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Abstract. Recently, the theory of stochastic equations has been actively

developing. Here it is worth noting the classical direction of research by
Ito – Stratonovich – Skorokhod.Its main problem is to overcome the difficul-

ties associated with the differentiation of a non-differentiable (in ”the usual

sense”) Wiener process. It is also necessary to note the approach of I.V. Mel-
nikova, within the framework of which stochastic equations are considered in

Schwarz spaces using the generalized derivative. Our research will use meth-

ods and results of the theory, which is based on the concept of the Nelson –
Glicklich derivative. Most studies consider the Cauchy problem for stochas-

tic equations. In this article, instead of the Cauchy condition, it is proposed
to consider a multipoint initial-final value condition. The obtained abstract

results are used to analyze the solvability of the stochastic Navier-Stokes sys-

tem, which models the dynamics of the velocity and pressure of a viscous
incompressible fluid. It is considered with a no-slip boundary condition and

a multipoint initial-final value condition. The main result of the article is the

proof of the solvability of the posed problem.

Introduction

Consider the system of equations

vt = ν∇2v − (v · ∇)v −∇p+ f, ∇ · v = 0, (0.1)

modeling the dynamics of a viscous incompressible fluid, was obtained more than a
century ago. Here the vector function v = (v1, v2, ..., vm), vl = vl(x, t), corresponds
to the fluid velocity, the function p = p(x, t) corresponds to the pressure, the
parameter ν ∈ R+ characterizes the viscosity. And Ω ⊂ Rm, m = {2, 3}, is a
bounded domain with the boundary ∂Ω of class C∞.

Over the past time, the system of equations (0.1) has been studied in various
aspects. Let us note here the fundamental monographs of O.A. Ladyzhenskaya
[1] and R. Temam [2]. However, the question of the existence of solutions to the
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Cauchy – Dirichlet problem for the system of equations (0.1) has not yet been
resolved. The problem of the existence of solutions to this problem turned out to
be so difficult that it was included in the list of the most difficult mathematical
problems of the current century, and a reward of one million dollars has been
appointed for its solution.

To solve the system of equations (0.1) we consider ”the condition no-slip” to
the boundary of the domain

u(x, t) = 0, (x, t) ∈ ∂Ω× R. (0.2)

Let us recall how the system (0.1) is obtained. As is known, Newton’s rheolog-
ical relation, modeling the dynamics of viscous incompressible fluids has the form
[3], [4], [5]

σ = 2νD − pI. (0.3)

Here σ and D are stress and strain rate tensors, respectively, ν ∈ R+ is the
viscosity coefficient, I is the identity matrix, p characterizes the pressure. After
substituting (0.3) into the equations of motion of a continuous incompressible
medium in Cauchy form

vt = ∇ · σ, ∇ · v = 0, (0.4)

we obtain the above famous system of Navier – Stokes equations (0.1).
Let’s consider the linear abstract model

Lu̇ =Mu+ f, (0.5)

in Banach spaces U and F , and the operators L ∈ L(U ;F) (i.e. linear and contin-
uous), M ∈ Cl(U ;F) (i.e. linear, closed and densely defined).

The work is devoted to the study of the stochastic linear Sobolev type equation

L
◦
η=Mη +Nω, (0.6)

where η = η(t) is the required one, and ω = ω(t) is a given stochastic K-process
(K-”noise”), with multipoint initial-final value condition

lim
t→0+

P0(η (t)− ξ0) = 0, Pj(η(τj)− ξj) = 0, j = 1,m. (0.7)

A detailed description will be given in the second paragraph.
The article, in addition to the introduction and bibliography, contains three

parts. In the first part, spaces of differentiable random processes with values in
a separable Hilbert space are constructed. Moreover, by derivative we mean the
Nelson – Gliklich derivative [6], [7], [8], [9]. We call random processes that have
Nelson – Glicklich derivatives differentiable ”noises” [10], [11], [12], [13]. The sec-
ond part of the article presents results on the solvability of the stochastic problem
(0.6), (0.7) under the condition that the operator M , p ∈ {0} ∪ N ≡ N0, is (L, p)-
bounded, and a condition guaranteeing the existence of relative spectral projectors
Pj , j = 0, n, [14]. These results generalize and develop the abstract results of the
works [10], [11], [12], [13]. The third part contains applications of the obtained
abstract results for the stochastic Navier – Stokes system. The list of references
does not pretend to be complete and reflects only the tastes and preferences of the
authors.
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1. Spaces of differentiable ”noises”

Let Ω ≡ (Ω,A,P) is a complete probability space with a probability mea-
sure P associated with the σ-algebra A of subsets of the set Ω, and R is a
set of real numbers, endowed with a Borel σ-algebra. A measurable mapping
ξ : Ω → R is called random variable. A set of random variables whose math-
ematical expectation is zero, and the variance is finite, forms the Hilbert space
L2 = {ξ : Eξ = 0, Dξ < +∞} with the scalar product (ξ1, ξ2) = Eξ1ξ2 and
the norm ∥ξ∥2L2

= Dξ. Note that in L2 the orthogonality of the vectors ξ and
η (i.e. (ξ, η) = 0) is equivalent to correlated random variables ξ and η. Indeed,
0 = cov(ξ, η) = Eξη = (ξ, η) = 0.

Let us take the set I ⊂ R and consider two mappings: f : I → L2, which
each t ∈ I assigns a random variable ξ ∈ L2, and g : L2 × Ω → R, which assigns
to each pair (ξ, ω) point ξ(ω) ∈ R. Display η : I × Ω → R, which has the form
η = η(t, ω) = g(f(t), ω), we call (one-dimensional) stochastic process. For every
fixed t ∈ I value of the stochastic process η = η(t, ·) is a random variable, i.e.
η(t, ·) ∈ L2, which we call cross section of the stochastic process at point t ∈ I.
For each fixed ω ∈ Ω the function η = η(·, ω) is called (selective) trajectory of a
random process corresponding to the elementary outcome ω ∈ Ω. Trajectories are
also called realizations or sample functions of a random process. Usually, when
this does not lead to ambiguity, the dependence of η(t, ω) on ω is not indicated
and the random process is simply denoted by η(t).

Considering I ⊂ R to be an interval, we call the stochastic process η = η(t),
t ∈ I, continuous, if a.s. (almost surely) all its trajectories are continuous (i.e. for
almost all ω ∈ A trajectories η(·, ω) are continuous functions). A set of continuous
stochastic processes forms Banach space, which we denote by the symbol C(I;L2)

with the norm ∥η∥CL2 = sup
t∈I

(Dη(t, ω))1/2. Let A0 be a σ-subalgebra σ-algebras

A. Let us construct the subspace L0
2 ⊂ L2 random variables measurable with

respect to A0. Let us denote by Π : L2 → L0
2 – ortho projector. Let ξ ∈ L2, then

Πξ is called conditional mathematical expectation of the random variable ξ and
is denoted by the symbol E(ξ|A0). Let us fix η ∈ C(I;L2) and t ∈ I, by N η

t we
denote the σ-algebra generated by random variable η(t), and denote Eη

t = E(·|N η
t ).

Example 1.1. Wiener process describing Brownian motion in the Einstein –
Smoluchowski model (see [7])

β(t, ω) =

∞∑
k=0

ξk(ω) sin
π

2
(2k + 1)t, t ∈ {0} ∪ R+,

is a continuous stochastic process. Here the coefficients {ξk = ξk(ω)} ⊂ L2 are

pairwise uncorrelated Gaussian random variables such that Dξ2k =
[π
2
(2k + 1)

]−2

,

k ∈ N0.

Definition 1.2. [6], [7] Let η ∈ C(I;L2). By the Nelson – Glicklich derivative
◦
η

stochastic process η at point t ∈ I a random variable

◦
η (t, ·) = 1

2
lim

∆t→0+
Eη

t

(
η(t+∆t, ·)− η(t, ·)

∆t

)
+
1

2
lim

∆t→0+
Eη

t

(
η(t, ·)− η(t−∆t, ·)

∆t

)
,
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is called, if the limit exists in the sense of a uniform metric on R.

If the Nelson – Glicklich derivatives
◦
η (t, ·) of the stochastic process η(t, ·) exist

in all (or almost all) points of the interval I, then we talk about the existence of

the Nelson – Glicklich derivative
◦
η (t, ·) on I (a.s. on I.)

Set of continuous stochastic processes having continuous Nelson – Glicklich

derivatives
◦
η forms a Banach C1(I;L2) space with the norm

∥η∥C1L2
= sup

t∈I

(
Dη(t, ω) +D

◦
η (t, ω)

)1/2
.

We further define by induction the Banach spaces Cl(I;L2), l ∈ N, stochastic
processes whose trajectories a.s. differentiable with respect to Nelson – Gliklich
on I up to order l ∈ N0 inclusive [15]. The norms in them are given by the

formulas ∥η∥ClL2
= sup

t∈I

(
l∑

k=0

D
◦
η (k)(t, ω)

)1/2

. Here we will consider the zero-

order Nelson – Gliklich derivative to be the original random process, i.e.
◦
η (0) ≡ η,

and under the Nelson – Gliklich derivative are of order k we will understand the
Nelson – Gliklich derivative of the first order from the Nelson – Gliklich derivative
of order k − 1. For brevity we will call spaces of differentiable ”noises” (see [10],
[11], [12], [13]).

Example 1.3. In [7, 15] it is shown that β ∈ Cl(R+;L2), l ∈ N0, and
◦
β (t) =

β(t)

2t
,

t ∈ R+.

Thus, spaces of random variables L2 and spaces of differentiable ”noises”
Cl (I;L2), l ∈ N0. Let’s move on to constructing a space of random K-variables.
Take H is a separable Hilbert space with an orthonormal basis {ϕk}, a mono-

tone sequence K = {λk} ⊂ R+ such that that
∞∑
k=1

λ2k < +∞, as well as a sequence

{ξk} = ξk(ω) ⊂ L2 of random variables such that that ∥ξk∥L2
≤ C, for all C ∈ R+,

for all k ∈ N.

Let us construct a H-valued random K-variable ξ(ω) =

∞∑
k=1

λkξk(ω)ϕk. Com-

pletion of the linear hull of the set {λkξkϕk} by the norm

∥η∥2HKL2
=

( ∞∑
k=1

λ2kDξk

)1/2

is called the space of (H-valued) random K-variables and is denoted by the symbol
HKL2. How easy it is to see the space HKL2 is the Hilbert space, and the
random K-variable constructed above ξ = ξ(ω) ∈ HKL2. Likewise, Banach space
(H-valued) K- ”noises” Cl (I;HKL2), l ∈ N0, we define as the completion of the
linear hull of the set {λkηkϕk} by the norm

∥η∥2ClHKL2
= sup

t∈I

( ∞∑
k=1

λ2k

l∑
m=1

D
◦
ηm
k

)1/2

,
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where the sequence of ”noises” {ηk} ⊂ Cl (I;L2), l ∈ N0. As is easy to see, the

vector η(t, ω) =

∞∑
k=1

λkηk(t, ω)ϕk lies in the space Cl(I;HKL2), if a sequence of

vectors {ηk} ⊂ Cl(I;L2) and all their Nelson – Glicklich derivatives up to order
l ∈ N0 inclusive are uniformly bounded by the norm ∥ · ∥ClL2

.

Example 1.4. Vector lying in all spaces Cl(R+;HKL2), l ∈ N0,

WK(t, ω) =

∞∑
k=1

λkβk(t, ω)ϕk,

where {βk} ⊂ Cl(I;L2) is sequence of Brownian motions, called (H-valued) Wiener
K-process.

2. The multipoint initial-final value condition

Let U and F be Banach spaces, operator L ∈ L(U ;F) (i.e. linear and contin-
uous), and the operator M ∈ Cl(U ;F) (i.e. a linear, closed and densely defined).
Consider the L-resolvent set ρL(M) = {µ ∈ C : (µL −M)−1 ∈ L(F ;U)} and the
L-spectrum σL(M) = C \ ρL(M) of the operator M . Let ρL(M) ̸= ∅, then we can
consider right and left

RL
(µ,p)(M) =

p∏
k=0

RL
µk
(M) and LL

(µ,p)(M) =

L∏
k=1

pLµk
(M)

(L, p)-resolvents of the operator M . Here RL
µ (M) = (µL − M)−1L,

LL
µ(M) = L(µL−M)−1, and points µk ∈ ρL(M), k = 0, p.

Definition 2.1. ([16], chapter 3) Operator M is called p-sectorial relatively of
operator L with the number p ∈ N0 (in short, (L, p)-sectorial), if there exist
constants K ∈ R+, a ∈ R, Θ ∈ (π/2, π) such, that the sector

SL
a,Θ(M) = {µ ∈ C : |arg(µ− a)| < Θ, µ ̸= a}, SL

a,Θ(M) ⊂ ρL(M),

and

max

{∥∥∥RL
(µ,p)(M)

∥∥∥
L(U)

,
∥∥∥LL

(µ,p)(M)
∥∥∥
L(F)

}
≤ K

p∏
k=0

|µk − a|
(∗)

for all µk ∈ SL
a,Θ(M), k = 0, p.

Remark 2.2. It is clear that if inequality (*) is executed when any p ∈ N0, then
it will be executed and if q ∈ N such that q > p. In the proof this fact does not
matter, and in applications we take the smallest p for which (*) is executed.

Lemma 2.3. Let operator M be (L, p)-sectorial. Then in the sector Σ = {τ ∈ C :
| arg τ | < Θ − π/2, τ ̸= 0}, where Θ is taken from definition 2.1, there exists an
analytic and uniformly bounded resolving semigroup {U t : t > 0} ({F t : t > 0}) of
the equation (0.5), f ≡ 0, and it is represented by Dunford – Taylor type integrals

U t =
1

2πi

∫
Γ

RL
µ (M)eµtdµ

F t =
1

2πi

∫
Γ

LL
µ(M)eµtdµ

 ,
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where t ∈ R+, countour Γ ⊂ SL
a,Θ(M) is such that | arg µ| → Θ with µ → ∞,

µ ∈ Γ.

Lemma 2.4. Let operator M be (L, p)-sectorial. Then lim
t→0+

U tu = u for any

u ∈ imRL
(µ,p)(M) and lim

t→0+
F tf = f for any f ∈ imLL

(µ,p)(M)).

Consider kernels kerU · = U0, kerF · = F0 and images imU · = U1, imF · = F1

of these semigroups. Introduce the condition [17]

U0 ⊕ U1 = U (F0 ⊕F1 = F), (A1)

Remark 2.5. [16] Units of semigroups {U t ∈ L(Ũ) : t ∈ R+} and {F t ∈ L(F̃) :
t∈R+} are projectors P = s − lim

t→0+
U t and Q = s− lim

t→0+
F t along U0 or F0 on

subspace U1 or F1 correspondingly.

We denote by Lk (Mk) a contraction of operator L (M) on Uk (domM ∩ Uk),
k = 0, 1. Let us introduce one more condition [17]

there exists the operator L−1
1 ∈ L(F1;U1). (A2)

Lemma 2.6. Let operator M be (L, p)-sectorial and conditions (A1), (A2) are
fulfilled. Then

(i) L0 ∈ L(U0;F0), M0 ∈ Cl(U0;F0), and there exists the operator M−1
0 ∈

L(F0;U0),
(ii) operators L1 ∈ L(U1;F1), M1 ∈ Cl(U1;F1).

Finally, we introduce another important condition on the L-spectrum of the
operator M [19] in the following form

σL(M) =

n⋃
j=0

σL
j (M), n ∈ N, and σL

j (M) ̸= ∅ is contained in bounded

domain Dj ⊂ C with piecewise smooth boundary ∂Dj = Γj ⊂ C. Also,

Dj ∩ σL
0 (M) = ∅ and Dk ∩Dl = ∅ for all j, k, l = 1, n, k ̸= l.

(A3)
Now let U (F) be a real separable Hilbert space with an orthonormal basis {ϕk}

({ψk}). Let us introduce into consideration a monotone sequence K = {λk} ⊂
{0} ∪ R such that

∞∑
k=1

λ2k < +∞. The symbol UKL2 (FKL2) denotes the Hilbert

space, which is the completion of the linear hull of random K-variables

ξ =

∞∑
k=1

λkξkϕk, ξk ∈ L2,

(
ζ =

∞∑
k=1

µkζkψk, ζk ∈ L2

)
,

according to the norm ∥η∥2U =
∞∑
k=1

λ2kDξk

(
∥ω |2F =

∞∑
k=1

µ2
kDζk

)
. Note that in

different spaces (UKL2 and FKL2) the sequence K can be different (K = {λk}
in UKL2 and K = {µk} in FKL2), however, all sequences marked with K must
be monotonic and summable with square. All results, generally speaking, will be
true for different sequences {λk} and {µk}, but for the sake of simplicity we will
limit ourselves to the case λk = µk.
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Lemma 2.7. [18]Operator A ∈ L(U ;F) exactly when A ∈ L(UKL2;FKL2).

How easy it is to see

∥Aξ∥F ≤
∞∑
k=1

λ2kDξk∥Aϕk∥2F ≤ const

∞∑
k=1

λ2kDξk = const∥ξ∥U.

Lemma 2.8. Operator M ∈ L(U ;F) is (L, p)-sectorial with respect to operator
L ∈ L(U ;F) exactly when M ∈ L(UKL2;FKL2) is (L, p)-sectorial with respect
to the operator L ∈ L(UKL2;FKL2). Moreover, the L-spectrum of the operator
M coincide in both cases. Condition (A1) and (A2) are fulfilled in spaces U , F
exactly when they are fulfilled in spaces UKL2, FKL2

We construct relatively spectral projectors [19]

Pj =
1

2πi

∫
Γj

RL
µ (M)dµ ∈ L(UKL2),

Qj =
1

2πi

∫
Γj

LL
µ(M)dµ ∈ L(FKL2), j = 1, n.

(2.1)

and it turns out that when the operator M is strongly (L, p)-sectorial, then PjP =
PPj = Pj and QjQ = QQj = Qj , j = 1, n. So, in this case, there is a projector

P0 = P −
n∑

j=1

Pj , P0 ∈ L(UKL2). So, let the conditions (A1) – (A3) be fulfilled.

So we consider im Pj = U1j
KL2, im Qj = F1j

KL2, j = 0, n. By construction

U1
KL2 =

n⊕
j=0

U1j
KL2 and F1

KL2 =

n⊕
j=0

F1j
KL2. We denote by Lj (Mj) the narrowing

of operator L (M) on U1j
KL2 (domM∩U1j

KL2), j = 0, n. It is easy to show that the

operators Lj ∈ L(U1j
KL2;F

1j
KL2), Mj ∈ Cl(U1j

KL2;F
1j
KL2), j = 0, n, moreover, due

to (A2) there exists the operator L−1
j ∈ L(F1j

KL2;U
1j
KL2), j = 0, n. Also it is easy

to show that the operator G = M−1
0 L0 ∈ L(U0

KL2), S0 = L−1
0 M0 ∈ Cl(U0

KL2)

will be sectorial, and the operator Sj = L−1
j Mj : U1j

KL2 → U1j
KL2, j = 1, n,

restricted.

Lemma 2.9. Let the operator M be (L, p)-sectorial, and conditions (A1) – (A3)

are fulfilled. Then U t =

n∑
j=0

PjU
t =

n∑
j=0

U t
j , F

t =

n∑
j=0

QjF
t =

n∑
j=0

F t
j , and U

t
j and

F t
j can be represented in the form

U t
j =

1

2πi

∫
Γj

(µL−M)−1Leµtdµ,

F t
j =

1

2πi

∫
Γj

L(µL−M)−1eµtdµ, j = 1, n.
(2.2)

Let us call the stochastic K-process η ∈ C1(R+;L2) (classical) solution of the
equation (0.6), if a.s. all of it trajectories satisfy the equation (0.6) with some K-
”noise” ω ∈ C(R+;L2) and all t ∈ R+. The solution η = η(t) of the equation (0.6)
will be called a solution of the problem (0.6), (0.7) if the condition (0.7) for some
random K-variables ξk ∈ UKL2, k = 0, l.
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Theorem 2.10. Let the operator M be (L, p)-sectorial, p ∈ N0, moreover, the
conditions (A1) – (A3) are fulfilled. Then for any τj ∈ R+, j = 1,m, operator

N ∈ L(U ;F), monotonic sequence K ⊂ {λk} such that

∞∑
k=1

λ2k < +∞, K- ”noise”

ω = ω(t) such that (I − Q)Nw ∈ Cp+1(R+;UKL2) and QNw ∈ C(R+;UKL2),
and random K-variables ξj ∈ UKL2, j = 0,m, independent of ω, there is a unique
solution η ∈ C1(R+;UKL2), problem (0.6), (0.7), having the form

η(t) = −
p∑

q=0

HqM−1
0 (I−Q)

◦
ω(q)(t)+

+

m∑
j=0

[
U

t−τj
j ξj +

∫ t

τj

U
s−τj
j L−1

1j QjNω(s)ds

]
, t ∈ I.

3. Linear stochastic Navier – Stokes system of equations

Let Ω ⊂ Rn, n ∈ N \ {1}, be a bounded domain with boundary ∂Ω of the class
C∞. In the cylinder Ω × R consider the linear stochastic Navier – Stokes system
of equations

vt = ν∇2v −∇p+ f, ∇(∇ · v) = 0. (3.1)

Based on the results of points 2 and 3, we will reduce the system (3.1) and
the condition (0.2) to the equation (0.6). Following [20], [21], [22], we denote by

H2 = (W 2
2 )

n,
◦
H1 = (

◦
W1

2)
n, L2 = (L2)

n space vector-functions v = (v1, v2, . . . , vn)
defined on Ω. Consider the lineal L = {v ∈ (C∞

n )n : ∇·v = 0} of vector-functions,
solenoidal and finite in the domain Ω. We denote the closure of L with respect
to the norm of the space L2 by Hσ. The space Hσ is Hilbert with the scalar
product ⟨·, ·⟩ inherited from L2; in addition, there is a splitting L2 = Hσ ⊕ Hπ,
where Hπ is the orthogonal complement of Hσ. We denote by Σ : L2 → Hσ the

corresponding orthoprojector. The restriction of the projector Σ to H2∩
◦
H1 is a

continuous operator, Σ : H2∩
◦
H1 → H2∩

◦
H1. Let us therefore represent the space

H2∩
◦
H1 as a direct sum H2∩

◦
H1 = H2

σ ⊕ H2
π, where H2

σ = im Σ, H2
π = kerΣ.

There are continuous and dense embeddings H2
σ ↪→ Hσ and H2

π ↪→ Hπ. The space
H2

π consists of vector functions that are equal to zero on ∂Ω and are gradients of
functions from W 3

2 (Ω).

Lemma 3.1. [23]

(i) By the formula A = (−∇2)n : H2∩
◦
H1 → L2 defines a linear continuous

operator with a positive discrete finite multiple spectrum σ(A) condensing only to
the point +∞, and the mapping A : H2

σ(π) → Hσ(π) is bijective.

(ii) Formula B : v → −∇(∇· v) a linear continuous surjective operator is given

B : H2∩
◦
H1 → Hπ, and kerB = H2

σ.

Let U = H2
σ × H2

π × Hp, F = Hσ × Hπ × Hp are real separable Hilbert spaces
with an orthonormal basis {ϕk} and {ψk}, respectively. Moreover Hp = Hπ, Let’s

14
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construct operators [24]

L =

 I O O
O I O
O O O

 , M =

 −νAσ O O
O −νAπ −I
O B O

 .

Obviously, L,M ∈ L(U ;F), and im L = Hσ ×Hπ × {0}, kerL = {0} × {0} ×Hp.
Let us introduce into consideration a monotone sequence K = {λk} ⊂ {0}∪R+

such that
∞∑
k=1

λ2k < +∞. Let us consider Hilbert spaces, which is the completion

of the linear hull of random K-variables [25]

UKL2 =

{
ξ =

∞∑
k=1

λkξkϕk, ξk ∈ L2, ϕk ∈ H2
σ ×H2

π ×Hp

}
,

FKL2 =

{
ζ =

∞∑
k=1

µkζkψk, ζk ∈ L2, ψk ∈ Hσ ×Hπ ×Hp

}
.

Lemma 3.2. [24]For any ν ∈ R+ the operator M is (L, 1)- sectorial.

If we set Nω = col(Σf,Πf, 0), and f(t) =
◦
WK (t), then the reduction of the

problem (0.2), (3.1) to the equation (0.6) finished.
Let the operators L, M , N ∈ L(UKL2;FKL2). Consider a linear stochastic

Sobolev type equation (0.6) with multipoint initial-final value condition (0.7).
Let us call the stochastic K-process η ∈ C1(R+;L2) (classical) solution of the

equation (0.6), if a.s. all of it trajectories satisfy the equation (0.6) for some K-
”noise” ω ∈ C(R+;L2) and all t ∈ R+. Solution η = η(t) to the equation (0.6)
let’s call solution to the problem (0.6), (0.7), if the condition (0.7) is met for some
random K-variables ξk ∈ UKL2, k = 0, l .

It is known [16], [24] that L-spectrum σL(M) of the operator M has the form
σL(M) = {µk = −νλk} . It is clear that for such a set one can select contours
γj ⊂ C. Let’s construct

U t
j =


∑

λk∈σL
j (M)

e−λkt⟨·, ϕk⟩σϕk O O

O O O
O O O

 , j = 0,m.

It follows from Lemma 3.2 that under the conditions of this lemma the condition
(A1).

Theorem 3.3. Let the operators L and M be defined as in Lemma 3.2. Then for
any τj ∈ R+, j = 1,m, operator N ∈ L(U;F), monotonic sequence K ⊂ {λk} such

that

∞∑
k=1

λ2k < +∞, K- ”noise” ω = ω(t) such that (I−Q)Nw ∈ Cp+1(R+;UKL2)

and QNw ∈ C(R+;UKL2), ω(t) =
◦
WK (t) and random K-variables ξj ∈ UKL2,

j = 0,m, independent of ω, there is a unique solution η ∈ C1(R+;UKL2), problem

15
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(0.6), (0.7), having the form

η(t) =

m∑
j=0

[
U

t−τj
j ξj + L−1

1j QjNWK(t)− SjPj

∫ t

τj

U
s−τj
j L−1

1j QjNWK(s)ds

]
−

−
p∑

q=0

HqM−1
0 (I−Q)

◦
W

(q+1)
K (t), t ∈ R+.
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