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Abstract. The paper establishes the conditions of positivity and bounded-

ness of solutions of the stochastic logistic equation. It is important to em-
phasize that the stochastic perturbation makes the logistic equation globally

stable.

1. Introduction

Deterministic population dynamics of the simplest biological species is described
using ordinary differential equations

Ẋ = f(X), (1)

which admits an explosion (i.e., an infinite population size in finite time) provided
that f(X) satisfies some constraints.

For example, consider the logistic equation

Ẋ(t) = X(t)[m+ nX(t)] (2)

on R+ = t ≥ 0 with an initial value X(0) = X0 > 0. It is well known that equation
(2) has a solution

X(t) =
m

−n+ e−nt(m+ nX0)/X0
.

As the variable X(t) means population size, then we will only be interested in
positive solutions. In the case where m > 0, n < 0 equation (2) has a global
solution on R+, which is not only positive and bounded, but has, in addition, an
asymptotic property, which is

lim
t→∞

X(t) = m/− n.

On the contrary, if we take n > 0, preserving m > 0, then equation (2) has only
a local solution on the segment [0, T ], that goes to infinity in a finite amount of
time

T = − 1

m
log

(
nX0

m+ nX0

)
.
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However, very often the environment in which a population system is defined
is subject to random noise (see e.g. [1,2]). In this case, it is important to find
out when the presence of such noise affects the result. In [3], the parameter n

stochastically perturbed, i.e. instead of n is taken n+ σḂ(t), where Ḃ(t) – white
noise, and σ > 0 represents the intensity of the noise. Thus the solution to the Ito
equation is of the form

dX(t) = X(t)[m+ nX(t)]dt+ σX(t)dB(t)

with probability of one does not admit the solution-explosion at any finite moment
of time if σ > 0. which is not only positive and bounded, but has, in addition,
an asymptotic property, which is m+ σXθ(t)Ḃ(t), θ ∈ (0, 1/2), which is not only
positive and bounded, but has, in addition, an asymptotic property, which is
m > 0, n < 0 and σ > 0, then the solution of the following equation

dX(t) = X(t)[m+ nX(t)]dt+ nXθ(t)dB(t)

with probability one does not admit a solution-explosion in finite time. In addition,
his p-th moment is bounded, stochastically persistent and globally stable, i.e., the
stochastic noise environment retains good properties.

Further, in the paper we will consider the equation

dX(t) = X(t)[(a− bX(t)]dt+ σXθ(t)dB(t), 0 < θ < 1/2, (3)

where parameters a, b, σ – are positive.

2. Positive and global solutions

Everywhere else in the future, through (Ω,F , Ftt≥0, P ) denote the complete
probability space with filtering Ftt≥0 satisfying the usual conditions (i.e., it is
continuous on the right and Fo contains all P-zero sets). Let B(t) a given one-
dimensional standard Brownian motion defined on a probability space. For p ∈
(0,∞), letLp = Lp(Ω,Rd) family of Rd-of significant random variables x on the
condition E[xp] < ∞.

Consider equation (3)

dX(t) = X(t)[(a+ bX(t)]dt+ σXσ(t)dB(t)

and further everywhere assume that a > 0, b > 0, σ > 0 and θ ∈ (0, 1/2). In
order to have a single global solution of a stochastic equation, for any initial value
the equation coefficients must satisfy, in general, the sublinear growth condition
and the Lipschitz condition (see e.g. [4], [5]). However, the coefficients of the
equation do not satisfy the sublinear growth condition, although they are locally
Lipschitzable. We will show that the solution of equation (3) is positive and global.

Theorem 2.1. There exists a single solution of the equation on R+ with any given
initial value Xo > 0.

Proof. Since the coefficients of the equation are locally Lipschitzable and continu-
ous, for any Xo ∈ R+ there exists a single local solution X(t) on t ∈ [0, τe], where
τe-explosion time [4]. In order to prove that the solution is global, we must show
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that τe = ∞-almost certainly. Let k0 > 0 large enough for Xo to belong to the
segment [1/k0, k0]. For each integer k ≥ k0 determine the stop time

τk = inf

{
t ∈ [0, τe) : X(t) /∈

(
1

k
, k

)}
.

Everywhere else we’ll put inf∅ = ∞ (as usual ∅ means an empty set). More
precisely, τk grows with k → ∞. Taking τ∞ = limk→∞ τk, we have τ∞ ≤ τe a.c. If
we can prove that τ∞ = ∞ a.c., then τe = ∞ a.c. and x(t) ∈ R+ a.e. for all t ≥ 0.
In other words, to complete the proof we must show that the τ∞ = ∞ a.e. If this
statement is not true, then there is a pair of constants T > 0 and ε ∈ (0, 1) such
that P [τ∞ ≤ T ] > ε.

Hence, there exists an integer k1 ≥ k0 such that

P [τk ≤ T ] ≥ ε : ∀ k ≥ k1. (4)

Let’s determine C2- of function V : R+ → R+ given by

V (x) =
√
x− 1− 1/2 log x.

Obviously, when x > 0, this function will reach its minimum value 0 at x = 1,
so it’s non-negative. If x (t) ∈ R+, it follows from Ito’s formula that

dV (x) =

(
1/2 x1/2 − 1

2
x−1

)
dx+ 1/2

(
−1/4 x−1/2 + 1/q x−1/2

)
(dx)

2
=

=
1

2

[(
x1/2 − 1

)
(a− bx) +

(
−1

4
x1/2 + 1/2

)
σ2x2θ

]
dt+

1

2

(
x1/2 − 1

)
σxθdB(t) =

=

(
−a

2
+ ax1/2 +

σ2

4
x2θ +

b

2
x− σ2

8
x2θ+1/2 − b

2
x3/2

)
dt+

+
σ

2

(
−xθ + xθ+1/2

)
dB(t),

where X(t) = x.
In the case where θ ∈ (0, 1/2) we’ll see that

−a

2
+

σ

2
x1/2 +

σ2

4
x2θ +

b

2
x− σ2

8
x2θ+1/2 − b

2
x3/2

is bounded from above, say by the number K in R+. Then we get∫ τk∧T

0

dV (x(t)) =

∫ τk∧T

0

Kdt+

∫ τk∧T

0

σ

2
(−xθ + xθ+1/2)dB(t)

since x(τk ∧ T ) ∈ R+. Taking the mathematical expectation we obtain

EV (x(τk ∧ T )) ≤ V (x0) +KE(x(τk ∧ T )) ≤ V (x0) +KT. (5)

Let’s Ωk = τk ≤ T for k ≥ k1 and with the help of (4) P (Ωk) ≥ ε. Note that
for each ω ∈ Ωk, x(τk, ω) equal to k either 1/k, henceV (x(τk, ω)) no less, or

√
k − 1− 1/2 log k

either
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√
1

k
− 1− 1

2
log

(
1

k

)
=

√
1

k
− 1 +

1

2
log k.

It follows that

V (x (0)) +KT ≥ E
[
IΩk(ω)V (x (τk, ω))

]
≥

≥ ε

[
(
√
k − 1− 1/2 log k)

∧(√
1

k
− 1 + 1/2 log k

)]
,

where IΩk
is an indicator-function Ωk. Addressing k → ∞ we come to a contra-

diction

∞ > V (x(0)) +KT = ∞.

Thus, we must τ∞ = ∞ have a.c.
The proof of Theorem 2.1 is complete. □

3. Stochastic resilience

Resilience is a crucial property in population dynamics, meaning that each
species is unlikely to go extinct. The most natural analog of stochastic population
dynamics is that a species will never go extinct with probability 1. To be precise,
let us give a definition.

Definition 3.1. A solution of equation (3) is stochastically persistent if for any
δ ∈ (0, 1) will find positive constants H1 and H2 (H1 < H2,H1,H2 depending
on δ) such that for any initial given X > 0, the solution of equation (3) has the
following property

lim
t→∞

sup PX(t) < H1 < δ

and

lim
t→∞

sup PX(t) > H2 < δ.

Lemma 3.2. Let X(t, X0) solution of equation (3) for any initial value X0 > 0.
Then we have

lim
t→∞

supE[Xp(t)] ≤ L(p) ∀ p ≥ 1,

where

L(p) =

[
2a+mσ2(p− 1)ε−1/m

2b− nσ2(p− 1)ε1/n

]p
, 0 < ε <

[
2b

nσ2(p− 1)

]n
, m = 1−2θ, n = 2θ.

Proof. For simplicity we write X(t, x0) as X = x. Using Ito’s formula we have

d (xp) = pxp−1dx+ 1/2p (p− 1)xp−2 (dx)
2
=

= pxp
[
(a− bx) + σxbdB (t)

]
+ 1/2p (p− 1)xpσ2xeθdt =

= [apxp + 1/2σ2p(p− 1)xp−2θ − bpxp+1]dt+ σpxp+θdB(t) (6)
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and

xp(t) = xp
0 +

∫ t

0

[
apxp(s) + σ2

2 p(p− 1)xp+2θ(s)− bpxp+1(s)
]
ds+

+σpxp+θ(s)db(s).
(7)

Taking the mathematical expectation from all parts of equation (7), we obtain

E(xp(t)) = xp
0 +

∫ t

0

E

[
apxp(s) +

σ2

2
p(p− 1)xp+2θ(s)− bpxp+1(s)

]
ds, (8)

and we have

dE(xp)

dt
= apE(xp) +

σ2

2
p(p− 1)E(xp+1)− bpE(xp+1) =

= apE(xp) +
σ2

2
p(p− 1)E[(xp)

m
(xp+1)

n
]− bpE(xp+ 1) ≤

≤ apE(xp) +
σ2

2
p(p− 1)[E(xp)]m[E(xp+ 1)]n− bpE(xp+ 1) =

= apE(xp) +
σ2

2
p(p− 1)[ε−1E(xp)]m[ε1/nE(xp+ 1)]n− bpE(xp+ 1) ≤

≤ apE(xp) +
σ2

2
p(p− 1)[mε−1/mE(xp) + ε1/nE(xp+1)]− bpE(xp+ 1) =

=

[
ap+

σ2

2
p(p− 1)me−1/m

]
E(xp)−

[
bp+

σ2

2
p(p− 1)nε1/n

]
E(xp+1) (9)

where m = 1−2θ, n = 2θ, m+n = 1, ε > 0. The first inequality is obtained using
Gelder’s inequality, and the second inequality using Young’s inequality, which has
the following form

ab ≤ (1/p)(εa)
p
+ (1/q)(b/ε)

q
, 1/p+ 1/q = 1, ∀ε > 0, p > 1, a > 0, σ > 0.

We can take ε so small, which is the following

0 < ε < [2b/n σ2(p− 1)
n
]

in order to

bp− σ2

2
p(p− 1)mε1/n > 0.

Thus from (9) we obtain

dE(xp(t))
dt ≤

[
ap+ σ2

2 p(p− 1)me−1/m
]
E(xp(t))−

−
[
bp− σ2

2 p(p− 1)ne1/n
]
[E(xp(ts))]

(p+1) p
.

Let’s y(t) = E(xp(t)), then we have

dy(t)

dt
≤ py(t)

[
a+

σ2

2
p(p− 1)mε−1/m −

(
b+

σ2

2
p(p− 1)ne1/n

)
y1/p(t)

]
.

Note that the solution of Eq.
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dz(t)

dt
≤ pz(t)

[
a+

σ2

2
p(p− 1)mε−1/m −

(
b+

σ2

2
p(p− 1)ne1/n

)
z1/p(t)

]
is

z(t) = [X−1
0 e−(a+(σ2

2 (p−1))mε−1/m)t+

+
2b− σ2n(p− 1)ε1/n

2a+ σ2m(p− 1)ε−1/m
[1− e(a+(σ2

2 )(p−1)mε−1/n)t]− p.

Pointing t → ∞, we get

z(t) →
[
2a+ σ2m(p− 1)ε−1/m

2b− σ2n(p− 1)ε1/n

]
.

Thus, using the comparison principle, we obtain

lim
t→∞

sup y(t) ≤
[
2a+ σ2m(p− 1)ε−1/m

2b− σ2n(p− 1)ε1/n

]p
.

Let’s

L(p) =

[
2a+ σ2m(p− 1)ε−1/m

2b− σ2n(p− 1)ε1/n

]p
then we have

lim
t→∞

sup E(xp(t)) ≤ L(p).

The proof of Lemma 3.1 is complete. □

Observation 3.1. From lemma 3.1 we find T > 0 such that

E(xp(t)) ≤ 2L(p) ∀ t ≥ T

in addition to the fact that E(xp(t)) continuous, and there is L̃(p) > 0 such that

E(xp(t)) ≤ L̃(p) fort ∈ [0, T ].

Let’s

K = max2L(p), L̃(p).

Then we have

E(xp(t)) ≤ K(p) ∀ t ∈ [0,∞).

In other words, the p-th moment of the solution is bounded.
Using Ito’s formula from equation (3), we obtain

d
1

x(t)
=

1

x2(t)
dx(t) +

1

x3(t)
(dx(t))

2
=

− 1

x(t)
[(a− bx(t))dt+ σxθ(t)dB(t)] + 1x(t)σ2xzθ(t)dt =

=

(
− a

x(t)
+ b+

σ2

x1−2θ(t)

)
dt− σ2

x1−θ(t)
dB(t).
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Let’s y(t) = 1
x(t) then we have

dy(t) = (b+ σ2)y1−2θ(t)− (y(t))dt− σy1−θ(t)dB(t)

and

dyp(t) = pyp−1(t)dy(t) +
1

2
p(p− 1)yp−2(t)(dy(t))

2
=

[
bpyp−1(t) +

σ2

2
p(p+ 1)yp−2θ(t)− apyp(t)

]
dt− σpyp−θ(t)db(t). (10)

Lemma 3.3. Letx(t, x0) solution of equation (3) for any initial value x0 > θ.
Then we have

lim
t→∞

supE

[
1

xp(t)

]
≤ S(p) ∀ p > 1,

where

S(p) =

[
2b+ nσ2(p+ 1)ε−1/n

2a−mσ2(p+ 1)ε1/m

]p
, 0 < ε <

[
2a

mσ2(p+ 1)

]m
, m = 1−2θ, n = 2θ.

Proof. From (10) we directly obtain

dE[yp(t)]

dt
= bpE[yp(t)] +

σ2

2
p(p+ 1)E[yp−2θ(t)]− apE[yp(t)] =

= bpE[yp−1(t)] +
σ2

2
p(p+ 1)E[yp(t))m(yp(t))n − apE[yp(t)] ≤

≤ bpE[yp−1(t)] +
σ2

2
p(p+ 1)E[(yp(t))m(yp−1(t))n]− apE[yp(t)] =

= bpE[yp−1(t)] +
σ2

2
p(p+ 1)(ε1/m[yp(t)])m(ε−1/n[yp−1(t)])n − apE[yp(t)] ≤

≤ bpE
[
yp−1 (t)

]
+
σ2

2
p (p+ 1)

(
mε1/m [yp (t)]

)m (
ε−1/n

[
yp−1 (t)

])n
−apE [yp (t)] =

=

[
bp+

σ2

2
p (p+ 1)nε−1/n

]
E[yp−1(t)] +

σ2

2
p(p+ 1)mε1/m − apE[yp(t)] ≤

≤
[
bp+

σ2

2
p (p+ 1)nε−1/n

]
E[yp−1(t)](p−1)/p+

[
σ2

2
p(p+ 1)mε1/m − ap

]
E[yp(t), (11)

where n = 2θ,m = 1−2θ. By taking ε > 0 so small 0 < ε < [2α/mσ2(p+1)]m,
as

ap− σ2

2
p (p+ 1)mε1/m > 0.
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Let’s z(t) = E[yp(t)], then we have

dz(t)

dt
≤
[
bp+

σ2

2
p (p+ 1)nε−1/n

]
z(p−1)/p(t)−

[
ap− σ2

2
p (p+ 1)mε1/m

]
z(t).

(12)
Obviously, the solution to the equation

du(t)

dt
=

[
bp+

σ2

2
p (p+ 1)nε−1/n

]
u(p−1)/p(t)−

[
ap− σ2

2
p (p+ 1)mε1/m

]
u(t)

is

u(t) = [x−2
0 e−(a+( a2

2 )p(p+1)mε−1/n)t]+

+
2b+ σ2n(p− 1)ε−1/n

2a−mσ2(p+ 1)ε1/m

[
1− e(a+( a2

2 )p(p+1)mε−1/n)t
]p

.

By aiming t → ∞, we get

u(t) →
[
2b+ σ2n(p+ 1)ε−1/n

2a−mσ2(p+ 1)ε1/m

]p
.

thus by means of the comparison principle we have

lim
t→∞

supz(t) ≤
[
2b+ σ2n(p+ 1)ε−1/n

2a−mσ2(p+ 1)ε1/m

]p
= S(p)

or

lim
t→∞

supE

[
1

xp(t)

]
≤ S(p).

Lemma 3.2 is proved.
□

Remark 3.4. By the power of lemma 3.2, will find T̂ > 0, such that

E

[
1

xp(t)

]
≤ 2S(p) ∀ t ≥ T̂ .

In addition, E
[

1
xp(t)

]
continuous and find Ŝ(p) > 0 such that

E

[
1

xp(t)

]
≤ Ŝ(p) ∀ t ∈ [0, T ].

Let’s M(p) = max2S(p), Ŝ(p), then we have

E

[
1

xp(t)

]
≤ M(p) ∀ t ∈ [0,∞).

Theorem 3.5. For any given x0 > 0, the solution of equation (3) is stochastically
persistent.

Proof. It follows from lemmas 3.1 and 3.2 that

x(t) ∈ Lp,
1

x(t)
∈ Lp, p > 1.
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On the other hand, it follows from Remarks 3.1 and 3.2 that

E[xp(t)] ≤ K(p), E[
1

xp(t)
] ≤ M(p), t ∈ [0,∞).

Then, by the power of Chebyshev’s inequality [6], there are

H1 =

(
δ

M(p)

)1/p

, H2 =

(
K(p)

δ

)1/p

such that
limt → ∞supP [x(t) < H1] < δ,

limt → ∞supP [x(t) < H2] > δ.

Hence, the solution of equation (2) is persistent.
Theorem 3.1 is completely proved. □
Note that close questions are considered in [7-10].
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