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ABSTRACT. We study second order backward mean derivatives and compute them for
some Itô diffusion processes. It is also possible to do using backward Itô-Ventzell for-
mula. We compute these derivatives along the Wiener process.

1. Introduction

This paper is devoted to computing second order backward mean derivatives along the
Wiener process. It is needed for the investigation of the motion of incompressible viscous
fluid.

We can write the equation of the motion of such fluid in Lagrange coordinates. It
will look like a second order backward mean derivative of a process with some force.
Simultaneously these motion could be described in Euler coordintes with some analog of
the Navie-Stockes equation.

In the second section we introduce the backward mean derivative for a stochastic pro-
cess with respect to another one. Then we construct the backward mean derivative of
vector field along a stochastic process and the second order backward mean derivative.

In the next section we suppose that a stochastic process is an Itô diffusion process. So
it is possible to compute the second order mean derivative along the Wiener process in
some special cases.

2. Backward mean derivatives

Let us consider stochastic processes ξ (t), η(t) given on a certain probability space
(Ω,F ,P) with values in Rn. These processes are L1-variables for all t ∈ [0,T ]. We
denote by Eη

t (ξ (t)) the conditional expectation of the process ξ (t) for the σ -algebra,
generated by preimages of the borel sets for the η(t) : Ω → Rn.

We call the backward mean derivative of the process ξ (t) at the instant t the L1 random
variable

Dη
∗ ξ (t) = lim

△t→+0
Eη

t

(
ξ (t)−ξ (t −△t)

△t

)
. (2.1)

These derivative can be considered as the composition of ξ (t) and the borel vector field
Z(t,x):

Z(t,x) = lim
△t→+0

E
(

ξ (t)−ξ (t −△t)
△t

∣∣∣η(t) = x
)
. (2.2)
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Let Z(t,x) be a C2-vector field of Rn. The backward mean derivative of Z(t,x) along
ξ (t) is the L1-random process

Dη
∗ Z(t,ξ (t)) = lim

△t→+0
Eη

t

(
Z(t,ξ (t))−Z(t −△t,ξ (t −△t))

△t

)
. (2.3)

Consider a Wiener process w(t) in Rn as a process η(t) and consider ξ (t) as a solution
of the stochastic differential Itô equation

dξ (t) = a(t,ξ (t))dt +A(t,ξ (t))dw(t), (2.4)

where the drift a(t,x) and the diffusion summand A(t,x) are a vector field and a field of
linear operators in Rn respectively, denote A(t,x)A∗(t,x) by σ(t,x).

Let f (t,x) be a Rn-valued function, then for process (2.4) as in [4] we get

Dη
∗ f (t,ξ (t)) =

(
∂ f
∂ t

+D∗ξ (t)∇ f − 1
2

σ∇
2 f
)
(t,ξ (t)), (2.5)

where ∇ f is the gradient of f and ∇2 f is the Hessian of the f .
We need some properties of the backward mean derivatives. For the L1-stochastic

processes ξ (t), η(t), a function f : R×Rn → Rn and a constant linear operator σ in Rn

we have
(1) D∗(ξ (t)+η(t)) = D∗(ξ (t))+D∗(η(t)),
(2) D∗(σξ (t)) = σD∗(ξ (t)),
(3) For the differentiable function f of t and the process ξ (t) like above it would be

useful for us the following Leibnitz rule.

Dw
∗ ( f (t)ξ (t)) =

d f (t)
dt

Ew
t ξ (t)+ f (t)Dw

∗ ξ (t). (2.6)

For the Markov diffusion process of the form (2.4) as in [4] we can write

D∗ξ (t) = a∗(t,ξ (t)), ai
∗(t,x) = ai(t,x)− 1

pt(x)
∂ j(σ

i j(t,x)pt(x)), (2.7)

where pt(x) is the density of process ξ (t), ∂ j means the partial derivative w.r.t. x j.

3. Second order backward mean derivatives

It is possible to use second order backward mean devivatives to investigate the equation
of motion of viscous fluid. The first step on this way is calculating such derivatives for
the most useful processes. Another application of mean derivatives is connected with
the financial mathematics. Let’s consider Wiener processes, a martingales, geometric
brownian motions and Ornstein-Uhlenbeck processes.

Theorem 3.1. Let A(t) be a C2-field of linear operators in Rn such that
T∫

0

(AA∗)(s)ds < ∞.

Let a(t), B(t) be a C2 function and a field of linear operators in R, a and B are the
constants. For the processes ξ1(t), ξ2(t), t ∈ [0,T ] with values in Rn and ξ3(t), ξ4(t) with
values in R of the form
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dξ1(t) = Adw(t), dξ2(t) = A(t)dw(t),

dξ3(t) = a(t)ξ3(t)dt +B(t)ξ3(t)dw(t), dξ4(t) =−aξ4(t)dt +Bdw(t),

the second order backward mean derivative Dw
∗ Dw

∗ is equal to

Dw
∗ Dw

∗ ξ1(t) = 0, Dw
∗ Dw

∗ ξ2(t) =C′(t)w(t)+
C(t)

t
w(t),

Dw
∗ Dw

∗ ξ3(t) =
(

a′(t)+C′(t)w(t)+
C′(t)

t
w(t)

)
ξ3(t)+(a(t)+C(t)w(t)−σ(t))ξ3(t),

Dw
∗ Dw

∗ ξ4 = a2
ξ3 −a

2aAeat

e2at −2a
w(t)−2a2A

e3at +2aeat

(e2at −2a)2
w(t)

t
.

Proof. Notice that the Wiener process w(t) has the density of the form

pt(x) =
1√

(2πt)n
exp{− 1

2t
x∗x},

where x∗ is conjugate to x.
The result for the process ξ1 is a consequence of the result from [5] and formula (2.7).

Note that the process ξ1(t) = Aw(t) with a constant matrix A is again a Wiener process.
By the definition of the backward mean derivative we obtain

Dw
∗ ξ1(t) = lim

△t→+0
Ew

t

(
Aw(t)−Aw(t −△t)

△t

)
= A lim

△t→+0
Ew

t

(
w(t)−w(t −△t)

△t

)
=

= AD∗w =
A
t

w(t).

Applying the Leibnitz rule (2.6) we get

Dw
∗ Dw

∗ ξ1(t) = Dw
∗

(
Aw(t)

t

)
=− A

t2 w(t)+
A
t

Dw
∗ w(t) = 0.

The Itô process ξ2 = ξ2(0)+
t∫

0
A(s)dw(s) is a martingale and has the normal distribu-

tion with parameters 0 and Σ(t) =
t∫

0
σ(s)ds, where σ(t) = (AA∗)(t).

The density of this distribution could be written in the form

pt(x) =
1√

(2π)n|Σ(t)|
exp{− 1

2t
x∗Σ

−1(t)x},

By the definition we have Σ′(t) = σ(t). In one-dimensional case we get

Dw
∗ ξ2(t) = σ(t)

w(t)
Σ(t)

= (lnΣ(t))′w(t).

Denote (lnΣ(t))′ by C(t). Applying the Leibnitz rule (2.6) we get

Dw
∗ Dw

∗ ξ2(t) = Dw
∗ (C(t)w(t)) =C′(t)w(t)+

C(t)
t

w(t). (3.1)
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Since the coordinates of w(t) are independent Wiener processes we need additional

notation, σ̃(t) = diagσ(t). In Rn denote (σ(t)B̃−1(t)) by C(t) and
t∫

0
σ̃(s)ds by B̃(t).

With these notation we get the same formula (3.1) in Rn.
Now consider the geometric brownian motion ξ3(t). It is well known that the solu-

tion of such equation can be written using the exponent, then lnξ3(t) satisfies the linear
stochastic equation

dη(t) = dlnξ3(t) = ã(t)dt +B(t)dw(t), (3.2)
where ã(t) = a(t)− 1

2 σ(t). Then

Dw
∗ η(t) = ã(t)+C(t)w(t),

So

Dw
∗ Dw

∗ η(t) = ã′(t)+C′(t)w(t)+
C(t)

t
w(t).

Now apply formula (2.5) to the function f (x) = ex thus ξ3(t) = eη(t):

Dw
∗ ξ (t) =

(
D∗η(t)− 1

2
σ(t)

)
ξ3(t).

Dw
∗ ξ (t) =

(
D∗η(t)− 1

2
σ(t)

)
ξ3(t).

And one more time taking Dw
∗ :

Dw
∗ Dw

∗ ξ3(t) =
(

Dw
∗ Dw

∗ η(t)− 1
2

σ
′(t)

)
ξ3(t)+

(
Dw
∗ η(t)− 1

2
σ(t)

)2

ξ3(t) =

=

(
ã′(t)+C′(t)w(t)+

C′(t)
t

w(t)
)

ξ3(t)+(ã(t)+C(t)w(t)−σ(t))ξ3(t).

Let’s write the equation of the Ornstein-Uhlenbeck process ξ4 (see [7]) more precisely:

ξ4(t) = ν0 −
t∫

0

aξ4(t)dt +
t∫

0

Bdw(t). (3.3)

Solution of this equation can be written in the form

ξ4(t) = e−at

ν0 +A
t∫

0

easdw(s)


and have normal distribution with parameters ν0e−at and B2

2a

(
1− e−2at

)
. If ν0 has normal

distribution N(0, B2

2a ), then the process ξ3 is Markovian and its distribution is N(0, B2

2a ).
Let’s compute Dw

∗ ξ3 using previous results.

Dw
∗ ξ3(t)=−aξ3(t)+e−atDw

∗ (ν0+A
t∫

0

easdw(s))=−aξ3(t)+Ae−atDw
∗ (

t∫
0

easdw(s))=

=−aξ3(t)+
2aAeat

e2at −2a
w(t).

82



A FORMULA FOR THE SECOND ORDER BACKWARD MEAN DERIVAVES

It is easy to check that

Dw
∗ Dw

∗ ξ4 = a2
ξ4 −a

2aAeat

e2at −2a
w(t)−2a2A

e3at +2aeat

(e2at −2a)2
w(t)

t
.

□
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