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Abstract. The article provides an explicit formula for the distribution of
remainders modulo an arbitrary natural number of the convolutions of un-
equly distributed Poisson random variables and shows their convergence in

law to the uniform distribution.

Introduction

The law of large numbers and the central limit theorem which describe the
asymptotic behaviour of the suitably normalised convolutions are not only well
known within the probability theory but also are applied far beyond the boundaries
of pure mathematics [10, 12, 13].

However, it proves to be of interest to study to consider the behaviour of convo-
lutions in a slightly different normalisation — the fractional part. Such problems
on the sums of the independent random variables are known. For instance, in [7]
the result for the Gaussian random variables was obtained. Y.V. Prokhorov as well
as his students investigated problems that involved convergence to the uniform dis-
tribution. It is known that the uniform distribution maximises entropy. Therefore,
the convergence to the uniform distribution of sum of the increasing number of
the independent random variables may be interpreted as a system tending towards
the state of the maximal entropy. The problems concerning the maximisation of
entropy arise in pure mathematics as well as in applications (for instance, [2, 8]).

Let us consider ξ1, ξ2, ... — independent Poisson distributed random variables
with the parameter λ > 0, that is for each n ∈ N ξn ∼ Π(λ):

P (ξn = k) =
λk

k!
e−λ , k ∈ Z+ .

In [5] (see also [3, 4, 6]) convergence to the uniform distribution of remainders
modulo m = 2, 3, 4 of the convolutions of identically ditributed Poisson random
variables was proved and the explicit formula for the distributions was obtained.
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Here follows the formula for the distribution of the remainders modulo 2:

P
(
{ξ1 + . . .+ ξn}2 = 0

)
=

1

2
+

e−2λn

2
→ 1

2
, n → ∞ ,

P
(
{ξ1 + . . .+ ξn}2 = 1

)
=

1

2
− e−2λn

2
→ 1

2
, n → ∞ .

Modulo 3 as n → ∞

P
(
{ξ1 + . . .+ ξn}3 = 0

)
=

1

3
+

2

3
· e− 3λn

2 cos
√
3λn
2 → 1

3
,

P
(
{ξ1 + . . .+ ξn}3 = 1

)
=

1

3
− 1

3
· e− 3λn

2 cos
√
3λn
2 +

1√
3
· e− 3λn

2 sin
√
3λn
2 → 1

3
,

P
(
{ξ1 + . . .+ ξn}3 = 2

)
=

1

3
− 1

3
· e− 3λn

2 cos
√
3λn
2 − 1√

3
· e− 3λn

2 sin
√
3λn
2 → 1

3
.

And modulo 4:

P
(
{ξ1 + . . .+ ξn}4 = 0

)
=

1

4
+

1

4
· e−2λn +

1

2
· e−λn · cosλn → 1

4
, n → ∞ ,

P
(
{ξ1 + . . .+ ξn}3 = 1

)
=

1

4
− 1

4
· e−2λn +

1

2
· e−λn · sinλn → 1

4
, n → ∞ ,

P
(
{ξ1 + . . .+ ξn}3 = 2

)
=

1

4
+

1

4
· e−2λn − 1

2
· e−λn · cosλn → 1

4
, n → ∞ ,

P
(
{ξ1 + . . .+ ξn}3 = 3

)
=

1

4
− 1

4
· e−2λn − 1

2
· e−λn · sinλn → 1

4
, n → ∞ .

In this work the results mentioned are generalised to an arbitrary natural m.
It turns out that in the general case the explicit formula for computing proba-
bilities P

(
{ξ1 + . . . + ξn}m = l

)
may be established for arbitrary n,m ∈ N and

l ∈ {0, 1, 2, . . . ,m − 1}. It is worth mentioning that the probability distributions
obtained are expressed via the m-th roots of unity, of which there are exactly m,
all distinct.

From the explicit expressions for the probabilities P
(
{ξ1 + . . . + ξn}m = l

)
follows the convergence in law (hereafter referred to as simply convergence) of the
convolution of the Poisson distributed random variables modulo m to the uniform
distribution .

Let us recall the convolution formula for two integer-valued random variables ξ
and η:

P (ξ + η = k) =

+∞∑
s=−∞

P (ξ = s) · P (η = k − s) . (0.1)
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1. The case of the equal distribution

We formulate the following theorem.

Theorem 1.1. Let ξ1, . . . , ξn be independent identically distributed Poisson ran-
dom variables with the parameter λ > 0.

Then for any n,m ∈ N and l ∈ {0, 1, 2, . . . ,m− 1} the following holds true

P
(
{ξ1 + . . .+ ξn}m = l

)
=
e−λn

m
·
m−1∑
k=0

u
{m−l}m

k eukλn

=
1

m
+

m−1∑
k=1

u
{m−l}m

k

m
e−λn(1−uk) ,

where {a}m denotes the remainder of dividing the integer a ∈ Z by a natural

m ∈ N, i =
√
−1 is the imaginary unit and uk = e

2πk
m i are the m-th roots of unity.

Proof. It is known that the sum of the independent Poisson random variables
also follows the Poisson distribution with the parameter equal to the sum of the
individual parameters, that is

ξ1 + . . .+ ξn ∼ Π(λn) .

It can easily be noticed that for a ≥ 0 and for any l ∈ {0, 1, 2, . . . ,m− 1} it holds
true that {

{a}m = l
}
=

∞⋃
k=0

{
a = l +mk

}
,

where the outer brackets denote sets and the inner ones denote the fractional part
of a number. Therefore,

P
(
{ξ1 + . . .+ ξn}m = l

)
= P

( ∞⋃
k=0

{ξ1 + . . .+ ξn = l +mk}

)
=

=

∞∑
k=0

P (ξ1 + . . .+ ξn = l +mk) =

= e−λn ·
∞∑
k=0

(λn)
mk+l

(mk + l)!
.

Let us define a function

G (x) = Gm (x) =

∞∑
k=0

xmk

(mk)!
,

so that for any l ∈ {1, 2, . . . ,m− 1} the derivatives exist.

G(l) (x) =

∞∑
k=1

xmk−l

(mk − l)!
=

∞∑
k=0

xmk+m−l

(mk +m− l)!
.

Thus, all the above probabilities can be expressed as

P
(
{ξ1 + . . .+ ξn}m = l

)
= e−λn ·G(m−l) (λn) .
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And as
m−1∑
l=0

P
(
{ξ1 + . . .+ ξn}m = l

)
= G (λn) +

m−1∑
l=1

e−λn ·G(m−l) (λn) = 1,

G (x) satisfies the following inhomogeneous differential equation

G (x) +G(1) (x) + . . .+G(m−1) (x) = ex

with the initial conditions

G (0) = 1 +

∞∑
k=1

0mk

(mk)!
= 1 , (1.1)

G(l) (0) =

∞∑
k=1

0mk−l

(mk − l)!
= 0 , (1.2)

where l ∈ {1, 2, . . . ,m− 1}. We consider the homogeneous differential equation

G (x) +G(1) (x) + . . .+G(m−1) (x) = 0 .

Its characteristic equation um−1 + . . .+ u+1 = 0 for u ̸= 1 can be reduced to the
form

um − 1

u− 1
= 0 , um = 1 .

And since u = 1 is not a solution of the given homogeneous equation, its distinct
solutions are precisely all the remaining roots of unity

uk = e
2π·k
m i , k ∈ {1, 2, . . . ,m− 1} . (1.3)

Therefore, the general solution of the homogeneous equation can be expressed as
follows

Gg.h. (x) =

m−1∑
k=1

Cke
ukx ,

where Ck are some constants. If we now seek the particular solution of the inho-
mogeneous equation in the following form

Gp.i. (x) = A · ex ,

than after substituting it into the original homogeneous equation and performing
some straightforward algebraic manipulations we obtain that

Gp.i. (x) =
1

m
· ex .

Combining the general and particular solutions yields the following expression

G (x) =

∞∑
k=0

xmk

(mk)!
=

1

m
· ex +

m−1∑
k=1

Cke
ukx , (1.4)

where Ck are some constants as it has been mentioned before.
Let us find the values of the constants Ck which correspond with the conditions

(1.1) and (1.2). to do this we substitute the initial conditions (1.1) and (1.2) into
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the general form of the function G (x). This substitution leads to the system of
m− 1 equations which can be written in a matrix form as follows

1 . . . 1
u1 . . . um−1

. . . . . . . . .
um−2
1 . . . um−2

m−1




C1

C2

. . .
Cm−1

 =


1− 1

m
− 1

m
. . .
− 1

m

 . (1.5)

It is not hard to notice that the matrix in the system given
1 . . . 1
u1 . . . um−1

. . . . . . . . .
um−2
1 . . . um−2

m−1


is a (m− 1,m− 1) Vandermonde matrix. As it is widely known the determinant
of the Vandermonde matrix V (u1, . . . , um−1) can ve expressed explicitly in terms
of the values u1, . . . , um−1:

V (u1, . . . , um−1) =
∏

1≤i<j≤m−1

(uj − ui) .

This expression shows that in our case due to (1.3) the determinant V (u1, . . . , um−1)
is not equal to zero, hence the matrix equation (1.5) has a unique solution. Due to
the uniqueness of the solution (C1, . . . , Cm−1) it is sufficient to present it explicitly.

For that we will be using the results acquired in [5, 6] and provided at the
beginning of this paper. Ergo, for m = 2 the substitution of the function

G (x) =
1

2
· ex + C1e

u1x =
1

2
· ex + C1e

πix

into

P
(
{ξ1 + . . .+ ξn}2 = 0

)
= e−λn ·G(0)

2 (λn) =
1

2
+ C1e

(πi−1)λn =
1

2
+ C1e

−2λn

must coincide with

P
(
{ξ1 + . . .+ ξn}2 = 0

)
=

1

2
+

e−2λn

2
,

Consequently, C1 =
1

2
will be a solution.

Similar reasoning shows that for m = 3 we will obtain a vector (C1, C2) =(
1

3
,
1

3

)
and for m = 4 the resulting vector will be (C1, C2, C3) =

(
1

4
,
1

4
,
1

4

)
.

Therefore we assume that in the general case

C1 = C2 = . . . = Cm−1 =
1

m

is the desired solution
To verify this assumption we write out the system (1.5) as a system of linear

equations
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

C1 + C2 + . . .+ Cm−1 = 1− 1
m

C1u1 + C2u2 + . . .+ Cm−1um−1 = − 1
m

C1u
2
1 + C2u

2
2 + . . .+ Cm−1u

2
m−1 = − 1

m
.......................................................
C1u

k
1 + C2u

k
2 + . . .+ Cm−1u

k
m−1 = − 1

m
.......................................................
C1u

m−2
1 + C2u

m−2
2 + . . .+ Cm−1u

m−2
m−1 = − 1

m

.

Since for s ∈ {1, 2, . . . ,m− 1} from the equalities us = us
1 it follows that

uk
s = (us

1)
k
=
(
uk
1

)s
= us

k,

the system can be rewritten as follows

C1 + C2 + . . .+ Cm−1 = 1− 1
m

C1u1 + C2u
2
1 + . . .+ Cm−1u

m−1
1 = − 1

m
...........................................................
C1uk + C2u

2
k + . . .+ Cm−1u

m−1
k = − 1

m
....................................................................
C1um−1 + C2u

2
m−1 + . . .+ Cm−1u

m−1
m−1 = − 1

m

.

Substituting the values C1 = C2 = . . . = Cm−1 =
1

m
into the latter system and

using the well known equality for the unity roots u0
k + u1

k + . . .+ um−1
k = 0 we see

that the resulting system

1

m
· (m− 1) = 1− 1

m
1

m
·
(
1 + u1 + . . .+ um−1

1 − 1
)
= − 1

m
..........................................................
1

m
·
(
1 + uk + . . .+ um−1

k − 1
)
= − 1

m
..............................................................
1

m
·
(
1 + um−1 + . . .+ um−1

m−1 − 1
)
= − 1

m

consists entirely of identities. It means that substituting the values C1 = C2 =

. . . = Cm−1 =
1

m
into the original system leads to the equalities that hold true.

Thus, the assumption that these value constitute the solution is confirmed.
Thereby

G (x) =
1

m
· ex +

m−1∑
k=1

1

m
eukx ,

G (λn) =
1

m
· eλn +

m−1∑
k=1

1

m
eukλn .
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Therefore

P
(
{ξ1 + . . .+ ξn}m = l

)
=e−λn ·G({m−l}m) (λn) =

e−λn

m

m−1∑
k=0

u
{m−l}m

k eukλn

=
1

m
+

m−1∑
k=1

u
{m−l}m

k

m
e−λn(1−uk),

where {a}m denotes the remainder of dividing the integer a ∈ Z by a natural

m ∈ N, uk = e
2πk
m i are the m-th roots of unity, k ∈ {1, 2, . . . ,m − 1}, l ∈

{0, 1, 2, . . . ,m − 1} and i is the imaginary unit. At this point the proof can be
considered complete.

□

Corollary 1.2. Let ξ1, ξ2, . . . be independent identically distributed Poisson ran-
dom variables with the parameter λ > 0. Then the distribution of the remainders
modulo m of the convolution of these random variables that is {ξ1 + . . .+ ξn}m
converges to the distribution uniform on the set {0, 1, 2, . . . ,m− 1}. In other
words, for any n,m ∈ N and l ∈ {0, 1, 2, . . . ,m− 1} it holds true that

P
(
{ξ1 + . . .+ ξn}m = l

)
→ 1

m
, n → ∞ . (1.6)

Proof. Due to the previous theorem for l ∈ {0, 1, 2, . . . ,m− 1} it holds that

P
(
{ξ1 + . . .+ ξn}m = l

)
=

1

m
+

m−1∑
k=1

u
{m−l}m

k

m
e−λn(1−uk) .

It is clear that
∣∣∣u{m−l}m

k

∣∣∣ = 1. Thence for n → ∞∣∣∣e−λn(1−uk)
∣∣∣ = ∣∣∣e−λn(1−cos 2π·k

m −i sin 2π·k
m )
∣∣∣ = 1 ·

∣∣∣e−λn(1−cos 2π·k
m )
∣∣∣→ 0 .

Thus, the relation (1.6) is proved.
□

2. The case of the unequal distribution

Let the mean value of the parameter for n random variables ξ1, . . . , ξn be defined
as the arithmetic mean of their parameter values:

λn =
λ1 + . . .+ λn

n
.

Then the generalisations of the results obtained above can be proved in a similar
way. Moreover, the complete analogy of the formulations of the statements is
obvious.

Theorem 2.1. Let ξ1, . . . , ξn be independent Poisson distributed random variables
with the positive parameters λ1, . . . , λn respectively. Then for any n,m ∈ N and
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l ∈ {0, 1, 2, . . . ,m− 1} it holds true that

P
(
{ξ1 + . . .+ ξn}m = l

)
=

e−nλn

m
·
m−1∑
k=0

u
{m−l}m

k euknλn =

=
1

m
+

m−1∑
k=1

u
{m−l}m

k

m
e−nλn(1−uk) ,

where where {a}m denotes the remainder of dividing the integer a ∈ Z by a natural

m ∈ N, i =
√
−1 is the imaginary unit and uk = e

2πk
m i are the m-th roots of unity.

Corollary 2.2. Let ξ1, ξ2, . . . be independent Poisson distributed random variables
with the positive parameters λ1, . . . , λn respectively. Then for n,m ∈ N and l ∈
{0, 1, 2, . . . ,m− 1} (1.6) holds true if for any n ∈ N and for some c > 0 the
inequalities λn ≥ c hold.

As it is well known [10], the entropy Hξ of a discrete random variable ξ taking
on m values x1, . . . , xm with the corresponding probabilities x1, . . . , xm is defined
by the following formula

Hξ = H(p1, . . . , pm) = −
m∑

k=1

pk log2 pk ,

and reaches its maximum value log2 m on the uniform on the set {x1, . . . , xm}
distribution and only on it, i.e.

max
p1,...,pm

H(p1, . . . pm) = H(
1

m
, . . . ,

1

m
) = log2 m.

This remark enables us to reformulate the above corollaries in terms of the
entropy of a discrete random variable. Thus, the following statement holds true.

Corollary 2.3. Let ξ1, ξ2, . . . be independent identically distributed Poisson ran-
dom variables with the parameter λ > 0. Then the entropy of the distribution of
remainders from dividing the convolution of the given random variables by m ∈ N,
that is the random variables {ξ1 + . . .+ ξn}m maximises with the increase of the
number of terms :

H
(
{ξ1 + . . .+ ξn}m

)
→ log2 m, n → ∞ . (2.1)

For the Poisson random variables with unequal parameters a similar statement
holds true.

Corollary 2.4. Let ξ1, ξ2, . . . be independent Poisson distributed random variables
with the positive parameters λ1, . . . , λn respectively. Let the inequalities λn ≥ c
hold for any n ∈ N and for some c > 0. Then the entropy of the distribution of
remainders from dividing the convolution of the given random variables by m ∈ N,
that is the random variables {ξ1 + . . .+ ξn}m maximises with the increase of the
number of summands in the sense of (2.1).
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3. Conclusion

Thus, in the case of independent Poisson random variables, it has been shown
that the fractional parts of their convolutions converge in law to the uniform
distribution at an exponential rate and, therefore, their entropies converge to their
maximum possible value.
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