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ABSTRACT. The Vovk-Azoury-Warmuth (VAW) forecaster is a powerful algorithm for
online regression, but its standard form is designed for stationary environments. Recently
Jacobsen and Cutkosky (2024) introduced a discounting factor, γ , to the VAW algorithm
(DVAW), enabling it to track changing concepts by down-weighting old data. They also
proposed an ensemble method for learning γ on-the-fly. In this paper we use a simplified
dynamic regret bound and employ the standard VAW forecaster as a meta-learner to dy-
namically aggregate the predictions of DVAW experts. The main result contains a bound
for the dynamic regret of the proposed ensemble. Computer experiments on synthetic data
show that our ensembling approach significantly outperforms both the standard VAW and
individual DVAW experts in non-stationary settings, while remaining robust and compet-
itive in stationary ones.

1. Introduction

Online learning provides a powerful framework for sequential decision-making in en-
vironments where data arrives as a stream. A central paradigm in this field is Online
Convex Optimization (OCO), where a learner makes a sequence of predictions to mini-
mize a cumulative loss [4, 7]. The classic performance measure is the static regret, which
benchmarks the learner against the best single fixed decision chosen in hindsight. While
fundamental, the assumption of a single best decision is often not suitable for real-world
applications where the underlying data-generating process may be non-stationary, causing
the optimal decision to drift over time.

To address this limitation, the more challenging measure of dynamic regret has been
proposed. It evaluates the learner against an arbitrary sequence of comparator decisions,
u = (u1, . . . ,uT ), making it a suitable metric for non-stationary environments [13]. The
difficulty of a dynamic regret problem is typically quantified by the variability of the
comparator sequence, most commonly its path-length, PT (u) = ∑

T−1
t=1 ∥ut+1 − ut∥2. The

state-of-the-art for general OCO problems has established minimax optimal regret bounds
of O(

√
T (1+PT (u)) [11], with recent work focusing on achieving tighter, problem-

dependent bounds that replace the dependence on the time horizon T with instance-
specific quantities like gradient variation [12].
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A canonical and important problem within this domain is online linear regression with
quadratic loss. For this specific setting, the Vovk-Azoury-Warmuth (VAW) forecaster,
discovered independently by [10] and [1], is known to be a powerful tool. The VAW
algorithm achieves optimal static regret bound, which holds for any comparator without
prior knowledge of its norm, a property explored extensively in works like [6]. However,
the standard VAW forecaster is designed for stationary environments; it weights all past
data equally, which hinders its ability to adapt to changes and can lead to poor perfor-
mance in dynamic settings.

A recent breakthrough by Jacobsen and Cutkosky [5] directly addressed this limitation
by introducing the Discounted VAW (DVAW) algorithm. By incorporating a discount
factor γ , DVAW exponentially down-weights older observations, allowing it to “forget”
old information and track a changing target. They further showed that the optimal dis-
count factor γ could be learned on-the-fly by running an ensemble of DVAW experts and
combining their predictions. Their approach achieves optimal dynamic regret bounds in
a fully unconstrained setting.

A key challenge is that the ideal discount factor γ∗ is defined implicitly by a non-
linear equation depending on the entire data stream and comparator sequence, making
it impossible to know in advance. To overcome this, Jacobsen and Cutkosky proposed
to learn γ by running an ensemble of DVAW experts over a carefully constructed grid
of discount factors. This, in turn, requires a sophisticated solution for aggregating the
experts’ predictions in a fully unconstrained setting. Their approach is a custom-designed
“range-clipped” meta-algorithm, which operates by first defining a dynamic “trust region”
based on the history of observations. It then clips each expert’s raw prediction to lie
within this safe range before combining them. This mechanism, while crucial for proving
theoretical guarantees by controlling for potentially unbounded losses, makes the overall
algorithm and its analysis quite intricate.

In this paper, we build upon the DVAW framework of [5] but propose a conceptually
simpler and more direct ensembling strategy. Our key insight is to employ the standard
VAW forecaster itself as the meta-learner to dynamically aggregate predictions from a
pool of DVAW experts, creating what we term the VE-DVAW (VAW-Ensembled DVAW)
architecture. First we derive a simplified dynamic regret bound for a single DVAW expert,
expressing it in terms of the comparator’s path-length (Lemma 3.1). The theoretical result
of this paper (Theorem 3.2) is a dynamic regret bound for the VE-DVAW algorithm,
demonstrating that our simpler method retains strong theoretical guarantees without the
need for custom clipping mechanisms. Also, through computer experiments on synthetic
datasets, we show that our VE-DVAW ensemble significantly outperforms the standard
VAW algorithm in non-stationary scenarios while remaining robust in stationary ones,
confirming its practical utility.

2. Preliminaries

We consider the standard online linear regression setting. In each round t = 1, . . . ,T ,
the learner receives a feature vector xt ∈ Rd , makes a prediction ŷt = ⟨wt ,xt⟩ using a
weight vector wt ∈ Rd , and then observes the true label yt ∈ R. The learner incurs the
squared loss ℓt(w) = 1

2 (⟨w,xt⟩− yt)
2, t ≥ 1.

Assume that ∥xt∥2 ≤ a, |yt | ≤Y , and put ℓ0(w) = λ∥w∥2
2/2. In the VAW algorithm [2,

Section 11.8], [7, Section 7.11] the weight wt is allowed to depend on the feature mapping
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xt , indicating that features xt are available at time t before predicting the label yt :

wt = argmin
w∈Rd

{
1
2
⟨xt ,w⟩2 +

t−1

∑
s=0

ℓs(w)

}
.

Explicitly,

wt = S−1
t

t−1

∑
i=1

yixi, St = λ Id +
t

∑
i=1

xix⊤i .

Moreover, S−1
t can be computed recursively by the Sherman-Morrison formula:

S−1
t = S−1

t−1 −
S−1

t−1xt(S−1
t−1xt)

T

1+ xT
t S−1

t−1xt
, S−1

0 = λ
−1Id .

The static regret

RT (u) =
1
2

T

∑
t=1

(⟨xt ,wt⟩− yt)
2 − 1

2

T

∑
t=1

(⟨xt ,u⟩− yt)
2, u ∈ Rd

of the VAW algorithm satisfies the bound [2, Theorem 11.8], [5, Theorem 1]:

RT (u)≤
λ

2
∥u∥2

2 +
dY 2

2
ln
(

1+
∑

T
t=1 ∥xt∥2

2
λd

)
. (2.1)

Recently [5] modified the VAW algorithm by introducing a discounting factor, which
allows to forget old data. Another modification proposed in [5] concerns the introduction
of an additional “hint” ỹt for yt at each step:‘

wt = arg min
w∈Rd

{
1
2
(ỹt −⟨xt ,w⟩)2 + γ

t−1

∑
s=0

γ
t−1−sℓs(w)

}
,

where γ ∈ (0,1], ỹ1 = 0, and ỹt ∈ [−Ỹ ,Ỹ ] for t > 1. We will call this algorithm DVAW
(discounted VAW) and denote it by Aγ(λ ). For γ = 1, ỹt = 0 the DVAW algorithm coin-
cides with VAW. In this case we will use the notation A (λ ). For γ = 0 DVAW predicts ỹt
by convention.

Recursively define Σt = xtx⊤t + γΣt−1, Σ0 = λ I. Then

wt = Σ
−1
t

[
ỹtxt + γ

t−1

∑
s=1

γ
t−1−sysxs

]
.

To derive the recursive formula for Σt apply the Woodbury matrix identity [3] for a rank-1
update:

(A+uv⊤)−1 = A−1 − A−1uv⊤A−1

1+ v⊤A−1u
to A = γΣt−1, u = v = xt :

Σ
−1
t =

(
γΣt−1 + xtx⊤t

)−1
=

(
1
γ

Σ
−1
t−1

)
−

(
1
γ
Σ
−1
t−1

)
xtx⊤t

(
1
γ
Σ
−1
t−1

)
1+ x⊤t

(
1
γ
Σ
−1
t−1

)
xt

=
1
γ

(
Σ
−1
t−1 −

Σ
−1
t−1xtx⊤t Σ

−1
t−1

γ + x⊤t Σ
−1
t−1xt

)
.
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Discounting appears to be an important modification that allows to bound the dynamic
regret

RT (u) =
T

∑
t=1

ℓt(wt)−
T

∑
t=1

ℓt(ut)

against a comparator sequence u = (u1, . . . ,uT ), where each ut ∈ Rd . Namely, for the
dynamic regret RAγ

T (λ )(u) of the algorithm Aγ(λ ), the following bound holds true [5,
Theorem 3.1]:

RAγ (λ )
T (u)≤ γλ

2
∥u1∥2

2 +
d
2

max
1≤t≤T

∆
2
t ln
(

1+
∑

T
t=1 γT−t∥xt∥2

2
λd

)
+ γ

T−1

∑
t=1

[Fγ

t (ut+1)−Fγ

t (ut)]+
d
2

ln(1/γ)∆2
1:T , (2.2)

where Fγ

t (w) = γ t λ

2 ∥w∥2
2 +∑

t
s=1 γ t−sℓs(w),

∆
2
t = (yt − ỹt)

2, ∆
2
1:T =

T

∑
t=1

(yt − ỹt)
2.

3. A simplified regret bound and the VAW-ensembled algorithm

Let us introduce the path length PT (u) = ∑
T−1
t=1 ∥ut+1 − ut∥2 and rewrite the estimate

(2.2) in term of this quantity.

Lemma 3.1. Let ∥ut∥2 ≤ R. Then the dynamic regret of the DVAW algorithm Aγ(λ ) is
bounded as follows:

RAγ (λ )
T (u)≤ ηa(aR+Y )PT (u)+

d
2η

∆
2
1:T +λRPT (u)

+
d
2

max
1≤t≤T

∆
2
t ln
(

1+
a2T
λd

)
+

λ

2
R2, (3.1)

where η = γ/(1− γ), γ ∈ [0,1). For a static comparator sequence with Pt(u) = 0 the
inequality (3.1) holds true also for γ = 1 (η =+∞).

Proof. Note that

γ

T−1

∑
t=1

(Fγ

t (ut+1)−Fγ

t (ut))

= γ

T−1

∑
t=1

(
γ

t λ

2
∥ut+1∥2 +

t

∑
s=1

γ
t−sℓs(ut+1)−

(
γ

t λ

2
∥ut∥2 +

t

∑
s=1

γ
t−sℓs(ut)

))

= γ

T−1

∑
t=1

(
γ

t λ

2
(∥ut+1∥2 −∥ut∥2)+

t

∑
s=1

γ
t−s(ℓs(ut+1)− ℓs(ut))

)
We bound the inner terms:

λ

2
(∥ut+1∥2 −∥ut∥2) =

λ

2
⟨ut+1 −ut ,ut+1 +ut⟩ ≤

λ

2
∥ut+1 −ut∥2∥ut+1 +ut∥2

≤ λR∥ut+1 −ut∥2
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For the second part of the inner sum we use the difference of squares formula and the
assumptions ∥xs∥2 ≤ a, ∥ut∥2 ≤ R:

ℓs(ut+1)− ℓs(ut) =
1
2
⟨xs,ut+1 −ut⟩(⟨xs,ut+1⟩+ ⟨xs,ut⟩−2ys)

≤ 1
2
∥xs∥2∥ut+1 −ut∥2(2R∥xs∥2 +2Y )≤ a(aR+Y )∥ut+1 −ut∥2.

Substitute these bounds back:

γ

T−1

∑
t=1

(Fγ

t (ut+1)−Fγ

t (ut))≤ γ

T−1

∑
t=1

(
γ

t
λR∥ut+1 −ut∥2 +

t

∑
s=1

γ
t−sa(aR+Y )∥ut+1 −ut∥2

)

= γ

T−1

∑
t=1

∥ut+1 −ut∥2

(
γ

t
λR+a(aR+Y )

t

∑
s=1

γ
t−s

)

≤
(

λR+
γ

1− γ
a(aR+Y )

)
PT (u)

for γ ∈ [0,1). From (2.2) now it follows that

RT (u)≤
γλ

2
R2 +

d
2

max
1≤t≤T

∆
2
t ln
(

1+
a2T
λd

)
+

(
λR+

γ

1− γ
a(aR+Y )

)
PT (u)+

d
2

(
1
γ
−1
)

∆
2
1:T

≤ ηa(aR+Y )PT (u)+
d

2η
∆

2
1:T +λRPT (u)+

d
2

max
1≤t≤T

∆
2
t ln
(

1+
a2T
λd

)
+

λ

2
R2,

where we used the inequality

ln
1
γ
≤ 1

γ
−1.

For γ = 1 and PT (u) = 0 the inequality (3.1) follows from (2.2) trivially. □

For PT (u)> 0 minimum of the right-hand side (3.1) over η > 0 is attained at

η
∗ =

√
d∆2

1:T
2a(aR+Y )PT (u)

. (3.2)

Plugging this value back into (3.1) we get

RT (u)≤
√

2da(aR+Y )∆2
1:T PT (u)+λRPT (u)+

d
2

max
1≤t≤T

∆
2
t ln
(

1+
a2T
λd

)
+

λ

2
R2.

Note that that this formula also holds true for Pt(u) = 0 (formally, η∗ = 0 in this case).
However, η∗, given by (3.2), cannot be used in any algorithm, since it depends on the

future values of labels via ∆2
1:T and on the comparator sequence via Pt(u). To overcome

this difficulty, following [5], we consider an ensemble of DVAW algorithms Aγk(λ ) with
parameters γk taken from the set Sγ , defined as follows:

b > 1, ηmin = 2d, ηmax = dT,

Sη = {ηi = ηminbi ∧ηmax : i ∈ Z+},
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Sγ =

{
γi =

ηi

1+ηi
: i ∈ Z+

}
∪{0}.

Note that the set Sγ contains M =O(logb(ηmax/ηmin))=O(logb T ) elements γ0, . . . ,γM−1.
The vectors of predictions zt = (zt,0, . . . ,zt,M−1), zt,k = ⟨wt,k,xt⟩, where wt,k are generated
by Aγk(λ ), serve as an expert advice input to the VAW (meta) algorithm A (λ ), which
mixes them to produce a master prediction. The approach of [5] is more complex: it
retains the regret estimate in the form of (2.2) and employs a more sophisticated meta-
algorithm.

Theorem 3.2. Let ∥ut∥2 ≤ R. For DVAW forecasters Aγk(λ ), γk ∈ Sγ take VAW A (λ )
as a meta-algorithm. Then

RA (λ )
T (u)≤ λ

2
+

MY 2

2
ln
(

1+
Z2

T
λM

)
+(1+b)

√
d
2

a(aR+Y )PT (u)∆2
1:T +

1
2
(Y + Ỹ )2

+λRPT (u)+
d
2

max
1≤t≤T

∆
2
t ln
(

1+
a2T

λd

)
+

λ

2
R2, (3.3)

Z2
T =

[
(M−1)((Y + Ỹ )2 +4Y 2)+ Ỹ 2)

]
T +2(M−1)d(Y + Ỹ )2 ln

(
1+

a2T

λd

)
.

In particular, for λ ∝ 1/T we have

RA (λ )
T (u) = O

(
(MY 2 +d(Y + Ỹ )2) lnT +(1+b)

√
da(aR+Y )PT (u)∆2

1:T

)
, T → ∞,

since Z2
T/M = O(T ).

Proof. Let zt = (zt,0, . . . ,zt,M−1), zt,k = ⟨wt,k,xt⟩, where wt,k are generated by the DVAW
algorithms with γ = γk. For any k ∈ {0, . . . ,M−1}, which can depend on η∗ = η∗(y,u),
we have

RA (λ )
T (u) =

1
2

T

∑
t=1

(⟨zt ,αt⟩− yt)
2 − 1

2

T

∑
t=1

(⟨zt ,ek⟩− yt)
2

+
1
2

T

∑
t=1

(zt,k − yt)
2 − 1

2

T

∑
t=1

(⟨ut ,xt⟩− yt)
2

= RA (λ )
T (ek)︸ ︷︷ ︸

Meta-learner’s regret w.r.t. expert k

+ R
Aγk
T (u)︸ ︷︷ ︸

Regret of expert k

,

where αt are produced by the VAW algorithm A (λ ), and ek is the one-hot vector with
1 at index k. Recall that zt,0 = ỹt by convention. We need to estimate two terms in the
right-hand side.

(1) Bounding meta-learner’s regret RA (λ )
T (ek). For the regret

RA (λ )
T (ek) =

1
2

T

∑
t=1

(⟨zt ,αt⟩− yt)
2 − 1

2

T

∑
t=1

(⟨zt ,ek⟩− yt)
2
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of the VAW algorithm we will use the bound (2.1):

RA
T (α)≤ λ

2
∥ek∥2

2 +
MY 2

2
ln
(

1+
∑

T
t=1 ∥zt∥2

2
λM

)
.

To estimate ∥zt∥2 put u = 0 in (2.2). For k ≥ 1, we get
T

∑
t=1

z2
t,k =

T

∑
t=1

(⟨wt,k,xt⟩− yt + yt)
2 ≤ 2

T

∑
t=1

(⟨wt,k,xt⟩− yt)
2 −2

T

∑
t=1

y2
t +4

T

∑
t=1

y2
t

= 4R
Aγk (λ )

T (0)+4
T

∑
t=1

y2
t

≤ 2d max
1≤t≤T

∆
2
t ln
(

1+
a2T

λd

)
+2d ln

(
1
γk

)
∆

2
1:T +4Y 2T

≤ 2d(Y + Ỹ )2 ln
(

1+
a2T

λd

)
+(Y + Ỹ )2T +4Y 2T,

where we used that

ln
1
γk

≤ 1− γk

γk
=

1
ηk

≤ 1
ηmin

=
1

2d
, ∆

2
1:T ≤ (Y + Ỹ )2T

in the last inequality. For k = 0,
T

∑
t=1

z2
t,0 =

T

∑
t=1

ỹ2
t ≤ Ỹ 2T.

It follows that
T

∑
t=1

M−1

∑
k=0

z2
t,k ≤ Z2

T :=
[
(M−1)((Y + Ỹ )2 +4Y 2)+ Ỹ 2)

]
T

+2(M−1)d(Y + Ỹ )2 ln
(

1+
a2T

λd

)
,

and

RA
T (ek)≤

λ

2
+

MY 2

2
ln
(

1+
Z2

T
λM

)
. (3.4)

(2) Bounding the regret of expert k. For k ≥ 1,

R
Aγk (λ )

T (u)≤ ηka(aR+Y )PT (u)+
d

2ηk
∆

2
1:T +λRPT (u)

+
d
2

max
1≤t≤T

∆
2
t ln
(

1+
a2T

λd

)
+

λ

2
R2

by Lemma 3.1. For k = 0,

RA0(λ )
T (u) =

1
2

T

∑
t=1

(ỹt − yt)
2 − 1

2

T

∑
t=1

(⟨ut ,xt⟩− yt)
2 ≤ 1

2

T

∑
t=1

(ỹt − yt)
2 =

1
2

∆
2
1:T .

Select k by the following rules:
(1) k = 0, if η∗ ≤ ηmin = 2d;
(2) take k such that ηk ≤ η∗ ≤ bηk, if ηmin ≤ η∗ ≤ ηmax, where ηk ∈ Sη ;
(3) ηk = ηmax = dT , if η∗ ≥ ηmax = dT .
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Let us estimate R
Aγk
T (λ ) in each of these cases.

(1) η∗ ≤ ηmin. From the bound

η
∗ =

√
d∆2

1:T
2a(aR+Y )PT (u)

≤ ηmin = 2d

it follows that √
∆2

1:T
2

≤ 2
√

da(aR+Y )PT (u).

Hence,

RA0(λ )
T (u)≤

√
1
2

∆2
1:T

√
1
2

∆2
1:T ≤ 2

√
da(aR+Y )PT (u)

√
1
2

∆2
1:T (3.5)

(2) Let ηmin ≤ η∗ ≤ ηmax. Take k such that ηk ≤ η∗ ≤ bηk. Then

ψ(ηk) := ηka(aR+Y )PT (u)+
d

2ηk
∆

2
1:T ≤ η

∗a(aR+Y )PT (u)+
bd

2η∗ ∆
2
1:T

= (1+b)

√
d
2

a(aR+Y )PT (u)∆2
1:T .

Hence,

RAk
T (u)≤ ψ(ηk)+λRPT (u)+

d
2

max
1≤t≤T

∆
2
t ln
(

1+
a2T

λd

)
+

λ

2
R2

≤ (1+b)

√
d
2

a(aR+Y )PT (u)∆2
1:T +λRPT (u)

+
d
2

max
1≤t≤T

∆
2
t ln
(

1+
a2T

λd

)
+

λ

2
R2. (3.6)

(3) Let η∗ ≥ ηmax. Take ηk = ηmax = dT . If PT (u)> 0, then

ψ(ηmax)≤ η
∗a(aR+Y )PT (u)+

1
2T

∆
2
1:T

≤
√

d
2

a(aR+Y )PT (u)∆2
1:T +

1
2
(Y + Ỹ )2.

Clearly, the last estimate remains true also for PT (u) = 0. It follows that

RAk
T (u)≤ ψ(ηk)+λRPT (u)+

d
2

max
1≤t≤T

∆
2
t ln
(

1+
a2T

λd

)
+

λ

2
R2

≤
√

d
2

a(aR+Y )PT (u)∆2
1:T +

1
2
(Y + Ỹ )2 +λRPT (u)

+
d
2

max
1≤t≤T

∆
2
t ln
(

1+
a2T

λd

)
+

λ

2
R2. (3.7)
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Collecting (3.5), (3.6), (3.7), we conclude that

R
Aγk
T (u)≤ (1+b)

√
d
2

a(aR+Y )PT (u)∆2
1:T +

1
2
(Y + Ỹ )2

+λRPT (u)+
d
2

max
1≤t≤T

∆
2
t ln
(

1+
a2T

λd

)
+

λ

2
R2.

Together with (3.4) this imples the desired inequlality (3.3). □

We refer to the algorithm proposed in Theorem 3.2 as VE-DVAW (VAW-Ensembled
DVAW).

Remark 3.3. The basic result of [5] allows to directly deduce the regret bound RT (u) =
O(lnT +

√
T PT (u)) for their ensemble (Theorem 4.2) under the same assumptions as in

Theorem 3.2. The bound RT (u) = O((lnT )2 +
√

T PT (u)) of Theorem3.2 for our simple
VE-DVAW architecture is slightly worse (recall that M = lnT ).

Remark 3.4. The authors of [5] also explore using the learner’s own prediction as a hint:
ỹt = ⟨xt ,wt⟩, to deduce small-loss bounds. However, this creates a circular definition, as
the weight vector wt depends on ỹt and vice-versa. The paper does not specify a procedure
for resolving this implicit definition. So, it seems that this approach is not justified.

4. Computer experiments

The main goal of our computer experiments is to compare the VAW algorithm with the
ensemble of DVAW forecasters, considered in Theorem 3.2. We generated six synthetic
datasets, each with T = 10000 samples and d = 5 input features. The data are generated
from a time-varying linear model:

yt = ⟨w∗
t ,xt⟩+ εt ,

where the inputs xt are drawn from a standard normal distribution, xt ∼N (0, Id), and the
noise term εt is drawn from N (0,0.22), unless specified otherwise. We note that drawing
features from a Gaussian distribution, as is common in experimental setups, means that
the boundedness assumptions on ∥xt∥2, |yt |, required for our theoretical analysis are only
satisfied with high probability for sufficiently large constants a and Y . The scenarios are
designed to test different aspects of adaptivity.

(1) Stationary environment: The true weight vector is constant throughout the ex-
periment. This serves as a baseline to evaluate performance in a stable environ-
ment:

w∗
t = [1.0,−0.5,0.2,−0.8,1.2]⊤.

(2) Concept shif: The underlying weight vector changes suddenly at two points in
time. This tests the ability to recover quickly from drastic changes:

w∗
t =


[1.0,−0.5,0.2,−0.8,1.2]⊤ if t ≤ 3333,
[−1.0,1.0,0.0,1.0,−0.5]⊤ if 3333 < t ≤ 6666,
[0.5,0.5,−0.5,−0.5,1.5]⊤ if t > 6666.
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(3) Gradual drift: The true weights evolve according to a random walk. This simu-
lates a continuously evolving environment and tests the tracking capability of the
algorithms:

w∗
t = w∗

t−1 + vt , where vt ∼ N (0,(0.05)2Id).

The process is initialized with w∗
0 = [1.0,−0.5,0.2,−0.8,1.2]⊤.

(4) Periodic drift: Each component of the true weight vector follows a periodic
function to model cyclical or seasonal effects:

w∗
t, j = c j +A j sin

(
2π

p j
t
)
, j = 1, . . . ,5,

where:
• c = [1.0,−0.5,0.2,−0.8,1.2]⊤ is the stationary center (as in Scenario 1),
• A = [0.5,0.8,0.3,0.6,0.4]⊤ contains the oscillation amplitudes,
• p = [100,250,500,150,300]⊤ specifies the period lengths (in timesteps).

(5) Changing noise: The true weight vector is stationary (as in Scenario 1), but the
variance of the observation noise changes over time:

εt ∼ N (0,σ2
t ), where σt =


0.1 if t ≤ 3333 (low noise),
1.0 if 3333 < t ≤ 6666 (high noise),
0.1 if t > 6666 (low noise).

(6) Covariate shift: The true weight vector is stationary (as in Scenario 1), but the
distribution of the input features xt shifts:

xt ∼

{
N (0, Id) if t ≤ 5000
N (µ, Id) if t > 5000

where the mean shifts to µ = [2,2,−2,−2,0]⊤.
We compare the performance of three algorithms, whose parameters are detailed be-

low. In all cases the hint for the DVAW experts was set to ỹt = 0.
(a) VAW: The standard Vovk-Azoury-Warmuth algorithm, serving as our primary

baseline. This is equivalent to a DVAW forecaster with the discounting factor
γ = 1.0 and the regularization parameter λ = 0.1.

(b) VE-DVAW (Th): the ensemble method described in Theorem 3.2. It uses the
VAW meta-learner with regularization λ = 0.1 to aggregate a pool of DVAW
experts. The experts share the regularization parameter λ = 10/T = 0.001. The
grid of discount factors Sγ is constructed according to the theory with b = 2,
ηmin = 2d = 10, and ηmax = dT = 50000. This results in a pool of 16 distinct
experts. The γ values, rounded to six decimal places for clarity, are:

Sγ = {0.000000,0.909091,0.952381,0.975610,0.987654,0.993789,
0.996895,0.998439,0.999220,0.999609,0.999805,0.999902,

0.999951,0.999975,0.999980,1.000000}.
(c) VE-DVAW (Pr): An ensemble with the same architecture and parameters as VE-

DVAW (Th), except that it uses a smaller, manually-selected “practical” set of
four discount factors: γ ∈ {0.70,0.85,0.95,1.00}.
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The averaged MSE for each algorithm across the six scenarios, averaged over 5 runs,
are summarized in Table 1. The best results are shown in bold. These results clearly
illustrate the trade-off between the static VAW algorithm and the adaptive ensembles. In
scenarios with a fixed underlying model (Stationary, Changing noise, and Covariate shift),
the standard VAW performs best, as expected, since there is no benefit to forgetting past
data. However, the performance loss of the ensemble methods is minimal, demonstrating
their robustness. Note that for Stationary scenario the best possible MSE is 0.04, which
is the variance of noise.

Conversely, in all scenarios featuring parameter drift (Concept shift, Gradual drift, and
Periodic drift), both ensemble methods significantly outperform the standard VAW, which
is unable to adapt to the changes. Notably, the VE-DVAW (Th) with its theoretically de-
rived grid of experts shows an advantage in tracking gradual drifts, as seen in the Gradual
and Periodic drift scenarios.

These results empirically validate that the proposed ensembling method provides sub-
stantial gains in non-stationary settings at a small cost in stationary ones.

TABLE 1. MSE of Meta-Learners vs. Individual Experts (T = 10000).

Algorithms

Scenario VAW
(γ = 1.0)

DVAW
(γ = 0.70)

DVAW
(γ = 0.85)

DVAW
(γ = 0.95)

VE-DVAW
(Th)

VE-DVAW
(Pr)

Stationary 0.0444 2.1575 1.1367 0.2937 0.0467 0.0468

Concept
Shift 2.6261 2.1089 1.1149 0.3084 0.1133 0.1162

Gradual
Drift 21.6851 40.0723 20.7532 4.9391 0.5746 0.8117

Periodic
Drift 0.7942 2.6318 1.4205 0.5994 0.3147 0.3750

Changing
Noise 0.3459 2.4841 1.4711 0.6177 0.3495 0.3488

Covariate
Shift 0.0445 3.4762 1.7214 0.4025 0.0468 0.0468

To perform an additional rough evaluation of the quality of the proposed ensemble, we
used the well-known Ader algorithm [11], which has a similar regret bound:

RT (u) = O(
√

T (1+PT (u)).

However, this bound holds true under the assumption that wt belongs to a bounded feasible
set, and the gradients of loss functions are uniformly bounded. As noted previously, our
experimental setup with Gaussian features does not satisfy these conditions. The gradients
∇ℓt(w) = (⟨w,xt⟩−yt)xt are unbounded due to the unboundedness of xt , even if w belongs
to a bounded set.
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Putting aside these theoretical issues, we considered the parameter grid

(D,G) ∈ {5,15,30}×{10,100,1000}
and created N = 9 Ader “expert” algorithms for all parameter combinations. We used the
PyNOL library1 to run these algorithms in parallel and created the exponentially weighted
average (EWA) [2] meta-algorithm, taking convex combinations of their predictions with
the weights wt updated by

wt,i =
wt−1,ie−η(zt,i−yt )

2

∑
N
j=1 wt−1, je−η(zt, j−yt )2 ,

where

η =

√
2

lnN
T

, w1 = (1/N, . . . ,1/N).

The results for the best individual experts chosen from the grid in hindsight and the
EWA-Ader meta-algorithm are presented in Table 2. The “Best individual expert” column
shows the parameters (D,G) and the corresponding MSE for the single expert from the
grid that achieved the lowest MSE when averaged over 5 independent runs. The “EWA-
Ader” column shows the MSE of the online ensemble, also averaged over the same 5
runs. Interestingly, Ader++ algorithm [11], which has the same theoretical regret bound
as Ader, demonstrated worse results, and we do not show them here.

TABLE 2. EWA-Ader vs the best-performing individual Ader expert
chosen in hindsight (T = 10000).

Best individual expert EWA-Ader

Scenario (Chosen from grid in hindsight) (Online tuning)

Stationary
(D = 5,G = 10)

0.0564 0.0648

Concept Shift
(D = 15,G = 10)

0.0928 0.1003

Gradual Drift
(D = 30,G = 10)

0.2036 0.2101

Periodic Drift
(D = 30,G = 10)

0.2658 0.2741

Changing Noise
(D = 5,G = 10)

0.3938 0.4028

Covariate Shift
(D = 5,G = 10)

0.0623 0.0708

The EWA-Ader ensemble’s performance is only slightly worse than that of the best
individual expert. Furthermore, it adapts to scenarios with parameter drift (Concept shift,
Gradual drift, and Periodic drift) even better than VE-DVAW, but underperforms in sce-
narios with a fixed underlying model (Stationary, Changing noise, and Covariate shift).

1https://github.com/li-lf/PyNOL
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5. Conclusion

In this paper we addressed the challenge of adapting the Vovk-Azoury-Warmuth fore-
caster, a powerful algorithm for stationary online regression, to dynamic environments.
Building on the work of [5], we proposed an ensemble method that leverages a pool of
discounted VAW (DVAW) experts, each configured with a different discount factor γ .
We employed the standard VAW forecaster as a meta-learner to dynamically aggregate
the predictions of these experts. We simplified the dynamic regret bound of [5] for the
DVAW algorithm, and directly obtained the simplified dynamic regret bound of the form
O((lnT )2 +

√
T PT (u)) for the proposed ensemble. Here PT (u) is the path length of the

comparator sequence.
Our empirical evaluation on several synthetic datasets demonstrated that the proposed

ensemble, which we call VE-DVAW, significantly outperforms the standard VAW algo-
rithm in non-stationary settings, including abrupt concept shifts, gradual drift, and pe-
riodic changes. Crucially, the ensemble remains robust and highly competitive in sta-
tionary environments, incurring only a minimal performance penalty. Furthermore, the
VE-DVAW showed performance competitive with a tuned ensemble of Ader algorithms,
confirming its place among effective methods for this problem class.

An interesting direction for future work is to extend the proposed adaptive ensembling
techniques to non-linear regression in Reproducing Kernel Hilbert Spaces (RKHS). Com-
bining our VE-DVAW architecture with methods like random Fourier features [8] could
potentially lead to efficient, scalable, and adaptive algorithms for non-linear regression
in dynamic environment. We refer to [9] dealing with a similar architecture in the static
environment.
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