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Abstract - In medical imaging and many other areas, 
selective image seg- mentation plays a key role. In this 
paper, we introduced a unique and novel convex 
selective segmentation model which contains two 
stages. The first stage is to achieve a regular 
approximation associated with the Mumford-shah 
model to the mark region in the given image. The 
approximation yields a greater value for the mark 
region and smaller values for others. In the second 
stage, we make use of this approximation and 
implement a thresholding technique to retrieve the 
object of interest. The approximation can be achieved 
by the alternating direction method. Experimental 
results on medical and noisy images are given to testify 
the importance of the proposed method. The 
comparisons show that the proposed method works 
better than other existing methods. 
 
Index Terms - Convex, Selective Segmentation, 
Thresholding technique, Medical Images, Distance 
function, Alternating Direction Method. 
 

1. Introduction 
Image segmentation is a major and complicated work in 
image processing and computer vision. Models based on 
partial differential equations are famous due to their 
affability and computational advantage in this field. 
Variational models can be categorized into two methods 
namely, region-based methods [1] and edge-based 
methods [2, 3, 4]. The first and second-order derivatives 

are used in edge-based techniques. The main defect is the 
deficiency of robustness in handling noisy images. The 
popular and effective region- based model is the 
Mumford-shah (MS) model [1]. The variational problems 
provoke piecewise smooth solutions with unwrinkled 
edges. In numerical computation, topological changes are 
not allowed during the iteration, and parameterizations are 
necessary. In many applications, such as surgery 
imitation, medical examination, object tracking, people 
extract only desired objects from an image. In the 
aforementioned cases, selective segmentation models are 
more useful. By using a set of marker points on the 
contour of significance to the geodesic active contour 
model Gout et al. [5] proposed a geometry constraint. By 
combining the region term Badshah and Chen [6] made 
the results better. For images that contain noise, the model 
became more robust with the region information. To 
segment the best class of image segmentation issue and 
taking more complicated features Zhang et al. [7] 
projected an adaptively precise band algorithm. Rada-
Chen [8] were used two-level set functions which can 
perform two tasks simultaneously and pro- posed a new 
variational model. The first task is to find the 
segmentation of all edges and the target of the second one 
is on the selected object that is near to the geometry 
constraints. Peng et al. [9] have proposed an intensity 
term for 3D liver segmentation. Mabood et al. [10] 
utilized the average image of channels and proposed a 
selective segmentation model which can extract textural 
and inhomogeneous objects. Recently C. Liu et al. [11] 
proposed a weighted variational model for selective 
image segmentation model including weight function to 
the Mumford-shah model. 
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To propose a new two-stage weighted convex 
selective image segmentation model based on the 
Mumford-Shah model and recently proposed model by C. 
Liu et al.  [11] is the central theme of this paper.  By 
using distance and edge detector functions we construct a 
new weighted function with the impact of different 
powers of p. In the first step, we chose various marker 
points around the object of interest. We can find a smooth 
approximation to the target region, by combining this 
weighted function into a convex second- order 
segmentation model. The minimizer of the proposed 
model must exist, and it will be unique. Many efficient 
numerical algorithms can be applied by virtue of the 
convexity of the new model. We demonstrate how to use 
the alternating direction method to obtain an appropriate 
numerical algorithm and to show the linear convergence 
under smooth conditions. In the second step, we make use 
of this approximation function and perform a thresholding 
technique to get the object of interest. 

This paper is arranged as follows. A brief review of 
the related segmentation models is given in section 2. In 
section 3, we demonstrate our model and establish the 
associated mathematical features. The numerical 
innovation and its convergence tests are present in section 
4. To show the good performance of our approach we 
present some numerical experiments in section 5. Finally, 
we draw the consequences of the paper in the last section. 
 

2 Related Works 
1.1 Variational Segmentation Models 

For the solution of the curve evolution problems more 
appropriate method is the level set method [12]. The 
topological changes are allowed, and the interface is 
depicted inevitably by the zero-level set of a Lipschitz 
continuous level set function (LSF). For the 
implementation of the discretization scheme, the mesh 
grids should be fixed. Chan and Vese proposed the two-
phase MS model [13] for those images which have 
piecewise constant intensities and the multiphase case 
[14]. Discontinuous functions are used in piecewise 
constant level set methods [15, 16, 17] to show distinct 
phases. Continuous functions should be used in methods 
of fuzzy membership function [18, 19]. To show the 
probability of belonging to some specific region these 
functions ranging from 0 to 1. To overwhelmed local 
minimum issue of the MS model graph cut method [20] 
and convex relation methods [21, 22] were proposed. By 
using a convex variant of the MS model Cai et al. [23] 
proposed a two-stage segmentation model which can be 
viewed as image segmentation and unification of image 
restoration. They used the Split-Bregman algorithm [24, 
25] and found a unique smooth minimizer and then by 
thresholding procedure segmented the image. For the 
purpose to pick the threshold automatically they 
introduced a K-means method. To propose a new 
multiphase segmentation model Cai blend image 
segmentation and image restoration models [26]. In, [27, 

28] the methods of Multiatlas segmentation have been 
projected and showed to be useful. To handle texture 
characteristics the methods of non- parametric statistical 
segmentation were proposed in [29, 30]. For video and 
individuals image segmentations a wavelet method with a 
shape prior was proposed in [31]. Moreover, about 
segmentation methods, reader is referring to [32, 33, 34, 
35, 36, 37, 38, 39, 40] and the reference therein. 

The solution of the following minimization problem 
is the main objective of the MS model [1]: 

{
𝛼

2
∫
𝛺

|𝑧0 − 𝑧|
2𝑑𝑥 𝑑𝑦 +

𝛽

2
∫
𝛺\𝛤

|𝛻𝑧|2𝑑𝑥𝑑𝑦

+ 𝛨1(𝛤)}  

where 𝛨1 is the one-dimensional Harsdorff measure. 𝛼, 𝛽 
> 0 and Ω ⊆ 𝑅2 be a connected bounded open set with 
Lipschitz boundary. 𝛤 be a compact curve in Ω and 

𝑓: Ω → 𝑅 be a given image. 𝛨1(𝛤) represents the length 
of 𝛤 for fixed curves. A two-stage variational image 
segmentation was proposed in [23]. The first step is to 
obtain a smooth approximation to the original image by 
solving the underneath convex minimization problem. 
 

{∫
Ω

|𝛻𝑧|𝑑𝑥𝑑𝑦 +
𝛼

2
∫
𝛺

|𝛻𝑧|2𝑑𝑥𝑑𝑦 +

𝛽

2
∫
𝛺

|𝑧0 − 𝑧|
2𝑑𝑥 𝑑𝑦} ,  (1) 

where the Sobolov space 
𝑊1,2(Ω) = {𝑣 ∈ 𝐿2(Ω)/𝜕𝑗𝑣 ∈ 𝐿

2(Ω), 𝑗 = 1,2} with 

𝐿2(Ω) = {𝑓(𝑥)/ (∫
Ω

𝑓2(𝑥)𝑑𝑥)

1
2

< ∞}, 

once 𝑧 is obtained then in the second stage, by 
thresholding 𝑧 properly the segmentation is obtained. The 
threshold can be provided by the experimenter or obtained 
automatically by any clustering method, such as convex 
K-means or K-means methods [41, 42]. 
 

1.2 Selective Segmentation Models 
Selective segmentation that plucks out object of interest 
from a given image. Like medical diagnosis and security 
monitoring selective segmentations are important and 
challenging task. Suppose that 𝑁 points inside the target 
are present on the image. Using these marker points 𝑋 =
 {𝑥1, 𝑥2, . . . , 𝑥𝑁  }, a distance function 𝑑(𝑥) ∶  Ω → 𝑅 can be 
defined as [6]. 

𝑑(𝑥) = ∏𝑁
𝑗=1

{
 

 

1 − 𝑒𝑥𝑝
(
−|𝑥−𝑥𝑗|

2

2ℎ2
)

}
 

 

,               𝑥 ∈ Ω  

  (2) 
 

where ℎ >  0. 
Near the marker points, the distance function is near 

to zero and far away from the marker points, it 
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approximates to one. Another way to define 𝑑(𝑥): 
 
𝑑(𝑥) = |𝑥 − 𝑦|     (3) 

where the edge detection function defined as: 

𝑔(𝑥) =
1

1 + 𝛽|𝛻𝑓(𝑥)|2
 

The above edge detector function is usually incorporated 
into segmentation models to use the edge information. An 
edge-based model was projected as follow in [5]

∫
𝛤

𝑑. 𝑔𝑑𝑠  

where 𝑑 is a distance function. 
Badshah and Chen [6] introduced intensity fitting terms 
like Chan- Vese model [13] and improved the model as: 

 

{𝛽∫𝛤 𝑑. 𝑔𝑑𝑠 + 𝜆1 ∫Ω𝑖𝑛
|𝑓 − 𝑐1|

2𝑑𝑥𝑑𝑦 +

𝜆2 ∫Ω𝑜𝑢𝑡
|𝑓 − 𝑐2|

2𝑑𝑥𝑑𝑦}   (5) 

where 𝜆1, 𝜆2, and 𝛽 are some constant and use to adjust 
the regularity and fidelity terms. The boundary between 
Ω𝑖𝑛 and Ω𝑜𝑢𝑡  is 𝛤, constants 𝑐1 and 𝑐2 are to be 
optimized. They need to solve the Euler Lagrange 
Equation of the LSF under the level set formulation. A 
new adaptive local band level set method was introduced 
in [7]. Combining the marker and anti-marker set, Nguyen 
et al. [43] proposed a selective segmentation model. 
Recently Liu et al. [44] proposed a new weighted 

variational model for selective image segmentation with 
application to medical images. They just incorporate a 
weight function to the Two-stage variational image 
segmentation model given in Eq. 1. The new model is 
given as follows: 
 

{𝐸(𝑢) ≔ ∫
Ω

|𝛻𝑢|𝑑𝑥𝑑𝑦 +
𝛼

2
∫
Ω

|𝛻𝑢|2𝑑𝑥𝑑𝑦 +
𝛽

2
∫
Ω

𝜔2|𝑢 − 𝑓|2𝑑𝑥𝑑𝑦} ,                                            (6)

where 𝜔 is a weight function defined by: 
 
𝜔2(𝑥)  =  1 −  𝑑(𝑥)𝑔(𝑥)                                             (7) 
 
They used the method of two stages. In the first stage, 
they solve a minimization problem based on some marker 
points and find out a smooth minimizer, and then in the 
second stage, they use simple thresholds and carried out 
segmentation. 
 

3 The Proposed Weighted Model 
In this section, we present our new model and its 
mathematical analysis. Our methodology contains two 
steps. In the first step, we solve a minimization problem 

based on some marker points and find out a smooth 
minimizer. Then in the second step, we use simple 
thresholding and carried out segmentation. 
 

3.1 Proposed Model 
Impressed by the convex model Eq. (1) and the 
aforementioned selective image segmentation models. We 
propose the following weighted model with the different 
impact of 𝑃: 
 

{𝐹(𝑧) ≔ ∫
Ω

|𝛻𝑧| 𝑑𝑥𝑑𝑦 +
𝛼

2
∫
Ω

|𝛻𝑧|2𝑑𝑥𝑑𝑦 +
𝛽

2
∫
Ω

𝜔𝑃|𝑧 − 𝑓|2𝑑𝑥𝑑𝑦} ,   (8)

where the weight function 𝜔 is to adjust the smoothing 
and fidelity terms. In this paper, we define the weight 
function as follows: 
𝜔(𝑥)  =  √1 −  𝑑(𝑥)𝑔(𝑥) ,    (9) 

Where 𝑃 ≥ 2 and 𝜔(𝑥) ∈ (0,1]. 𝑑(𝑥) distance function 
and 𝑔(𝑥) is an edge detector function and are defined by 
Eq. (3) and (4) respectively. 𝑔(𝑥) is small around the 
boundaries while 𝑑(𝑥) is small around the marker points 
virtually. The weight function 𝜔(𝑥) in Eq. (9) is smaller 
far away from the boundaries and becomes larger near the 
boundaries because the chosen marker points are near the 
boundaries. Therefore, we deduce that: 

(1) Nearby the boundaries, the fidelity term, 
which is the third term, in Eq. (8), plays an important role, 
and details have remained.  

(2) smoothing plays a key role far away from 
the boundaries. As we can observe from the numerical 
results complex structures far away from the edges are 

regularized and only the outline of the mark object 
remnant. 
 
 

4 Mathematical Analysis 
In this section, we will prove the convexity, existence, 
coercivity and uniqueness of the proposed functional Eq. 
(8). 
Convexity: To prove that the model is convex, consider 

 

𝐸 = |𝛻𝑧| +
𝛼

2
|𝛻𝑧|2 +

𝛼

2
𝜔𝑃|𝑧 − 𝑓|2   

 (10) 

where 𝐹 = ∫ 𝐸𝑑𝑥𝑑𝑦, and 𝐹 ∶  Ω ⊂  𝑅2 →  𝑅 

therefore, 

𝐸 ∶  Ω →  𝑅 

115



4 
 

Suppose that 𝑃1  =  (𝑥1, 𝑦1),  𝑃2  =  (𝑥2, 𝑦2) and for any 
𝑡 ∈  [0, 1], we have 
𝑡𝑃1  +  (1 −  𝑡)𝑃2 =   𝑡(𝑥1, 𝑦1)  + (1 −  𝑡)(𝑥2, 𝑦2) 

       =   𝑡(𝑥1  −  𝑥2)  + 𝑥2, 𝑡(𝑦1  −  𝑦2)  +  𝑦2 

Since 𝑥1, 𝑥2  ∈  𝑅 so 𝑥1  −  𝑥2  ∈  𝑅 and 𝑡 ∈  [0, 1], this 
implies that, 𝑡(𝑥1  −  𝑥2)  +  𝑥2 ∈ 𝑅 and 𝑦1  −  𝑦2 ∈ 𝑅 so, 
(𝑦1  −  𝑦2)  + 𝑦2 ∈ 𝑅 and hence 𝑡𝑃1  +  (1 −  𝑡)𝑃2 ∈ Ω 
so the domain Ω is convex or in other words since Ω is a 
rectangle so it is convex. Now to check the convexity of 
𝐸, we differentiate 𝐸 partially twice with respect to 𝑧 we 
get, 

𝜕𝐸

𝜕𝑧
= 𝛽𝜔𝑃(𝑧 − 𝑓) 

and 
𝜕2𝐸

𝜕𝑧2
= 𝛽𝜔𝑃  

since 𝛽 is a positive constant and 𝜔 ∈  (0, 1] so,  
𝜕
2
𝐸

𝜕𝑧2
≥ 0 

and Ω is convex. Thus 
𝐸(𝑡𝑃1  +  (1 −  𝑡)𝑃2) ≤  𝑡𝐸(𝑃1)  + (1 −  𝑡)𝐸(𝑃2) 

holds for all 𝑃1, 𝑃2 ∈  Ω and 𝑡 ∈  [0, 1]. Now integrate 𝐸 
we have, 

∫ 𝐸(𝑡𝑃1  +  (1 −  𝑡)𝑃2) 𝑑𝑥𝑑𝑦 ≤

𝑡∫ 𝐸(𝑃1) 𝑑𝑥𝑑𝑦 + (1 −  𝑡)∫ 𝐸(𝑃2) 𝑑𝑥𝑑𝑦    
   (11) 
 

𝐹 = ∫ 𝐸𝑑𝑥𝑑𝑦 

so 
𝐹(𝑡𝑃1  +  (1 −  𝑡)𝑃2) ≤  𝑡𝐹(𝑃1)  + (1 −  𝑡)𝐹(𝑃2).  (12)

Hence proved that 𝐹 is convex. 
Proposition 1. If 𝑓 ∈  𝐿2(Ω) and 𝜔(𝑥)  > 0. Then Eq. 
(8) is strictly convex and there exists a unique minimizer 
𝑧(𝑥)  ∈  𝑊1,2(Ω). 
Proof: - From the condition 𝜔(𝑥)  > 0 and Eq. (9) 𝜔(𝑥) 
is bounded. 
Let 𝑀1  ≤  𝜔(𝑥)  ≤  𝑀2, where 𝑀1, 𝑀2  >  0. 
Chose 𝑧0  =  0, we have 

0 ≤ 𝐹(𝑧)  

     ≤ 𝐹(𝑧0) =
𝛽

2
∫
Ω

𝜔𝑃𝑓2𝑑𝑥 

       ≤
𝑀2
𝑝
𝛽

2
||𝑓||

𝐿2(Ω)

2
< +∞ 

Thus 𝐹(𝑧)  must exist. 
We now prove that 𝐹 (𝑧) is coercive. It is clear that 

||𝛻𝑧||𝐿2(Ω) ≤ √
2

𝛼
𝐹(𝑧)     

 (13) 
also 

||𝑧||𝐿2(Ω)   ≤  ||𝑧 − 𝑓||𝐿2(Ω))   +  ||𝑓||𝐿2(Ω). (14) 
Meanwhile, 

0 ≤
𝑀1
𝑝
𝛽

2
∫
Ω

|𝑧 − 𝑓|2𝑑𝑥 

 

      ≤
𝛽

2
∫
Ω

𝜔𝑃|𝑧 − 𝑓|2𝑑𝑥 ≤ 𝐹(𝑧). 

From which we get, 

||𝑧 − 𝑓||𝐿2(Ω)) ≤ √
2

𝑀1
𝑝
𝛽
𝐹(𝑧) .    

 (15) 
 
Combining Eq. (13), (14) and (15) we have 

||𝑧||𝑊1,2(Ω) ≤ ||𝑧||𝐿2(Ω) + ||𝛻𝑧||𝐿2(Ω) 

≤ (√
2

𝛼
+√

2

𝑀1
𝑝
𝛽
)√𝐹(𝑧) + ||𝑓||𝐿2(Ω), 

which means that F (z) is coercive. 
Note that 𝑊1,2(Ω) is a reflective Banach space, and from 

Eq. (12) 𝐹 (𝑧) is convex, lower semi continuous and 
coercive. We deduced that the minimizer of F (z) will 
exist in 𝑊1,2(Ω) [23, 45]. 
Proposition 2. Let 𝑓 ∈  𝐿2(Ω) and 𝜔(𝑥)  > 0,  then  the 
unique minimizer 𝑧∗(𝑥) of Eq. (8) satisfies the inequality 
𝑖𝑛𝑓𝑥∈Ω 𝑓 (𝑥)  ≤  𝑧

∗(𝑥)  ≤  𝑠𝑢𝑝𝑥∈Ω 𝑓 (𝑥). 
Proof: - It is obvious from proposition (1) that 𝐹 (𝑧) is 
proper. Suppose that 𝑧𝑛 be a minimizing sequence. Then 
for 𝐹 (𝑧𝑛) where 𝑛 ∈  𝑁 there exist a constant 𝑀 >  0 
such that 𝐹 (𝑧𝑛) ≤ 𝑀. Therefore, ||𝛻𝑧𝑛||𝐿2(Ω) are 
uniformly bounded. Moreover, 

𝑀1
𝑝
𝛽

2
||𝑧𝑛 − 𝑓||𝐿2(Ω)

2 ≤
𝛽

2
∫
Ω

|𝑧 − 𝑓|2𝑑𝑥 ≤ 𝑀, 

For all 𝑛 ∈  𝑁. From this we obtained that ||𝑧𝑛 − 𝑓||𝐿2(Ω) 
is uniformly bounded. Then we have, 

||𝑧𝑛||𝐿2(Ω) ≤ ||𝑧𝑛 − 𝑓||𝐿2(Ω) + ||𝑓||𝐿2(Ω) 

is uniformly bounded. 
Therefore, as a measure to 𝛻𝑧∗, 𝛻𝑧𝑛 converges weakly in 
𝑊1,2(Ω), and 
𝑧𝑛 converges strongly to some 𝑧∗. Since 𝐹 (𝑧) is lower 
semi-continuous, we  
Have 

𝐹(𝑖𝑛𝑓 𝑧𝑛 ) ≤ 𝑖𝑛𝑓 𝐹(𝑧𝑛) , 
which implies that 𝑧∗ is the unique solution to Eq. (8). 

Let 𝛼 =  𝑖𝑛𝑓 𝑓 and 𝛽 =  𝑠𝑢𝑝 𝑓 . We remark that 
𝑥 →  𝜔𝑝 |𝑥 −  𝑓 |2 is decreasing in (0, 𝑓 ) and increasing 
in (𝑓, +∞). Therefore, if 𝐶 ≥  𝑓, we have 

𝜔𝑝 | 𝑚𝑖𝑛(𝑥, 𝐶)  −  𝑓 |2 ≤ 𝜔𝑝 |𝑥 −  𝑓 |2. 
Let 𝐶 =  𝛽 =  𝑠𝑢𝑝 𝑓 , we get 

∫
Ω

𝜔𝑝 | 𝑚𝑖𝑛(𝑧∗, 𝛽)  −  𝑓 |2𝑑𝑥 ≤ ∫
Ω

𝜔𝑝 |𝑧∗ −

 𝑓 |2𝑑𝑥   (16) 
 
Similarly, we can prove that 

∫
Ω

𝜔𝑝 | 𝑠𝑢𝑝(𝑧∗, 𝛼)  −  𝑓 |2𝑑𝑥 ≤ ∫
Ω

𝜔𝑝 |𝑧∗ −

 𝑓 |2𝑑𝑥   (17)
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On the other hand, from G. David in [46], we have 𝑠𝑢𝑝(𝑧∗, 𝛼),𝑚𝑖𝑛(𝑧∗, 𝛽)  ∈  𝑊1,2(Ω)
and 
 
 

|𝛻(𝑚𝑖𝑛(𝑧∗, 𝛽))| ≤ |𝛻𝑧∗|,  |𝛻(𝑠𝑢𝑝(𝑧∗, 𝛼))| ≤ |𝛻𝑧∗|. 
   (18)

Combining (16), (17) and (18), we have 
𝐹(𝑚𝑖𝑛(𝑧∗, 𝛽)) ≤ 𝐹(𝑧∗),  𝐹(𝑠𝑢𝑝(𝑧∗, 𝛼)) ≤ 𝐹(𝑧∗) 

which implies that 𝛼 ≤ 𝑧∗ ≤  𝛽. 
 

5 Graphs Of Weight Function 
In this section, we present some graphical analysis of the 
weight function defined in 9. In the Fig. 4 we present 
brain image in the first row and the graphs for 𝑃 =  2, 
𝑃 =  3 and 𝑃 =  4. From the Figures we can see that for 
the greater value of 𝑃 in the weight function the desired 
object segmented very well, and it’s not captured the 

unwanted region. In the second row, we put an image of 
abdominal ultrasound and check the graph of the weight 
function for the different values of 𝑃 and it also shows 
that for the greater power of the weight function it gives 
the best result. In the figures, we also put some noisy 
images which are indicated by (i) and perform the 
experiment and conclude that the weight function 
performs well for the 𝑃 ≥ 2 and segment only the object 
of interest. The rectangle image is considered in the last 
row, and we give the graphical analysis of the 
segmentation result to use the new weight function. In the 
figures, (m) shows the given rectangle image and (n) 
presents the graph for 𝑃 = 2 while the graph for 𝑃 = 3 
and 𝑃 = 4 are given in the (o) and (p). For 𝑃 = 2 in the 
weight function, the graph is not clear, and segmentation 
shows the unwanted region also with the desired object 
while for 𝑃 = 3 and 𝑃 = 4 it shows the best result. 
 

6 Experiments 
Test Set-1 
In this subsection, we do some experiments on medical 
images and make comparisons with Mabood et al. [10] 
and Liu et al. [11] models in the Fig. 6. In the first row, 
(a) is the initial contour and (b) shows the performance of 
model [10] and in (c) we can see that model [10] which 
provide segmentation results but also captured the 
unwanted region. In the second row, (d) is the same initial 
contour and (e) shows the performance of model [11] and 
in (f) represent segmentation results of [11] which is also 

not efficient for of 𝑃 = 2  in the weight function 𝜔.   In 
the third row, we have considered the same initial contour 
as in (a) and (d) and perform the experiment, and (h) 
shows that the performance of the proposed model is 
better than the [10] and [11] models. In the last that in (i), 
we give the segmented result of our model, which 
captured only the object of interest as compared to the 
Mabood et al. and Liu et al. models. 
 
Test Set-2 
In this part, we exhibits experiments on some teeth 
infection images and analyze the segmented result of 
Mabood et al. [10] and Liu et al. [11] models with our 
model in the Fig. 7. In the first row, we present the 
exploratory outcome of [10], the second row shows the 
result of the model [11] and in the third row we examine 
our model and perform the experiment to present the 
achievement and the segmented result of the proposed 
model. The initial contour is shown in(a), (b) determine 
the performance of the model [10] and the segmented 
result presented in (c). In the second row of Fig. 7, we 
again consider the initial contour in (d) and did the 
experiment on Liu et al. model. The third row shows the 
achievement of our model. It is clear from this experiment 
that our model performs well. 
 
Test Set-3 In this section, we do experiments on an 
ultrasound image of the abdominal human body and 
compare the performance of our model with Mabood et 
al. [10] and Liu et al. [11] models in the Fig. 3. The figure 
consists of three rows, first row represents the experiment 
on the Mabood et al. model, the second row shows the 
achievement of Liu et al. model while in the third row we 
put our model performance. In the figure, (a), (d) and (g) 
is the given initial contour and the performance of model 
[10], [11] and our model are given in (b), (e) and (h) 
respectively. Segmented results are presented in (c), (f) 
and (i) of the model [10], [11] and our model respectively. 
By the comparisons, we conclude that the performance of 
our model is better than others.

 
Test Set-4 
In this subsection, we accomplish experiments on an 
image of a rectangle and compare the segmented result of 
our model with Mabood et al. [10] and Liu et al. [11] 
models in Fig. 1. The first row shows the experimental 
result of [10], the second row shows the result of [11] 
while in the third row we consider our model and carry 
out the experiment to show the performance and 
segmented result of the new model. (a) is the initial 
contour in the first row (b) demonstrates the performance 
of model [10] and (c) shows the segmented result. (d) is 
the similar initial contour and (e) represent the 

achievement of model [11] and the segmented result of 
[11] are presented in (f). The third row of the Fig. 1 initial 
contour is indicated in (g) and (h) shows the performance 
of our model. From the performance and the segmented 
results given in Fig. 1, it is concluded that our model 
which is equipped with a new weight function performs 
better than the model [10] and that of the [11]. 
 

a. Test Set-5 
Fig. 2 consists of three rows. In the first-row experimental 
result of Mabood et al. [10] model is given. In the second 
row, the performance, and the segmented result of Liu et 
al. [11] model is presented. The third row explores the 
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achievement of the proposed model. (a), (d) and (g) are 
the same initial contour in the first, second and third rows 
respectively. the performances of the [10], [11] and the 
proposed model are identified by (b), (e) and (h) 
respectively. From the segmented results, we can see that 
the noisy synthetic image is not captured well by [10] and 
[11] models. And in the last row that is in (i), the 
appropriate segmented result is present which captured 
the circle or triangle. and this is the achievement of the 
proposed model. 
 
Test Set-6 
In this subsection, we equip experiments on an image of 
eye and make com- parisons with Mabood et al. [10] and 
Liu et al. [11] models in the Fig. 9. In the first row, (a) is 
the initial contour and the performance of model [10] 
given in (b) and in (c) we can see model [10] 
segmentation results but it is clear from the result that it is 
not performing better. In the second row,(d) is the same 
initial contour and (e) shows the performance of model 
[11] and the segmented result of model [11] is given in (f) 
which is also not efficient for of P = 2 in the weight 
function ω. In the third row, we underestimate the same 
initial contour as in (a) and (d) and perform the 
experiment and it is shown that the performance of our 

model is better than the model [10] and model [11]. In the 
last that is in (i) we give the segmented result of the 
proposed model which captured the desired object well as 
compared to the Mabood et al. and Liu et al. models. 
 
Test Set-7 
We conduct experiments on an image of head fracture and 
make comparisons with [10] and [11] models in Fig. 5. In 
the first row, (a) indicate the initial contour and in (b) the 
performance of model [10] is given and the segmented 
result of [10] is shown in (c). From (c) the model segment 
the desired object but not properly. In the second row, we 
again perform the experiment on the same initial contour 
as in (a) which is represented by (d) the performance of 
model [11] is given in (e) while the segmented result of 
model [11] is shown in (f) which is better than [10] but it 
also segments some extra region which is not our desire. 
In the third row, we did the experiment on the initial 
contour as in (a) and (d) and it is shown that our model 
performs better than both models. In the last that is in (i) 
we give the segmented result of the new model which is 
equipped with a new weight function which gives better-
segmented results of the desired object in the given image 
as compared to the Mabood et al. and Liu et al. models.

 
 

                                                                                            
 
                                                      (a) Initial contour    (b) Mabood        (c) Mabood seg result

 

                                                                                             
                                                      (d) Initial contour           (e) Liu                           (f) Liu seg result
 

                                                                                                                                       
                                                     (g) Initial contour           (h) Our                        (i) Our seg result
 

Figure 1: First row: Segmented result of Mabood et al. [10]. Second row: Segmented result of Liu et al. [11]. Third row: 
Segmented result of our proposed model for a noisy image. The performance of the proposed model is better than the others. 
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(a) Initial contour          (b) Mabood      (c) Mabood seg result
 
 

  
 

                                   (d) Initial contour 
 

 
(e) Liu (f) Liu seg result

 

  
 

                                     (g) Initial contour 
 
(h) Our (i) Our seg result

 

Figure 2: First row: Segmented result of Mabood et al. [10]. Second row: Segmented result of Liu et al. [11]. Third row: 
Segmented result of our model for a noisy image, it can be seen that our model successfully segments the region of interest. 

 
 

  
                                                           (a) Initial contour         (b) Mabood      (c) Mabood seg result
 

  
                                                          (d) Initial contour (e) Liu         (f) Liu seg result

 

  
                                        (g) Initial contour (h) Our    (i) Our seg result

 

Figure 3: Segmenting image of ultrasound, First row: Segmented result of Mabood et al. [10]; Second row: Segmented result 
of Liu et al. [11]; Third row: Segmented result of our model. As compared to others the Proposed method successfully 
captured the region of interest. 
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                             (a) Given Image  

 
 

 
                  (e) Given Image 

 
 

 
 

 
                                                (i) Given Image 

(b) P = 2 (c) P = 3 (d) P = 4 
 
 
 
 
 
 

 

 

(f) P = 2 (g) P = 3 (h) P = 4 
 
 
 
 
 
 
 
 
 

(j) P = 2 (k) P = 3 (l) P = 4

 

Figure 4: 3-D Graph: Graphical analysis of new weight function on medical images and rectangle images showing the 
performance for 𝑃 = 2, 𝑃 = 3 and 𝑃 = 4  in  the weight function. For 𝑃 > 2 the result is improved. 

 

  
 

                                     (a) Initial    contour 
 
(b) Mabood        (c) Mabood seg result

 

  
                                  

                            (d) Initial    contour 
 (e) Liu       (f) Liu seg result

 

  
                                             

                                                        (g) Initial    contour       (h) Our
  

            (i) Our seg result
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Figure 5: Comparison of Mabood et al. [10], Liu et al. [11] and our model on segmenting a head fracture image. The 
proposed model successfully detected the object of interest as compared to [10] and [11]. 

 

  
                                                          (a) Initial contour   (b) Mabood      (c) Mabood seg result
 
 

  
 

                                          (d) Initial contour 
 
(e) Liu (f) Liu seg result

 

  
 

                                     (g) Initial contour 
 
 (h) Our     (i) Our seg  result

 

Figure 6: Segmenting an abdominal ultrasound image, First row: Segmented result of Mabood et al. [10]. Second row: 
Segmented result of Liu et al. [11]. Third row: Segmented result of our model.
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                                          (a) Initial contour  
 
(b) Mabood    (c) Mabood seg result

 
 

  
 

                                           (d) Initial contour  
 
(e) Liu        (f) Liu seg result

 

  
 

                                          (g) Initial contour  
 
(h) Our        (i) Our seg result

 

Figure 7: Segmenting an infected Gingiva image, First row: Segmented result of Mabood et al. [10]. Second row: Segmented 
results of Liu et al. [11]. Third row: Segmented results of the proposed model. 

 
 
 

  
 

                                          (a) Initial contour 
 
(b) Mabood    (c) Mabood seg result

 
 

  
 

                                               (d) Initial contour 
 
(e) Liu   (f) Liu seg result

 

  
 

                                                    (g) Initial contour 
 
(h) Our (i) Our seg result

 

Figure 8: First row: Segmented result of Mabood et al. [10]. Second row: Segmented result of Liu et al. [11]. Third row: 
Segmented result of our model. 
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                                               (a) Initial contour 
 
(b) Mabood       (c) Mabood seg result

 
 

  
 

                                            (d) Initial contour 
 
 (e) Liu   (f) Liu seg result

 

  
 

                                           (g) Initial contour 
 
(h) Our    (i) Our seg result

 

Figure 9: First row: Segmented result of Mabood et al. [10]. Second row: Performance of Liu et al. [11]. Third row:  Result 
shows the performance of the proposed model.
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7 Conclusion 

In this paper, we proposed a convex selective 
segmentation model based on the Mumford-Shah model 
and perform segmentation in two stages. To ad- just the 
fidelity and smoothing terms, a weight function is 
incorporated for selecting some marker points around the 
edge of the object in each image. For the smooth solution, 
we solve the model by using ADM, which preserves the 
main structure of the target and filters out the details far 
away from the edge. Then by thresholding, the 
segmentation can be obtained. Experimental results on 
medical and noisy images show the robustness, 
efficiency, and effectiveness of the proposed method. 
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