, t) = 0, (s, t) ∈ D × (0, T ) (1.2)

and Showalter – Sidorov initial conditions

(λ−∆)(x(s, 0)− x0(s)) = 0, (λ−∆)(
◦
x (s, 0)− x1(s)) = 0, s ∈ D, (1.3)

where λ, α ∈ R, ◦
x and

◦
x
(2)

are the Nelson – Gliklikh derivatives of the first and
the second orders of the stochastic process x with respect to time. Equation (1)
describes various wave processes in many subdiscipline of physics from hydrody-
namics to quantum mechanics. For example, it models the propagation of long
waves in shallow water taking into account capillary effects, and the nonlinear
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term is responsible for convective inertia. In this case, the function x = x(s, t)
determines the wave height.

In [1], a (modified) mathematical model of wave propagation in shallow water in
a one-dimensional domain was investigated and a soliton solution of equation (1)
was obtained. The existence of a unique global solution to the Cauchy problem for
equation (1) was proved in the paper, with λ = 1, α = 1. In [2], a similar solution
was obtained to describe the interaction of shock waves. In [3], the Boussinesq
equation was considered in a one-dimensional domain to describe the propagation
of a longitudinal strain wave in an elastic rod. In [4], a soliton solution was
found for the generalized Pochhammer – Chree equation and the interaction of
two solitary wave solutions was numerically investigated.

The Boussinesq equation, obtained at the end of the 19th century, continues
to be relevant and finds applications in other aspects; in addition to the works
mentioned above, the following examples can be given. In [5], the solvability of
natural (the first, the second and mixed) initial-boundary value problems for non-
linear analogs of the Boussinesq equation is studied. In [6], the influence of gradient
nonlinearity on the global solvability of initial-boundary value equations for the
improved Boussinesq equation used to describe one-dimensional wave processes in
media with dissipation and dispersion is investigated. Conditions for the blow-up
of the solution are obtained.

The concept of mean derivatives was introduced by E. Nelson [7] for the needs of
stochastic mechanics (a variant of quantum mechanics) in one-dimensional space.
Then, Yu.E. Gliklikh developed this theory and applied it to solving problems
of classical mechanics on nonlinear configuration spaces, statistical and quantum
physics, and hydrodynamics [8, 9]. An idea arose to extend the concept of mean
derivative to infinite-dimensional spaces and apply it to solving Sobolev type sto-
chastic equations [10–14]. The purpose of such extension is to develop the theory
of Sobolev type stochastic equations and to study applications of this theory to
non-classical models of mathematical physics that have practical significance. In
what follows, the mean derivative will be called the Nelson – Gliklikh derivative.
Further in the text, all derivatives with respect to time should be understood in
the Nelson – Gliklikh sense.

For the stochastic mathematical model (1)–(3), we pose the optimal control
problem

J(x, u) → inf, u ∈ Uad. (1.4)

For this, we introduce the control space U and select in it a non-empty, closed
and convex set Uad, which we call the set of admissible controls. We will define
the spaces and the specific form of the functional later.

In Sobolev type models, the optimal control problem was first considered in [15].
For first-order semilinear Sobolev type models, the optimal control problem was
studied in [16, 17]. Problems of optimal control of oscillatory phenomena arise in
such engineering problems as problems of calming the pitching of a ship, a crane
boom, organizing vibration protection, and others. The importance of solving
problems of optimal control of oscillatory processes has already been repeatedly
noted in works [18, 19].
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First, let us consider the operator-differential equation

L
◦
η
(2)

+Mη +N(η) = u(t), (1.5)

with the Showalter – Sidorov initial condition

L(η(0)− η0) = 0, L(
◦
η (0)− η1) = 0. (1.6)

Here L,M are linear and continuous operators, N(η) is a nonlinear operator, the
conditions on which will be specified later. If L is not continuously invertible, then
equation (5) is usually called a Sobolev type equation [20]. The initial data η0, η1
are random variables. In the deterministic case, problem (5), (6) was considered
in [21, 22], and the optimal control problem (4)–(6) was considered in [23].

The first section provides preliminary information and constructs solution
spaces. The second section is devoted to the solvability of an inhomogeneous
semilinear Sobolev-type equation with random initial data with zero mathematical
expectations; the results are applied to a mathematical model of wave propaga-
tion in shallow water with random initial states. The third section examines the
problem of optimal control with random initial states with non-zero mathemati-
cal expectations. In conclusion, a remark on the Cauchy conditions is given and
further directions for the study are indicated.

2. Spaces of Differentiable K-“Noises”

Let Ω ≡ (Ω, A, P ) denote the complete probability space. A measurable map-
ping ξ : Ω → R is called a random variable. The set of random variables whose
mathematical expectations are zero (i.e. Eξ = 0) and whose variances are finite
(i.e. Dξ < +∞) form a Hilbert space L2 with inner product (ξ1, ξ2) = Eξ1ξ2.
Let A0 denote the σ-subalgebra of the σ-algebra A and construct the space L0

2 of
random variables measurable with respect to A0. L0

2 is a subspace of the space
L2. Let ξ ∈ L2, then Π : L2 → L0

2 is the orthoprojector, and Πξ is the conditional
mathematical expectation of the random variable ξ and is denoted by E(ξ|A0).

Let I = (0, T ), T ∈ R+. Consider two mappings: f : I → L2, which connects
t ∈ I with a random variable ξ ∈ L2, and g : L2 × Ω → R, which connects each
pair (ξ, ω) with a point ξ(ω) ∈ R. The mapping η : I × Ω → R of the form
η = η(t, ω) = g(f(t), ω) is called a (one-dimensional) stochastic process. If all
trajectories of a stochastic process are a.s. continuous, then this process is called
continuous. The set of continuous stochastic processes forms a Banach space,
which we denote by C(I;L2).

An example of a continuous stochastic process is the one-dimensional Wiener
process β = β(t), which can be represented as

β(t) =

∞∑
k=0

ξk sin
(π
2
(2k + 1)t

)
,

where ξk are uncorrelated Gaussian random variables such that Eξk = 0, Dξk =[
π
2 (2k + 1)

]−2
.
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Now let us fix an arbitrary continuous stochastic process η(t) ∈ C(I;L2) and
t ∈ I. Let Nη

t be the “present” σ-algebra generated by the random process η(t),
and Eη

t = E(·|Nη
t ) be the conditional mathematical expectation. Then the right-

hand mean derivative Dη(t, ·) (left-hand D∗η(t, ·)) of the stochastic process η at
the point t ∈ (ε, τ) is the random variable

Dη (t, ·) = lim
∆t→0+

Eη
t

(
η (t+∆t, ·)− η(t, ·)

∆t

)
(
D∗η (t, ·) = lim

∆t→0+
Eη
t

(
η (t, ·)− η (t−∆t, ·)

∆t

))
,

if the limit exists in the sense of the uniform metric on R. A stochastic process
η is called right (left) mean on I if there exists a right (left) mean derivative
at each point t ∈ I. Let η ∈ CL2 be a stochastic process that is right and

left mean-differentiable on I. The symmetric mean derivative is defined as
◦
η=

DSη = 1
2 (D +D∗) η. The symmetric mean-differentiable derivative will be called

the Nelson–Gliklikh derivative. Let
◦
η (l), l ∈ N denote the l-th Nelson–Gliklikh

derivative of the stochastic process η. Note that if η(t) is a deterministic function,
then the Nelson–Gliklikh derivative coincides with the classical derivative. In the
case of a one-dimensional Wiener process β = β(t) the following statements hold:

(i)
◦
β (t) = β(t)

2t for any t ∈ R+;

(ii)
◦
β (l)(t) = (−1)

l−1
l−1∏
i=1

(2i− 1)
β(t)

(2t)l
, l ∈ N, l ≥ 2.

We define the space of differentiable “noises” Cl(I,L2), l ∈ N, as the space
of stochastic processes from C(I;L2), whose trajectories are almost surely (a.s.)
differentiable in the Nelson–Gliklikh sense up to the l-th order inclusive.

Let H be a separable Hilbert space with an orthonormal basis {φk}. Every
element η ∈ H can be written as

η =

∞∑
k=1

ηkφk. (2.1)

We choose a numerical sequence K = {νk} such that

∞∑
k=1

ν2k < +∞. Consider

a sequence of independent random variables {ξk} ⊂ L2 with uniformly bounded

variances, then

∞∑
k=1

ν2kD(ξk) < +∞.

We construct the Hilbert space HKL2 of random K-variables, of the form

ξ =

∞∑
k=1

νkξkφk. (2.2)

Next, let {ξk(t)} be a sequence of one-dimensional stochastic processes from
the space C(I,L2). We define an H-valued stochastic K-process by the formula
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ξ(t) =

∞∑
k=1

νkξk(t)φk,

provided that the series converges uniformly on any compact set from I in the norm
HKL2. We introduce the Nelson–Gliklikh derivatives of the stochastic K-process

◦
ξ (l)(t) =

∞∑
k=1

νk
◦
ξk

(l)(t)φk.

The Nelson–Gliklikh derivatives exist up to the l-th order inclusive if the cor-
responding series converge uniformly on any compact set I in the norm HKL2.
The space Cl(I;HKL2) consists of continuous H-valued stochastic K-processes
whose trajectories a.s. continuously differentiable in the Nelson–Gliklikh sense up
to the l-th order inclusive. For brevity, we call the space Cl(I;HKL2) the space
of differentiable K-“noises”.

3. Inhomogeneous Equation

In this section we consider problem (5), (6). For this we will construct several
functional spaces. Let H = (H, ⟨·, ·⟩) = W−1

2 (D) be a real, separable, Hilbert
space; X = L2(D); N = L4(D). In the space H we define the inner product as
follows

⟨η, v⟩ =
∫
D

ηṽ ds, ∀η, v ∈ W−1
2 (D),

where ṽ is a generalized solution of the Dirichlet problem (2) for the equation
−∆ṽ = v in the domain D.

N ↪→ X ↪→ H ↪→ X∗ ↪→ N∗. (3.1)

Which is also true for their stochastic counterparts

NKL2 ↪→ XKL2 ↪→ HKL2 ↪→ (XKL2)
∗ ↪→ (NKL2)

∗. (3.2)

Moreover, in the space HKL2 the inner product takes the form

(η, v) = E

∫
D

ηṽ ds = E

∫
D

∞∑
k=1

νkηkφk

∞∑
k=1

νkṽkφk ds = E

∞∑
k=1

ν2kηkṽk. (3.3)

Here and below, as φk we take the eigenfunctions of the Dirichlet problem in
the domain D for the operator (−∆), and by λk we denote the corresponding
eigenvalues.

By analogy with the deterministic case in the space HKL2, we introduce the
norm

∥η∥2HKL2
=

∞∑
k=1

λ−1
k ν2kD(ηk).

The space XKL2 ((XKL2)
∗), consists of norm-bounded elements η
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∥η∥2XKL2
= E

∫
D

η2 ds = E

∫
D

( ∞∑
k=1

νkηkφk

)2

ds = E

∞∑
k=1

ν2kη
2
k =

∞∑
k=1

ν2kD(ηk).

The space NKL2 is the closure of the set of random variables of the form (8)
according to the norm

∥η∥4NKL2
= E

∫
D

η4 ds = E

∫
D

( ∞∑
k=1

νkηkφk

)4

ds =

∫
D

∞∑
k=1

ν4kD
2(ηk)φ

4
k ds+ 6

∫
D

∞∑
k,j=1

ν2kν
2
jD(ηk)D(ηj)φ

2
kφ

2
j ds.

The space (NKL2)
∗ is the closure of the set of random variables of the form (8)

with respect to the norm

∥η∥
4
3

N∗
KL2

= E

∫
D

η
4
3 ds.

We define the operator L : XKL2 → (XKL2)
∗ by the formula

(Lη, v) = E

∫
D

(ηv + ληṽ) ds.

For λ ≥ λ1 the operator L is self-adjoint, non-negative definite and Fredholm.
The operator M : XKL2 → (XKL2)

∗ given by the formula

(Mη, v) = α2E

∫
D

ηv ds

is self-adjoint, non-negative definite.
The operator N(η) : NKL2 → (NKL2)

∗, defined by the formula

(N(η), v) = E

∫
D

η3v ds

is an s-monotone, 4-coercive, and homogeneous operator of order 4. Its Frechet
derivative

|(N ′
η(v), w)| = 3E

∣∣∣∣∣∣
∫
D

η2vw ds

∣∣∣∣∣∣ ≤ C∥η∥XKL2
∥v∥NKL2

∥w∥NKL2

is symmetric and bounded by Hölder’s inequality.
The operator N is s-monotone

(N ′
η(v), v) = 3E

∫
D

η2v2 ds ≥ 0
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and 4-coercive

(N(η), η) = E

∫
D

η3η ds = ∥η∥4NKL2
,

(N(η), v) = E

∫
D

η3v ds = ∥η∥3NKL2
∥v∥NKL2

= ∥η3∥N∗
KL2

∥v∥NKL2
.

In a similar way to the construction of the space Cl(I;HKL2), we construct the
spaces of differentiable K-“noises” Cl(I;XKL2), C

l(I;NKL2), where by XKL2 and
NKL2 we denote the spaces of random K-variables of the form (8). Note that,
due to the density and continuity of embeddings (9), the orthonormal basis φk of
H will also be a basis for the spaces N, X, N∗, X∗.

Lemma 1. (i) For all λ ≥ λ1, the operator L ∈ L(XKL2; (XKL2)
∗) is self-

adjoint, Fredholm, and non-negative definite.
(ii) The operator N(η) ∈ C∞(NKL2; (NKL2)

∗) is an s-monotone, 4-coercive, and
homogeneous operator of order 4.

Proof of Lemma 1. In the case λ ≥ λ1

kerL =

{
{0}, λ > λ1;
span{φ1}, λ = λ1.

Then

imL =

{
(XKL2)

∗, λ > λ1;
ξ ∈ (XKL2)

∗ : ⟨ξ, φ1⟩ = 0, λ = λ1.

and

coimL =

{
XKL2, λ > λ1;
ξ ∈ XKL2 : ⟨ξ, φ1⟩ = 0, λ = λ1.

By the construction of the spaces, the proof of this lemma is based on the idea
of the proof for the deterministic case in [12]. □

Definition 1. A stochastic K-process η ∈ C∞(I;XKL2) is called a solution of
equation (5) if a.s. all trajectories η satisfy equation (5) for all t ∈ I. The solution
η = η(t) of equation (5) is called a solution of the Showalter–Sidorov problem
(6) if the solution satisfies condition (6) for some pair of random K-variables
η0, η1 ∈ XKL2.

Remark 1. Let (I − Q)u(t) be independent of t. Then, due to the degeneracy
of equation (5), all its solutions η = η(t) for all t ∈ I lie in the phase manifold

M =

{
XKL2, λ > λ1;
η ∈ XKL2 : (I−Q)(Mη +N(η)) = (I−Q)u(t), λ = λ1.

Here

Q =

{
I, λ > λ1;
I−

∑
k:λk=λ

⟨·, φ1⟩, λ = λ1.

orthoprojector onto the image of the operator L.
Let us turn to the mathematical model (1)–(3). The phase manifold M takes

the form
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M =

{
XKL2, λ > λ1;
η ∈ XKL2 : E

∫
D

η3φ1 ds =
1
λ1

∫
D

u(t)φ1 ds, λ = λ1,

Moreover, we require that the expression 1
λ1

∫
D

u(t)φ1 ds does not depend on t.

Define η0 ∈ NKL2, η1 ∈ XKL2 in the form

η0 =

∞∑
k=1

νkη0kφk, η1 =

∞∑
k=1

νkη1kφk.

where η0k and η1k are sequences of random variables from L2.
Theorem 1. Let λ ≥ λ1, U = L2(0, T ;H), then for any sequences of ran-

dom variables η0k and η1k from L2 and any T ∈ R+ there exists a solution

η ∈ C∞(I;NKL2),
◦
η∈ C∞(0, T ; [coimL]KL2 ∩ XKL2) of the problem (1)–(3).

Proof of Theorem 1. Given that the operator L is self-adjoint and Fredholm, we
define X ⊃ kerL ≡ cokerL ⊂ X∗. Using the subspace kerL, we construct the sub-
spaces [kerL]KL2 ⊂ HKL2, and similarly, the subspaces [cokerL]KL2 ⊂ HKL2.
Considering that the embeddings (10) are dense and continuous, we construct
the spaces (XKL2)

∗ = [cokerL]KL2 ⊕ [imL]KL2 and (NKL2)
∗ = [cokerL]KL2 ⊕

[imL ∩ N∗]KL2. Let us construct a subspace coimL ⊂ X such that the sub-
space XKL2 = [kerL]KL2 ⊕ [coimL]KL2. In view of [kerL]KL2 and the subspace
coimL ∩N, then NKL2 = [kerL]KL2 ⊕ [coimL]KL2.

We fix ω ∈ Ω. Since the stochastic component in problem (1)–(3) is only in the
initial condition (3), then for a fixed ω the Nelson – Gliklikh derivative coincides
with the classical derivative. Thus, problem (1)–(3) is reduced to the deterministic
case [21]. By virtue of the theorem on the existence of a unique solution [21], the
existence of a trajectory solution to problem (1)–(3) is proven.

Since in the deterministic case there is a unique solution to problem (1)–(3).
Therefore, each trajectory for a fixed ω is unique. □

4. Optimal Control

We seek a solution to problem (1)–(4) in the form:

x = y + η, y = E(x), E(η) = 0.

The optimal control problem (4)–(6) is divided into two problems. The first
problem contains only deterministic functions:

Ly′′tt +My +N(y) = u(s, t), (s, t) ∈ D × (0, T ), (4.1)

y(s, t) = 0, (s, t) ∈ ∂D × (0, T ), (4.2)

L(y(s, 0)− y0(s)) = 0, L(y′t(s, 0)− y1(s)) = 0, s ∈ D, (4.3)

We define the functional as follows:
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J(x, u) = J(y, u) = β

T∫
0

(∥y(s, t)− z(s, t)∥4L4
+ ∥y′t(s, t)− z′t(s, t)∥2L2

)dt+

+(1− β)

T∫
0

∥u(s, t)∥2L2
dt → inf, u ∈ Uad,

(4.4)

i.e. the control function affects the mathematical expectation of the stochastic
process describing the state of the system, in other words, the useful part of the
signal. This type of functional was chosen due to its universality. By choosing the
weighting coefficient β ∈ (0, 1), it takes into account both the control costs and the
proximity between the desired z(s, t) and the current state of the system [23]. The
norms in the functional are determined by the theorem of existence of a solution
to the corresponding initial-boundary value problem. For the mathematical model
(1)–(3), the functional (15) can be interpreted as follows: it is required to bring
the wave to a given shape in a limited period of time with the least control costs.

To solve problem (12)–(15), we construct the space U = L2(0, T ;H) and de-
fine in it a non-empty closed and convex set Uad and the space Ydet = {y|y ∈
C∞(0, T ;L4), y′t ∈ C∞(0, T ; [coimL] ∩ L2). The existence theorem for a solution
to problem (12)–(15) is proved in [24, Theorem 3.2].

Knowing the control function u and the mathematical expectation y, we find
the stochastic process x, performing the inverse substitution x = η + y we return
to following problem

L
◦
x
(2)

+Mx−∆(x3) = u(t), (s, t) ∈ D × (0, T ), (4.5)

x(s, t) = 0, (s, t) ∈ ∂D × (0, T ), (4.6)

L(x(s, 0)− x0) = 0, L(
◦
x (s, 0)− x1) = 0, s ∈ D. (4.7)

In order to apply the theory from paragraph 3, we will construct special spaces

x ∈ L4 ⊕NKL2, and x′
t ∈ L2 ⊕ XKL2,

the spaces conjugate to them are constructed with respect to the inner product in
H ⊕ HKL2,

(x1, x2)H⊕HKL2 = (x1, x2)H + (x1, x2)HKL2 .

There is a chain of embeddings

L4 ⊕NKL2 ↪→ L2 ⊕ XKL2 ↪→ H ⊕HKL2 ↪→ (L2 ⊕ XKL2)
∗ ↪→ (L4 ⊕NKL2)

∗.

Denote Xst = {x ∈ C∞(0, T ;NKL2 ⊕ L4),
◦
x∈ C∞(0, T ; [coimL]KL2 ∩ XKL2 ⊕

L2)}. The solution to problem (16)–(18) follows from Theorem 1. Corollary 1.
Let λ ≥ λ1, then for any sequences of random variables x0k and x1k from L2 and
any T ∈ R+ there exists a solution x ∈ Xst of problem (16)–(18).
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Definition 2. A pair (x, u) is called a solution to the optimal control problem
(4)–(6) if (y, u) ∈ Ydet × Uad satisfies problem (12)–(15), and x ∈ Xst satisfies
problem (16)–(18) in the sense of Definition 1.

By [24, Theorem 3.2] and Corollary 1, we have

Theorem 2. Let λ ≥ λ1, then for any x0 = y0 + η0, x1 = y1 + η1, where
η0 ∈ NKL2, η1 ∈ XKL2, y0 = E(x0) ∈ N, y1 = E(x1) ∈ X ∩ coimL and any
T ∈ R+ there exists a solution to the optimal control problem (1)–(4) of the form
(x, u) = (y + η, u), where (y, u) is a solution to problem (12)–(15), and x is a
solution to problem (16)–(18).

5. Conclusions

Similar results can be easily obtained for the mathematical model (1), (2) with
the Cauchy initial conditions

x(0) = x0,
◦
x (0) = x1,

instead of the Showalter – Sidorov conditions (3). However, it is necessary to
check whether the initial data belong to the tangent bundle of the phase space,
i.e. (x0, x1) ∈ Tx0

M. The next logical step seems to be the study of the structure
of the phase space [26, 27] and obtaining a numerical solution as well as the study
of the stability of solutions [28]. The results obtained in the article can be used in
the development of application software for identifying the ultimate loads causing
deformation waves for newly developed structural materials.
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