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ABSTRACT. We study telegraph processes with time change implemented by means of
an inverse α-stable subordinator. Two different types of subordination are proposed,
namely, the time change in an integrated telegraph process and an integrated telegraph
process with changed time. Explicit formulae for the first two moments are presented.

1. Introduction

The concept of random time change in continuous-time stochastic processes was first
introduced in [2, 7] and a manuscript by W. Doeblin written around 1940 but published
only in 2000, see [3]. See also [13] and the classic book [4]. In recent decades, time-
changed (subordinated) random processes have become particularly popular for research
as well as for numerous applications, see [9] for a historical overview. Due to mem-
ory effects, subordinated stochastic processes are useful for various model in the natural
sciences, including models in biology, see e.g. [6].

For any stochastic process X = X(t) (parent process) and an α-stable Lévy subordina-
tor σα(t), the time-subordinated process Y =Y (t) is defined by replacing the time in X(t)
with a positive non-decreasing process Eα(t) which is the inverse of σα(t).

In this paper, we study in detail the result of such replacement when the parent process
X is a telegraph process t→ cε(t) or, alternatively, an integrated telegraph process,

X(t) = T (t) =
∫ t

0
cε(s)ds. (1.1)

Here ε = ε(t) is a two-state Markov process and c0,c1 ∈ (−∞,∞), c0 > c1.
In other words, subordination is introduced in two ways: by direct replacement of time

in the integrated telegraph process, T α(t) =T (Eα(t)), or by replacing time in cε(t) with
subsequent integration, Tα(t) =

∫ t
0 cε(Eα (s))ds.

The paper is organised as follows. The next section collects some essentials and the
basic properties of (inhomogeneous) telegraph processes and inverse α-stable subordina-
tors. In Section 3 we explicitly express the first two moments of subordinated telegraph
processes of both types.

Date: Date of Submission May 15, 2025; Date of Acceptance June 30, 2025; Communicated by Yuri E.
Gliklikh.

2000 Mathematics Subject Classification. Primary 26A33; Secondary 60K50; 60J27 .
Key words and phrases. telegraph process; inverse stable subordinator, time-changed process.
The financial support by the Russian Science Foundation (RSF) through Project 24-21-00245,

https://rscf.ru/project/24-21-00245, is gratefully acknowledged.

 Global and Stochastic Analysis
Vol. 12 No. 5 (September, 2025)  
 
Received: 15th May 2025          Revised: 20th June 2025               Accepted: 30th June 2025 

38



NIKITA RATANOV AND MIKHAIL TUROV

2. Preliminares

2.1. Telegraph process. Let ε = ε(t) ∈ {0,1}, t ≥ 0, be a two-state càdlàg Markov pro-
cess with the infinitesimal generator

Λ =

(
−λ0 λ0
λ1 −λ1

)
, λ0,λ1 > 0. (2.1)

The transition matrix Π(t) = (πi j(t))i, j∈{0,1}, πi j(t) = Pi{ε(t) = j}, for the process ε =
ε(t) has the form

Π(t) = exp(tΛ) =
1

2λ

(
λ1 +λ0e−2λ t λ0−λ0e−2λ t

λ1−λ1e−2λ t λ0 +λ1e−2λ t

)
, 2λ := λ0 +λ1,

see, for example, [12, (3.3.43)]. Here by Pi{·}, denotes the conditional probability given
the initial state, Pi{·} = P{· | ε(0) = i}. The corresponding expectations are denoted as
Ei[·].

Explicit formulae for the means and covariances of the telegraph process cε(t) are
known. For completeness, we present these formulae here.

Proposition 2.1. For any s > 0,

E0[cε(s)] = κ +2cp∗1e−2λ s, (2.2)

E1[cε(s)] = κ−2cp∗0e−2λ s. (2.3)

For any s1,s2, 0 < s1 ≤ s2,

E0
[
cε(s1) · cε(s2)

]
= κ

2 +2cp∗1κe−2λ s1 +2cp∗1κ̄e−2λ s2 +4c2 p∗0 p∗1e−2λ (s2−s1), (2.4)

E1
[
cε(s1) · cε(s2)

]
= κ

2−2cp∗0κe−2λ s1 −2cp∗0κ̄e−2λ s2 +4c2 p∗0 p∗1e−2λ (s2−s1). (2.5)

The first and second moment for the integrated telegraph process T (t) are given by

E0[T (t)] = κt + p∗1c
1− e−2λ t

λ
, (2.6)

E1[T (t)] = κt− p∗0c
1− e−2λ t

λ
, (2.7)

and

E0[T (t)]2 = κ
2t2 +2p∗1cκ̄

1− e−2λ t

λ
t +2p∗1(2p∗0− p∗1)c

2 e−2λ t −1+2λ t
λ 2 , (2.8)

E1[T (t)]2 = κ
2t2−2p∗0cκ̄

1− e−2λ t

λ
t +2p∗0(2p∗1− p∗0)c

2 e−2λ t −1+2λ t
λ 2 . (2.9)

Here 2c = c0− c1, κ = p∗0c0 + p∗1c1, κ̄ = p∗1c0 + p∗0c1;

p∗0 =
λ1

λ0 +λ1
, p∗1 =

λ0

λ0 +λ1

are the stationary probabilities of the Markov process ε = ε(t).

Proof. See [12] or [11]. �
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The joint distribution of processes T (t) and N(t) is characterised by probability den-
sity functions (p0(t,x;n), p1(t,x;n)), supported on [c1t, c0t], and defined as

pi(t,x;n)dx = Pi
{
T (t) ∈ dx, N(t) = n

}
, n≥ 0, x ∈ (c1t, c0t).

In the case of no switching, Pi{T (t) ∈ dx,N(t) = 0}= exp(−λit)δcit(dx), i ∈ {0,1}.
In general, (p0(t,x;n), p1(t,x;n)) follow the Cattaneo system, [12, (3.8)],

∂ p0

∂ t
(t,x;n)+ c0

∂ p0

∂x
(t,x;n) =−λ0 p0(t,x;n)+λ0 p1(t,x;n−1),

∂ p1

∂ t
(t,x;n)+ c1

∂ p1

∂x
(t,x;n) =λ1 p0(t,x;n−1)−λ1 p1(t,x;n),

n≥ 1, t > 0.

(2.10)

The probability density function p(t,x) = (p0(t,x), p1(t,x)) of the telegraph process
T (t) is determined by

p0(t,x) =
∞

∑
n=0

p0(t,x;n), p1(t,x) =
∞

∑
n=0

p1(t,x;n). (2.11)

It is known, see e.g. [12], that

p0(t,x) =e−λ0t
δc0t(x)+

1
2c

[
λ0θ(t,x)I0

(
1
c

√
λ0λ1(c0t− x)(x− c1t)

)
+
√

λ0λ1θ(t,x)
(

x− c1t
c0t− x

)1/2

I1

(
1
c

√
λ0λ1(c0t− x)(x− c1t)

)]
,

p1(t,x) =e−λ1t
δc1t(x)+

1
2c

[
λ1θ(t,x)I0

(
1
c

√
λ0λ1(c0t− x)(x− c1t)

)
+
√

λ0λ1θ(t,x)
(

x− c1t
c0t− x

)−1/2

I1

(
1
c

√
λ0λ1(c0t− x)(x− c1t)

)]
.

(2.12)

Here 2c = c0− c1, and θ(t,x) =
1
2c

exp
(
−λ0

x− c1t
2c

−λ1
c0t− x
c0− c1

)
, and I0, I1 are the

modified Bessel functions.
In the symmetric case, c0 =−c1 = c, λ0 = λ1 = λ , system (2.10) leads to the telegraph

equation
∂ 2u
∂ t2 +2λ

∂u
∂ t

= c2 ∂ 2u
∂x2 . (2.13)

In this case, both the probability density functions p0(t,x), p1(t,x) of T (t) and some
other characteristics satisfy equation (2.13).

It is well known that under the so-called Kac scaling,

c, λ →+∞, such that c2/λ → 1,

equation (2.13) becomes the heat equation, [5], and the symmetric telegraph process T (t)
converges weakly to the standard Brownian motion, [10]. See also [12] for a proof of the
corresponding functional limit theorem and its generalisations.

Note that T (t) is not a Markov process, whereas the pair (T (t), ε(t)) is.
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2.2. α-stable subordinator. Let Eα = Eα(t) be the inverse process or the first hitting
time process of α-stable subordinator σα , 0 < α < 1,

Eα(t) = inf{u > 0 | σα(u)> t} .
It is known, see [1], that the Laplace-Stieltjes transform of Eα(t) is given by the Mittag-
Leffler function

ψ(q) := E
[
e−qEα (t)

]
= Eα(−qtα) =

∞

∑
n=0

(−qtα)n

Γ(1+αn)
. (2.14)

Further, the inverse α-stable subordinator Eα is a self-similar process: for k > 0

k−α Eα(kt) d
= Eα(t), ∀t > 0. (2.15)

Furthermore, the mean values related to Eα are given in closed form:

E [Eα(t)] =−ψ
′(q)|q=0 =

tα

Γ(1+α)
, (2.16)

E [Eα(t)]
2 =ψ

′′(q)|q=0 =
2t2α

Γ(1+2α)
, (2.17)

E
[
Eα(t)e−2λEα (t)

]
=−ψ

′(q)|q=2λ =
tα

α
Eα,α(−2λ tα) =

tα

α

∞

∑
n=0

(−2λ tα)n

Γ(α +nα)
. (2.18)

3. Two types of subordination

Let Eα = Eα(t) be the inverse α-stable subordinator independent of ε .
We study the two types of subordination of the integral telegraph process (1.1).

3.1. 1st type of subordination. Let us first consider the time-changed telegraph process
T α(t), which is defined as

T α(t) = T (Eα(t)) =
∫ Eα (t)

0
cε(s)ds, t > 0. (3.1)

It is known that the increments of the inverse Lévy subordinators are not independent
and stationary. Therefore, T (t) is not a Lévy process. In addition, this process is semi-
Markov, but not strong Markov. See [8].

The distribution of the time-changed (subordinated) process T α(t) is given by the
probability density function

pα(t,x) =
∫

∞

0
p(s,x)να(s, t)ds,

where p(s, ·) is the probability density function T (s), see (2.11)-(2.12), and να(·, t) is the
probability density function of Eα(t).

Remark 3.1. Let u(t,x) = (E0[ f (x+T α(t)))], E1[ f (x+T α(t))]) with f (·) ∈ C1
0(R).

Function u(t,x) is given by

u(t,x) =
∫

∞

−∞

f (x+ y)pα(t,y)dy,

and it satisfies the following time-fractional differential equation,
CDα

t u(t,x) = (Λ+L )u(t,x),
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see [1]. Here CDα
t u(t,x) is the Caputo derivative,(CDα
t u
)
(t,x) =

1
Γ(1−α)

∂

∂ t

∫ t

0
(t− s)−α (u(s,x)−u(0,x))ds,

and Λ+L is the infinitesimal generator of the Markov process (T (t), ε(t)), where

L =

c0
∂

∂x
0

0 c1
∂

∂x

 , (3.2)

Λ is defined by (2.1), see [12].

By applying (2.6)-(2.9) (Proposition 2.1) and (2.18), the first two moments of T α(t)
can be represented explicitly.

Theorem 3.2. For 0 < α ≤ 1, t ≥ 0, we have

E0 [T
α(t)] =

κtα

Γ(1+α)
+ p∗1c

1−Eα(−2λ tα)

λ
, (3.3)

E1 [T
α(t)] =

κtα

Γ(1+α)
− p∗0c

1−Eα(−2λ tα)

λ
, (3.4)

and

E0 [T
α(t)]2 =

2κ2

Γ(1+2α)
t2α +

2p∗1κ̄c
λ

[
1

Γ(1+α)
− 1

α
Eα,α(−2λ tα)

]
tα

+
2p∗1(2p∗0− p∗1)c

2

λ 2

[
Eα(−2λ tα)−1+

2λ

Γ(1+α)
tα

]
,

(3.5)

E1 [T
α(t)]2 =

2κ2

Γ(1+2α)
t2α −

2p∗0κ̄c
λ

[
1

Γ(1+α)
− 1

α
Eα,α(−2λ tα)

]
tα

+
2p∗0(2p∗1− p∗0)c

2

λ 2

[
Eα(−2λ tα)−1+

2λ

Γ(1+α)
tα

]
.

(3.6)

Proof. By definition, (3.1), formulae (3.3)-(3.4) and (3.5)-(3.6) follow directly from (2.6)-
(2.7) and (2.8)-(2.9), respectively, after applying (2.14)-(2.18). Indeed, since T and Eα

are independent, by (2.6)-(2.7) we obtain

E0

[
T

(1)
α (t)

]
=E
[

κEα(t)+
p∗1c
λ

(1− exp(−2λEα(t)))
]
,

E1

[
T

(1)
α (t)

]
=E
[

κEα(t)−
p∗0c
λ

(1− exp(−2λEα(t)))
]
,

which give (3.3)-(3.4). Formulae (3.5)-(3.6) follow similarly. �

3.2. 2d type of subordination. Let’s consider the second type of subordination,

Tα(t) =
∫ t

0
cε(Eα (s))ds. (3.7)

The representations of the first two moments of Tα(t) follow from Proposition 2.1 and
(2.18), as before.
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Theorem 3.3.

E0Tα(t) =κt +2p∗1cδ0(t), (3.8)

E1Tα(t) =κt−2p∗0cδ0(t), (3.9)

and

E0
[
Tα(t)2]= (p∗0c0+p∗1c1)

2t2

+4p∗1c(κtδ0(t;α)+(κ̄−κ)δ1(t))+4p∗0 p∗1c2
δ2(t;α),

(3.10)

E1
[
Tα(t)2]= (p∗0c0+p∗1c1)

2t2

−4p∗0c(κtδ0(t;α)+(κ̄−κ)δ1(t))+4p∗0 p∗1c2
δ2(t;α).

(3.11)

Here

δ0(t;α) =

t∫
0

Eα(−2λ sα)ds, δ1(t;α) =

t∫
0

sEα(−2λ sα)ds,

δ2(t;α) =
∫∫
[0,t]2

sEα(−2λ |sα
1 − sα

2 |)ds1ds2.

Proof. By definition (3.7),

E0 [Tα(t)] =
∫ t

0
E0
[
cε(Eα (s))

]
ds, (3.12)

E0 [Tα(t)]
2 = 2

∫ t

0
ds1

∫ t

s1

E0 [T (s1) ·T (s2)]ds2. (3.13)

Formula (3.8) follows directly from (3.12) after applying (2.2) (Proposition 2.1) and
(2.14).

By (2.4), from (2.8) we obtain

E0 [Tα(t)]
2 = 2

t∫
0

ds1

∫ t

s1

(
κ

2 +2p∗1cκEα(−2λ sα
1 )+2p∗1cκ̄Eα(−2λ sα

2 )

+4p∗0 p∗1c2E0

[
e−2λ (Eα (s2)−Eα (s1))

])
ds2.

(3.14)

For s2 = ks1 with k > 1 by applying self-similarity property of Eα (see (2.15)) we get
Eα(s2)

d
= kα Eα(s1). Therefore,

E0

[
e−2λ (Eα (s2)−Eα (s1))

]
= E0

[
e−2λ (−1+kα )Eα (s1)

]
= Eα(−2λ (−1+ kα)sα

1 )

=Eα(−2λ (sα
2 − sα

1 )).
(3.15)

Formula (3.10) follows from (3.14)-(3.15).
Formulae (3.9) and (3.11) are obtained using symmetric reasoning. �
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