
ADAPTIVE GAUSSIAN MIXTURE MODEL IN GLOBAL

OPTIMIZATION

SOONHUI LEE

Abstract. We discuss stochastic optimization problems that involve un-
known dependencies between control and random variables, where we lack
information about both the distribution of uncertainty and the exact form
of revenue function. We study adaptive algorithm that provides the deci-
sion which converges to the true optimal solution with learning uncertainty
(for example, demand uncertainty) and optimizing the objective function (for
example, maximizing revenue) iteratively.

1. Introduction

Optimization problems arises in various fields such as engineering, sciences, and
business. Solution approaches are constantly developed and improved. It is often
the case that the structure or relationship between the objective function and
the decision variables are unknown, and hence, most algorithms designed to solve
optimization problems in such situations treat the objective function as “blackbox”
that returns the objective function value evaluated at a specific decision point.
Finding global optimal solutions requires much computational e↵ort especially
when dealing with complex systems. There are various search methods on the
decision space employed in a wide range of algorithms.

[2] classified search methods as being instance-based or model-based. The
instance-based methods generate new decisions directly depending on the cur-
rent solution set. Well-known instance-based methods include genetic algorithms
[3] and simulated annealing algorithms [6]. Model-based search algorithms are
relatively newer than instance-based algorithms. [2] provides a survey on well-
established model-based search algorithms. In the model-based search methods,
candidate solutions are sampled from a parameterized probabilistic model that
is updated based on the previously generated solutions and the future search is
designed to be concentrated on the high quality solutions area. The ant colony
optimization [4], stochastic gradient ascent, cross-entropy [5], estimation of dis-
tributions [7], model reference adaptive search (MRAS) by [9], and model-based
annealing random search methods (MARS) by [8] belong to this category.

In the MRAS and MARS methods, there is a reference distribution that guides
a parametrized distribution whose parameter is updated in such a way that the

Date: Date of Submission August 6, 2018; Date of Acceptance September 8, 2018, Commu-
nicated by Yuri E. Gliklikh.

2000 Mathematics Subject Classification. Primary 49K99; Secondary 90-08.
Key words and phrases. global optimization, Gaussian mixture model, convergence.

153

Global and Stochastic Analysis

Vol. 5, No. 2, December (2018), 153-170

154 SOONHUI LEE

minimized. These algorithms focus on the exponential family of distributions that
makes the parameter optimization procedures analytically tractable.

In our study, we generate a candidate solution from a Gaussian mixture model
with adaptively updated parameters. The adaptive Gaussian mixture (AGM)
model used in this paper is structured with the same goal as the MRAS and
MARS method; the probability model focuses more on the decision space con-
taining high-quality solutions as iteration proceeds. The Gaussian mixture model
is adaptively updated based on the current M best solutions. The best ranked
decision continues to improve. Like many heuristics that are appealing because
they are intuitively simple and work well in practice, our goal in developing AGM
model is to maintain intuitively simple structure, and hence, be easy to implement
in practice. The AGM algorithm does not require parameter optimization proce-
dures but the algorithm has global convergence properties under mild conditions.
We also note that there are not as many parameters in the AGM algorithm as in
some other search algorithm; selecting the proper values of parameters that yield
good performance of the algorithm is investigated.

The remainder of the paper begins with the problem description in Section
2. In Section 2, we also present the global convergence properties of the AGM
algorithm. In Section 3, we present numerical results obtained by applying the
AGM algorithm to solve benchmark problems often used in global optimization.
In Section 4, we give concluding remarks.

2. Problem Description

We consider the following optimization problem:

q

⇤ 2 arg max
q2Q

r(q), Q ✓ Rn (2.1)

where q is a decision variable in Q, and r : Q 7! R is a real-valued function.
Throughout this paper, we assume that (2.1) has a unique global optimal decision
q

⇤, r(q) is bounded below, and evaluating r(q) is expensive. We can think of
solving (2.1) in the context of a sequential decision making process; a decision is
made, data are observed, the estimate is updated, a decision is made, and so on.
In this context, the objective function can be evaluated when a decision is made.

Our algorithms use a mixture of Gaussian kernel densities for a probabilistic
model to generate a solution/decision each period. A mixture model is a statistical
model where the probability density function is a convex sum of multiple density
functions. Mixture models provide a flexible and powerful mathematical approach
to modeling that is widely applied in many fields. A candidate decision q is
generated from a multi-modal distribution f̂ with Gaussian mixture model. To be
concrete, f̂ is a weighted sum of multiple Gaussian kernel density functions. At
iteration j, the modes in f̂j are determined by a collection of M (assuming M < j)
best decisions among j � 1 previous decisions. Assuming that evaluating r(q) is
expensive, generating many candidate solutions in one iteration or increasing the
number of candidate solutions as iteration proceeds are not feasible in our setting.
A new decision qj+1 will be generated from f̂j and if an objective value evaluated at

a decision generated from f̂j (i.e., r(qj+1)) is better than any decisions among the

ADAPTIVE GAUSSIAN MIXTURE MODEL 155

M best decisions, then the M best decisions will also be updated, and hence, f̂j

will be also updated accordingly. As the algorithm may have to stop at some point,
in which case the best decision should be employed for the remaining time periods,
it is important to see the convergence results of the best decision. We will show
that the best decision converges to the optimal decision with probability 1 under
some conditions. We do not require f̂j to converge to a degenerate distribution
concentrating on the optimal solution unlike the model reference adaptive search
(MRAS) method introduced in [9] and [10]. But concentration areas of f̂j will
move toward the promising areas, which will be accomplished by controlling the
density at each mode or weights on each kernel density function. In the next
section, we describe how the algorithm works in more detail.

2.1. Algorithm. In this section, we present the basic methodology of our algo-
rithm when one candidate decision is generated per decision period. We define M
to be the number of Gaussian kernel densities in f̂ and M can be viewed as an
input parameter indicating the level of exploration. At initialization, M decisions
q

1
1 , . . . , q

1
M are sampled from the solution space Q and the corresponding objective

values r(q1
1), . . . , r(q1

M) are evaluated.

A multi-modal distribution f̂(q|q̄1
, r̄

1) is constructed in such a way that the
modes of the kernel densities in the mixture are at q

1
1 , . . . , q

1
M and the densities

at the modes depend on r(q1
1), . . . , r(q1

M) where q̄

1 and r̄

1 are vector representa-
tions of q

1
1 , . . . , q

1
M and r(q1

1), . . . , r(q1
M), respectively. In the (j + 1)st period, we

generate a decision qj+1 according to a sampling distribution f̂(q|q̄j , r̄j), where r̄

j

represents the set of M highest objective values observed up to the jth period and
q̄

j represents the set of decisions corresponding to r̄

j . That is,

r̄

j =
⇣
r

j
(1), r

j
(2), . . . , r

j
(M)

⌘
, q̄

j =
⇣
q

j
[1], q

j
[2], . . . , q

j
[M]

⌘

where

r

j
(1) r

j
(2) · · · r

j
(M)

and q

j
[i] gives r

j
(i). After sampling the decision qj+1, we score it according to the

function, r(·) i.e., we compute r(qj+1) and compare it with r

j
(1). If r(qj+1) � r

j
(1),

r

j
(1) will be replaced by r(qj+1) so that r̄

j+1 consists of r̄

j\r

j
(1) and r(qj+1). Oth-

erwise, r̄

j+1 = r̄

j .

156 SOONHUI LEE

Algorithm 1

Initialization

Generate q1, . . . , qM and evaluate r(q1), . . . , r(qM).
Set q̄

1 = (q1
[1], . . . , q

1
[M]), r̄

1 = (r1
(1), . . . , r

1
(M)), and f̂(q|q̄1

, r̄

1)

In j+1 st period (j=1,2,. . .),

Step 1: Generate qj+1 from a certain distribution f̂(q|q̄j , r̄j)
that depends on r̄

j =
⇣
r

j
(1), r

j
(2), . . . , r

j
(M)

⌘
and q̄

j =
⇣
q

j
[1], q

j
[2], . . . , q

j
[M]

⌘
.

Step 2: Compute r(qj+1).

Step 3: Set r̄

j+1 =
⇣
r

j+1
(1) , r

j+1
(2) , . . . , r

j+1
(M)

⌘
where r̄

j+1
(i) are the M

highest values among r

j
(1), . . . , r

j
(M) and r(qj+1) and q̄

j+1 =⇣
q

j+1
[1] , q

j+1
[2] , . . . , q

j+1
[M]

⌘
.

j j + 1:

Repeat Step 1 – Step 3.

At the initialization, q̄

1 could be the decisions made in the first M periods, num-
bered �(M� 2), . . . , 0, 1 using any rule that is chosen by the decision maker.

2.1.1. Choice of sampling distribution. We use the kernel density estimation to
construct a sampling distribution f̂ . Suppose we have a random sample x1, . . . , xN

drawn from a probability density fX(x), and we wish to estimate fX at a point
x0. Then, the basic form of the kernel density estimate for the univariate case is
as follows,

f̂X(x) =
NX

i=1

1

N�

K�(x0, xi) (2.2)

where K� is a kernel function with the width �. Our main purpose in using the
kernel density estimation is nonparametric classification of the ranked decisions.
Therefore, the random samples in (2.2) are replaced by the ranked (e.g., best M)
decisions. The weight 1/N and the width � can be chosen di↵erently depending
on the rank of the decisions.

ADAPTIVE GAUSSIAN MIXTURE MODEL 157

We use one of the most popular smoothing kernels, the Gaussian kernel. The
basic form (2.2) of kernel density estimate defining the Gaussian mixture distri-
bution f̂ at iteration j is as follows,

f̂(q|q̄j , r̄j) =
MX

i=1

↵

j
iK

q � q

j
[i]

�

j
[i]

!
(2.3)

where
MX

i=1

↵

j
i = 1 and

K

q � q

j
[i]

�

j
[i]

!
=

1p
2⇡�

j
[i]

exp

0

@�1

2

q � q

j
[i]

�

j
[i]

!2
1

A (2.4)

where the M best solutions (qj[i], i = 1, . . . , M) are the modes of each kernel. The

weight ↵

j
i and width �

j
[i] di↵er in each kernel. Setting the M best solutions as the

modes in the Gaussian mixture model can make a sampling area in (2.3) biased
toward this elite group of solutions. As the spread of solutions should be changed
each period and can be greater in one of the kernels than the others, we let the
bandwidth �

j
[i] be updated depending on the period j and the objective function

values corresponding to the current M best solutions.
A specific choice of ↵i and �

j
[i] in (2.3) and (2.4) is

Case 1: ↵i =
1

M , �

j
[i] =

PM
p=1 r

j
(p)

r

j
(i)

(2.5)

assuming that r(q) > 0 for all q 2 Q. Some analytical and numerical convergence
results can be shown for Case 1 in (2.5). In Case 1, the weights on the kernel
densities are equal and the standard deviation of ith kernel density is inversely
proportional to the corresponding objective value. Therefore, f̂ is more concen-
trated on the promising areas. The standard deviation in (2.5) will not be changed
if the objective function is multiplied by some scaling factor. The �

j
[i] will lie within

the range of 1 and 1+(M�1) supqt 6=qs
r(qt)
r(qs)

. There is only one parameter M that
needs to be determined. Selecting a good set of parameters is another problem
to solve in other existing algorithms. The algorithm is very simple. It can work
e↵ectively for well-scaled, low dimensional problems; note that � depends on the
objective values directly—for well-scaled function, � lies in the reasonable range
of values—and � is always larger than 1—for high dimensional problems, � > 1
may not help the search of the algorithm at an appropriate level of exploitation.

There are many ways of constructing f̂ with di↵erent choices of K(·), ↵i, and
�

j
[i]. However, to perform e↵ectively, some properties are desired: For example, (a)

the standard deviation of each kernel density is inversely proportional to the cor-
reponding objective values, (b) the density spreads the candidate decisions around
the modes so that it prevents local convergence, and (c) weights are updated in
the way that gives more weight on the promising kernel functions. In Figure 1,
we show a graphical representation of a multi-modal distribution given a set of

158 SOONHUI LEE

−20 0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

q

r(
q)

r(q2)
r(q3)

r(q1)

−20 0 20 40 60 80 100
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

q

f̂
(q

|q̄
3 ,

r̄

3)

Figure 1. Observations (q, r(q)) (left) and kernel density esti-
mates q vs. f̂(q|q̄3

, r̄

3) (right)

decision points and objective values. Consider the one dimensional optimization
problem, r(q) = � 1

1000 (q � 30)2 +5 where the maximum is at q

⇤ = 30 and Q = R.
Suppose that q̄ =

�
q[1], q[2], q[3]

�
= (13, 35, 60) is a set of current best decisions and

r̄ =
�
r(1), r(2), r(3)

�
= (4.711, 4.975, 4.1) are the corresponding objective values for

M = 3. Figure 1 describes objective function values in the left and a sampling
distribution f̂(q|q̄, r̄) determined according to (2.3), (2.4), and (2.5). It can be
seen from the figure that the sampling area for generating the next decision is
more focused on the promising area around the current best decision.

For badly scaled and high-dimensional problems, we can consider a case where �

decays without depending on the objective values like Case 1. For high-dimensional
problems, the decay of the variance in each Gaussian kernel will help the algorithm
exploit the promising areas e�ciently. One such case is as follows,

Case 2: ↵i =
1

M , �

j
[i] =

cp
M(log j)g

(2.6)

where c and g are positive constants.
In Case 2, the weights on the kernel densities are equal and the standard devi-

ation of ith kernel density decays as iteration proceeds. Larger values of M and
c will help the search of the algorithm more scattered while larger values of g will
help exploitative search concentrated on around the M best decisions.

We now extend a kernel density function to the multi-dimensional case by defin-
ing a multivariate Gaussian density function using the product kernel.

Definition 2.1. When Q = Rn, let q = (q1, q2, . . . , qn), q

j
[i] = (qj[i]1, q

j
[i]2, . . . , q

j
[i]n),

and

K

q � q[i]

�

j
[i]

!
=

nY

l=1

1p
2⇡�

j
[i]

exp

0

@�1

2

ql � q

j
[i]l

�

j
[i]

!2
1

A
.

For the multi-dimensional case, we use Definition 2.1 throughout the paper.
Our interest is to show global convergence of the algorithm, which will depend

on the properties of f̂ . In the next section, we provide some results on convergence

ADAPTIVE GAUSSIAN MIXTURE MODEL 159

for Algorithm 1 under a di↵erent set of assumptions where the global convergence
properties can be easily established.

2.2. Results on convergence when Q is compact. To obtain analytical con-
vergence results for Algorithm 1, we begin with a case where Q is compact in Rn.
We also make the following assumptions and definitions.

Definition 2.2. For � > 0, B�(q⇤) = {q 2 Q| kq�q

⇤k < �} where kq�q

⇤k denotes
the Euclidean distance between q and q

⇤.

Assumption 2.3. For any � > 0, µ(B�(q⇤)) > 0 where µ(·) is Lebesque measure.

Assumption 2.4. r : Q 7! R+
, i.e., r(q) > 0 for 8q 2 Q.

Assumption 2.5. r : Q 7! R is a continuous or a bounded function.

Assumption 2.6. For all r̃ < r(q⇤), there always exists ✏ > 0 such that B✏(q⇤) ✓
{q : r(q) > r̃}.

We make Assumption 2.4 without loss of generality since we can always in-
troduce a strictly increasing function T : R 7! R+, which can be used when the
values of r(·) are negative. Assumption 2.6 quarantees q

⇤ is in the interior of Q.
We re-define a truncated version of the multi-modal distribution on the compact
set Q.

Definition 2.7.

f̂(q|q̄j , r̄j) =
MX

i=1

↵i

K
✓

q�qj
[i]

�j
[i]

◆

R
Q K

✓
q�qj

[i]

�j
[i]

◆
dq

(2.7)

where
PM

i=1 ↵i = 1 and K(·) is as in Definition 2.1.

In step 1 of Algorithm 1, qj+1 can be either sampled from f̂(·|q̄j , r̄j) in (2.7)
directly or a mixture distribution combined with the uniform distribution. Both
cases give similar convergence results, which will be shown in Propositions 2.8 and
2.9, respectively.

Proposition 2.8. Consider Algorithm 1 with Case 1 and a sampling distribution

defined by Definition 2.7. Let Aj+1|Fj = {||qj+1 � q

⇤|| < ✏|Fj}. If Assumptions

2.3-2.4 are satisfied, P (Aj i.o.) = 1.

Proof. Let Fj be a filtration, i.e., Fj = �(q1, . . . , qj) for j � 1. By the second
Borel-Cantelli lemma II (in [11]), it su�ces to prove

P
j P (Aj |Fj) =1.

P (Aj+1|Fj) =

Z

q2B✏(q⇤)
f̂(q|q̄j , r̄j)dq

>
MX

i=1

1

M

Z

q2B✏(q⇤)
K

q � q

j
[i]

�

j
[i]

!
dq (2.8)

160 SOONHUI LEE

The inequality in (2.8) holds since
R

K
✓

q�qj
[i]

�j
[i]

◆
dq < 1 for each i and j. There

exists r

� = minq2Q r(q) since r(·) is continuous or bounded on a compact set Q.

It is clear that infi,j �

j
[i] > Mr�

r(q⇤) and supi,j �

j
[i] 6

Mr(q⇤)
r� . Let

�

� =
Mr

�

r(q⇤)
, �

• =
Mr(q⇤)

r

� (2.9)

and

�

⇤
✏ = max

i=1,...,n
qb2B✏(q

⇤)
q2Q

|eTi qb � e

T
i q|

where ei = (0, 0, . . . , 1, . . . , 0)T (2 Rn). Since Q is compact, we know �

⇤
✏ (< 1)

exists. Then, for any i, j, and l,

|ql � q

j
[i]l| 6 �

⇤
✏ (2.10)

for (q1, q2, . . . , qn) 2 B✏(q⇤) and (qj[i]1, q
j
[i]2, . . . , q

j
[i]n) 2 Q. It follows from (2.9)

and (2.10) that

Z

q2B✏(q⇤)
K

q � q

j
[i]

�

j
[i]

!
dq >

✓
1p

2⇡�

•

◆n Z

q2B✏(q⇤)
e

�(�⇤✏ /�
�)2n

dq

=

✓
1p

2⇡�

•

◆n

µ(B✏(q
⇤))e�(�⇤✏ /�

�)2n
. (2.11)

From (2.8) and (2.11),

P (Aj+1|Fj) >
✓

1p
2⇡�

•

◆n

µ(B✏(q
⇤))e�(�⇤✏ /�

�)2n = C1 > 0.

Because
Pn�1

j=0 P (Aj+1|Fj) > nC1,
P1

j=0 P (Aj+1|Fj)!1.
⇤

The next proposition shows a similar result for the case of a mixture distribution
combined with the uniform distribution and its proof is more straightforward.

Proposition 2.9. Consider Algorithm 1 with a mixture distribution combined with

the uniform distribution, f̄(q|q̄j , r̄j) defined as �f̂(q|q̄j , r̄j) + (1� �)f0(q) where

f0(q) =
1

µ(Q)
1{q2Q}

and µ(·) is Lebesque measure. Let qj+1 ⇠ f̄(q|q̄j , r̄j) and Aj+1|Fj = {||qj+1�q

⇤|| <

✏|Fj}. If Assumptions 2.3 is satisfied, for any ✏ > 0, P (Aj i.o.) = 1.

Proof. By the second Borel-Cantelli lemma II (in [11]), it su�ces to proveP
j P (Aj |Fj) =1. It follows from P (Aj+1|Fj) =

R
q2B✏(q⇤) f̄(q|q̄j , r̄j)dq that

(1� �)
1

µ(Q)
µ(B✏(q

⇤)) P (Aj+1|Fj).

Thus, we have
P

j P (Aj |Fj) =1. ⇤

ADAPTIVE GAUSSIAN MIXTURE MODEL 161

Theorem 2.10 shows that the objective function value corresponding to the best
decision converges almost surely regardless of the choices of the distribution.

Theorem 2.10. Consider Algorithm 1. r(qj[M]) converges almost surely as j !
1.

Proof. Let qj+1 ⇠ f̂(·|q̄j , r̄j)). It follows in Step 3 for all j that

E

h
r(qj+1

[M])|Fj

i
=

E

h
r(qj+1)1{r(qj+1)�r(qj

[M]
)>0} + r(qj[M])1{r(qj+1)�r(qj

[M]
)0}|Fj

i
.

Therefore, E[r(qj+1
[M])|Fj] � r(qj[M]) for all j. Since E[r(qj[M])] E[r(q⇤)] < 1

for all j, Yj = r(qj[M]) is a submartingale with respect to Fj . By the martingale

convergence theorem [12], we know that Yj converges almost surely. ⇤
We use Theorem 2.10 for the following theorem.

Theorem 2.11. Consider Algorithm 1 with a multi-modal distributon defined in

Definition 2.7. Let Aj+1|Fj = {||qj+1 � q

⇤|| < ✏|Fj}. If Assumptions 2.3-2.6 are

satisfied, then P (|r(qj[M])� r(q⇤)| > ✏ i.o.) = 0 for each ✏ > 0.

Proof. By Theorem 2.10, there exists q

� such that P (|r(qj[M])�r(q�)| > ✏ i.o.) = 0

for each ✏ > 0. Suppose that q

� 6= q

⇤. This implies that r(q�) < r(q⇤) and
r(qj[M]) 6 r(q�) for 8j since q

⇤ is unique and r(qj[M]) is monotonically nondecreas-
ing. Because

P (|r(qj[M])� r(q�)| > ✏)

= P (|r(qj�1
[M])� r(q�)| > ✏|r(qj)� r(qj�1

[M]) < 0)P (r(qj)� r(qj�1
[M]) < 0)

+ P (|r(qj)� r(q�)| > ✏|r(qj)� r(qj�1
[M]) � 0)P (r(qj)� r(qj�1

[M]) � 0)

> P ({|r(qj)� r(q�)| > ✏} \ {r(qj) > r(qj�1
[M])})

> P ({r(qj)� r(q�) > ✏} \ {r(qj) > r(qj�1
[M])})

= P (r(qj) > r(q�) + ✏),

we have

P (|r(qj[M])� r(q�)| > ✏ i.o.) > P (r(qj) > r(q�) + ✏ i.o.). (2.12)

It follows from Assumption 2.6 that there always exists ✏̃ such that

{r(qj) > r(q�) + ✏} ◆ B✏̃(q
⇤) (2.13)

for any ✏ satisfying r(q�) + ✏ < r(q⇤). From (2.12) and (2.13), we have

P (|r(qj[M])� r(q�)| > ✏ i.o.) > P (r(qj) > r(q�) + ✏ i.o.) > P (qj 2 B✏̃(q
⇤) i.o.)

(2.14)

162 SOONHUI LEE

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

r1
(q
)

q1*

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

r2
(q
)

q2*

Figure 2. r1(q) (left) and r2(q) (right)

for any ✏ satisfying r(q�) + ✏ < r(q⇤). We know the right hand side in (2.14) =1
by Proposition 2.8, which contradicts the supposition. Thus, q

� is equal to q

⇤. ⇤

Remark 2.12. We can extend the solution space Q to the unbounded space under
some assumption: There exists a compact set C and a positive constant d such
that q0 2 C \ Q and r(q) r(q0) + d for any q 2 Cc \ Q. It is reasonable to
assume that all solutions beyond some (unknown) distance from the initial setting
are inferior. Since the current best decision q

j
[M] will never visit the inferior region

under this assumption, we have the same convergence results.

3. Numerical experiments

In this section, we demonstrate the performance of the algorithm for continuous
optimization problems. We first show the numerical results on two one-dimensional
problems that are obtained from the algorithm with Case 1. For Case 2, we use 10
benchmark problems that have often been used for testing in global optimization.

3.1. Algorithm with Case 1. We use two one-dimensional functions, r1(q) =
� 1

1000 (q� 30)2 +1 and r2(q) = � 1
100000 (q� 10)(q� 20)(q� 50)(q� 100)� 1 where

q

⇤
1 = 30 and q

⇤
2 = 83.2165 are optimal solutions, respectively (Figure 2). Figure 3

shows the performance of the algorithm on r1(q) for M = 1 and M = 3. Figure
4 shows the performance of the algorithm on r2(q) for M = 1 and M = 5. The
algorithm converges faster with higher values of M as the search becomes more
explorative with larger values of M. It is possible that the algorithm stays around
q

� = 14.5065 (local maxima) for a long time for smaller values of M on r2(q)
depending on the initial decision point. The algorithm with Case 1 can be applied
to well-scaled low-dimensional problems.

3.2. Algorithm with Case 2. The following benchmark problems with various
dimensions (n) are used to test the algorithm with Case 2. Functions r1–r3 are low-
dimensional problems and functions r4–r10 are high-dimensional problems varying
from n = 20 to n = 100.

ADAPTIVE GAUSSIAN MIXTURE MODEL 163

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

Total sample size

q

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

Total sample size

q

Figure 3. Iterative decisions qj (blue) and the best rank de-

cisions q

j
[M] (red) when M = 1 (left) vs. M = 3 (right), on

r1

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Total Sample size

q

0 50 100 150 200 250 300 350 400 450 500
10

20

30

40

50

60

70

80

90

100

Total sample size

q

Figure 4. Iterative decisions qj (blue) and the best rank de-

cisions q

j
[M] (red) when M = 1 (left) vs. M = 5 (right), on

r2

(1) Dejong’s 5th function (n = 2)

r1(q) =

2

40.002 +
25X

j=1

1

j +
P2

i=1 (qi � aj,i)
6

3

5
�1

where

aj,1 = {�32,�16, 0, 16, 32,�32,�16, 0, 16, 32,�32,�16, 0,

16, 32,�32, 16, 0, 16, 32,�32,�16, 0, 16, 32, },

aj,2 = {�32,�32,�32,�32,�32,�16,�16,�16,�16,�16, 0, 0, 0, 0, 0,

16, 16, 16, 16, 16, 32, 32, 32, 32, 32},

q

⇤ = (�32,�32)T , r1(q⇤) ⇡ 0.998, Q = [�50, 50]n.

164 SOONHUI LEE

(2) Shekel’s function (n = 4)

r2(q) = �
5X

i=1

((q � ai)
T (q � ai) + ci)

�1

where a1 = (4, 4, 4, 4)T , a2 = (1, 1, 1, 1)T , a3 = (8, 8, 8, 8)T , a4 =
(6, 6, 6, 6)T , a5 = (3, 7, 3, 7)T , c = (0.1, 0.2, 0.2, 0.4, 0.4), q

⇤ = (4, . . . , 4)T ,
r2(q⇤) = �10.153, Q = [0, 10]n.

(3) Hartmann function (n = 6)

r3(q) = �
4X

i=1

ai exp

0

@�
6X

j=1

Bi,j(qj � Ci,j)
2

1

A

where ai = (1, 1.2, 3, 3.2)T ,

B =

0

BB@

10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

1

CCA ,

C =

0

BB@

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

1

CCA ,

q

⇤ = (0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573)T , r3(q⇤) =
�3.32237, Q = [0, 1]n.

(4) Rosenbrock function (n = 20)

r4(q) =
n�1X

i=1

100(qi+1 � q

2
i)

2
+ (qi � 1)2

where q

⇤ = (1, . . . , 1)T , r4(q⇤) = 0, Q = [�5, 5]n.
(5) Pintér’s function (n = 20)

r5(q) =
nX

i=1

iq

2
i +

nX

i=1

20i sin2(qi�1 sin qi � qi + sin qi+1)

+
nX

i=1

i log10(1 + i(q2
i�1 � 2qi + 3qi+1 � cos qi + 1)

2
)

where q0 = qn, qn+1 = q1, q

⇤ = (0, . . . , 0)T , r5(q⇤) = 0, Q = [�5, 5]n.
(6) Trigonometric function (n = 20)

r6(q) = 1 +
nX

i=1

8 sin2(7(qi � 9)2) + 6 sin2(14(qi � 9)2) + (qi � 9)2

where q

⇤ = (0.9, . . . , 0.9)T , r6(q⇤) = 1, Q = [�3, 3]n.

ADAPTIVE GAUSSIAN MIXTURE MODEL 165

(7) Griewank function (n = 20, 100)

r7(q) =
1

4000

nX

i=1

q

2
i �

nY

i=1

cos

✓
qip
i

◆
+ 1

where q

⇤ = (0, . . . , 0)T , r7(q⇤) = 0, Q = [�10, 10]n.
(8) Rastrigin function (n = 20)

r8(q) = An +
nX

i=1

[q2
i �A cos(2⇡qi)]

where q

⇤ = (0, . . . , 0)T , r8(q⇤) = 0, Q = [�5.12, 5.12]n.
(9) Sinusoidal function (n = 30)

r9(q) =
nX

i=1

2.5
nY

i=1

sin
⇣

⇡qi

180

⌘
+

nX

i=1

sin
⇣

⇡qi

36

⌘
� 3.5

where q

⇤ = (90, . . . , 90)T , r9(q⇤) = 0, Q = [0, 180]n.
(10) Zakharov function (n = 20)

r10(q) =
nX

i=1

x

2
i +

nX

i=1

0.5iqi

!2

+

nX

i=1

0.5iqi

!4

where q

⇤ = (0, . . . , 0)T , r10(q⇤) = 0, Q = [�5, 10]n.

When the test function is a minimization problem, we convert the problem
to max�ri(q). In the numerical experiments, we used scaled versions of test
functions when needed. For example, ri(cq̃), �1 6 q̃ 6 1 is solved instead of
ri(q), �c 6 q 6 c. We have tried di↵erent sets of parameters and found that the
performance of the algorithm depends on the values of M, c, and g especially for
high-dimensional problems.

Table 1 presents the averaged performance of the algorithm with a di↵erent set
of parameters c, g, and M based on 10 independent replications for each problem.
In Table 1, r̄M is the averaged objective function value at the best solution and
se is its standard error. The numerical simulation results corresponding to r̄

⇤
M in

the table are presented graphically in Figures 5 and 6.
For low-dimensional problems, a relatively small number of function evaluations

are needed to find the global optimum. r1 is a two-dimensional function with 25
local minima. Functions r2 and r3 have 5 and 6 local minima, respectively. For
r1, the algorithm converges after around 6000 function evaluations for all runs.
For r2, the algorithm find values bigger than 9 in 9 replications out of 10 but the
results are not as good as that of r1 and r3. For r3, the algorithm gives robust
results for all values of parameters and Figure 5 shows the algorithm converges
within around 2000 function evaluations.

For r4, the global optimum is inside a long, narrow, parabolic shaped flat valley.
It is known that finding the valley is trivial, however convergence to the global
optimum is di�cult. It is also known that most gradient methods fail to minimize
r4 since the two successive gradients are opposite to each other. Due to this unique
structure of the function, unlike other multimodal test functions, the larger values
of M does not help convergence on the high-dimensional setting of r4.

166 SOONHUI LEE

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−103

−102

−101

−100

−10−1

Total sample size

r 1(q
)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3

3.5

Total sample size

r 3(q
)

Figure 5. 10 independent runs on r1 (left) and r3 (right)

Function r5 is a badly scaled and highly multimodal function. In our prelimi-
nary experiments, we found that a small values of M does not maintain the search
explorative for high-dimensional setting. For n = 20, M = 300, the algorithm
found near-optimal solutions for some parameter settings. The performance seems
to be more sensitive to the change of parameters than other multimodal function
because the function is badly scaled. The algorithm with M = 300, c = 10, g = 3
found near-optimal solution in all replications (out of 10) within 300,000 function
evaluations. The algorithm with M = 300, c = 0.1, g = 1 found near-optimal solu-
tions in 9 replications (out of 10) within 300,000 function evaluations; c = 10, g = 3
and c = 0.1, g = 1 seem to work well with other highly multimodal functions with
M smaller than or around 300.

Function r6 is a highly multimodal function. Similarly with r5, the algorithm
with M = 300, c = 10, g = 3 found near-optimal solution in 9 replications (out
of 10) within 300,000 function evaluations. The algorithm with M = 300, c =
0.1, g = 1 found near-optimal solutions in 8 replications (out of 10) within 300,000
function evaluations.

Functions r7, r8, and r9 are also highly multimodal functions. They have many
widespread local minima/maxima and the location of the minima/maxima are
regularly distributed. For r7, with various settings of parameters, the algorithm
found near optimal solutions for all runs. The algorithm performs well even when
n = 100 for larger values of M. For r8, the parameter setting c = 10, g = 3 work
better than other settings that we tried. When M = 300 is changed to M = 700,
the solution is slightly improved from r̄M = �0.797 to r̄M = �1.127 (r(q⇤) = 0).
For r9, the parameter setting c = 1, g = 1 work well for M = 100, M = 10, and
M = 1. Near optimal solutions were found for all runs. For r10, there are no local
minima except the global one. Smaller values of M do not help convergence to
the optimal point and gives robust results for all parameters.

From our numerical experiments, we have found various parameter settings
that the algorithm performs reasonably well. Small values of M will often be
preferred for low-dimensional problems. Larger values of M are appropriate for
high-dimensional multimodal problems as many candidate solutions will be kept,

ADAPTIVE GAUSSIAN MIXTURE MODEL 167

and hence, the search becomes more explorative. But M (i.e., the number of kernel
functions in the mixture model) will not a↵ect the computational complexity in the
implementation of the algorithm since a candidate solution will be generated from
a randomly selected Gaussian kernel density among M Gaussian kernel densities.

Func. (r(q⇤)) n N M c g r̄(M) se

r1 (-0.998) 2 10K 10 3 1 �0.998⇤ 4.424e-6
2 10K 10 1 1 �1.396 0.162

r2 (10.153) 4 40K 10 0.1 1 8.900 0.854
4 100K 10 0.1 1 9.648 0.505

r3 (3.32237) 6 5K 10 0.1 1 3.310⇤ 1.192e� 2
6 5K 100 0.1 1 3.322 1.296e� 4

r4 (0) 20 400K 1 0.01 2.1 �6.876e� 2⇤ 4.105e� 2
20 300K 1 0.01 1 �1.389 0.597

r5 (0) 20 300K 300 10 3 �9.972e� 2⇤ 1.446e� 2
20 300K 300 0.1 1 �0.178 3.043e� 2

r6 (0) 20 300K 300 0.1 1 �1.000 4.761e� 7
20 300K 300 10 3 �1.045⇤ 4.486e� 2

r7 (0) 20 300K 10 0.1 1 �2.802e� 2⇤ 1.825e� 2
100 300K 300 0.1 1 �6.509e� 5 1.562e� 6

r8 (0) 20 300K 700 10 3 �0.797⇤ 0.289
20 300K 300 10 3 �1.127 0.343

r9 (0) 30 100K 10 1 1 �3.909e� 5 1.515e� 5
30 100K 100 1 1 �0.140 2.679e� 3

r10 (0) 20 300K 1 1 3 �1.838e� 6 6.960e� 8
20 300K 1 1 1 �4.275e� 2⇤ 1.223e� 3

Table 1. Average performance on r1�r10

4. Conclusion

In this paper, we proposed a search algorithm to solve deterministic optimiza-
tion problems. We presented the convergence properties of AGM algorithms. In
our numerical experiments, the performance of the algorithm is presented on multi-
dimensional optimization problems. In our future work, we intend to investigate
the performance of AGM algorithm on discrete optimization problems. The struc-
ture of Gaussian mixture model needs to be investigated; for example, its rela-
tionship with the topology of the problems and an initial set of bandwidths or
the number of kernel functions which give robust results. It is also worthwhile to
investigate a way that the number of kernel functions and the number of samples
generated each period can be adaptively changed.

168 SOONHUI LEE

0 0.5 1 1.5 2 2.5 3
x 105

−104

−103

−102

−101

−100

−10−1

Total sample size

r 4(q
)

0 0.5 1 1.5 2 2.5 3
x 105

−104

−103

−102

−101

−100

−10−1

−10−2

Total sample size

r 5(q
)

0 0.5 1 1.5 2 2.5 3
x 105

−102

−101

−100

−10−1

Total sample size

r 6(q
)

0 0.5 1 1.5 2 2.5 3
x 105

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Total sample size

r 7(q
)

0 0.5 1 1.5 2 2.5 3
x 105

−103

−102

−101

−100

−10−1

−10−2

−10−3

−10−4

Total sample size

r 8(q
)

0 0.5 1 1.5 2 2.5 3
x 105

−1012

−1010

−108

−106

−104

−102

−100

−10−2

−10−4

−10−6

Total sample size

r 10
(q

)

Figure 6. 10 independent runs of AGM on r4–r8, r10

Acknowledgment. This research was supported by Hankuk University of Foreign
Studies Research Fund.

References

1. Gross, L.: Abstract Wiener spaces, in: Proc. 5th Berkeley Symp. Math. Stat. and Probab.
2, part 1 (1965) 31–42, University of California Press, Berkeley.

2. Zlochin, Mark, Mauro Birattari, Nicolas Meuleau, and Marco Dorigo: Model-Based Search
for Combinatorial Optimization: A Critical Survey, Annals of Operations Research 131(1)
(2004) 373–395.

ADAPTIVE GAUSSIAN MIXTURE MODEL 169

3. Holland, J.H.: Adaptation in Natural and Artificial Systems, The Michigan University Press,
1975.

4. Dorigo, Marco, Vittorio Maniezzo, and Alberto Colorni: The Ant System: Optimization
by a colony of cooperating agents, IEEE TRANSACTIONS ON SYSTEMS, MAN, AND
CYBERNETICS-PART B 26(1) (1996) 29–41.

5. Reuven Y. Rubinstein and Dirk P. Kroese: The Cross Entropy Method: A Unified Ap-
proach To Combinatorial Optimization, Monte-carlo Simulation (Information Science and
Statistics),Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2004.

6. Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi: Optimization by simulated annealing, Science
220 (1983) 671–680.

7. Mühlenbein, H. and G. Paaß,G: From recombination of genes to the estimation of distribu-
tions I. Binary parameters, In Lecture Notes in Computer Science 1411: Parallel Problem
Solving from Nature-PPSN IV (1996) 178–187.

8. Hu, Jiaqiao and Ping Hu: Annealing adaptive search, cross-entropy, and stochastic approxi-
mation in global optimization, Naval Research Logistics (NRL) 58(5) (2011) 457–477.

9. Hu, Jiaqiao, Michael C.Fu, and Steven I. Marcus: A model reference adaptive search method
for global optimization, Operations Research 55(3) (2007) 549–568.

10. Hu, Jiaqiao, Michael C. Fu, and Steven I. Marcus: Stochastic optimization using model
reference adaptive search, Proceedings of the 2005 Winter Simulation Conference (2005)
811-818.

11. Durrett, Richard: Probability : Theory and Examples, Duxbury Press, 1995.
12. Billingsley, Patrick: Probability and Measure, Wiley-Interscience, New York, NY, 1995.

Soonhui Lee: College of Business, Hankuk University of Foreign Studies, 107, Imun-

ro, Dongdaemun-gu, Seoul, 02450, Republic of Korea
E-mail address: shlee2016@hufs.ac.kr, soonhui.lee@gmail.com

