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Abstract. We study a classical problem of describing the versal deformations of a centrally
extended metrized Lie algebra generated by the direct sum of a¢ ne vector �elds and di¤erential
forms on torus

1. Universal deformations of vector fields and differential forms

1.1. Deformations. We consider a smooth vector �eld A 2 �(T (Tn)) on the n-dimensional torus
Tn: A deformation of the vector �eld A 2 �(T (Tn)) we will call a vector �eld A(�) 2 �(T (Tn));
which depends analytically on the parameter � 2 Ck; k 2 Z+; in some vicinity of the point � =
0 2 Ck; and such that A(0) = A: The space of parameters �f� 2 Ckg is ofen called a base of
the deformation. Similarly will consider a di¤erential 1-form l 2 �1(Tn) on the n-dimensional
torus Tn its related deformation l(�) 2 �1(Tn); which depends analytically on the parameter
� 2 Ck; k 2 Z+; in some vicinity of the point � = 0 2 Ck and such that l(0) = l:

De�nition 1.1. Two vector �elds deformations A(�) and B(�) 2 �(T (Tn)) are called equival-
ent, if there exists such a deformation g(�) 2 Diff(Tn) of the identity Id 2 Diff(Tn); that
Adg(�)A(�) = B(�); where ad : Diff(Tn) � �(T (Tn)) ! �(T (Tn)) is the usual [2, 4, 6] ad-
joint mapping of the space Diff(Tn) on �(T (Tn)): Similarly, two 1-form deformations l(�) and
p(�) 2 �1(Tn) are called equivalent, if there exists such a deformation g(�) 2 Diff(Tn) of the
identity I 2 Diff(Tn); that Ad�g(�)l(�) = p(�); where Ad� : Diff(Tn)� �1(Tn)! �1(Tn) is the
usual adjoint mapping of the space Diff(Tn) on �1(Tn):

Let ' - a germ of a holomorphic at zero mapping Cm ! Ck; that is a set of converging at
0 2 Cm degree series of complex varibles, and assume that '(0) = 0: The mapping ' : �f� 2
Cmg ! �f� 2 Cmg de�nes evidently a new deformation �'l(�) 2 �1(Tn) of the 1-form l 2 �1(Tn)
and a new deformation '̂A(�) of the vector �eld A 2 �(T (Tn)) via the expressions
(1.1) ( �'l)(�) = l('(�)); ('̂A)(�) = A('(�))

on the deformation base �f� 2 Ckg:

De�nition 1.2. The deformation ( �'l)(�) 2 �1(Tn) is called induced from the deformation l(�) 2
�1(Tn) under the mapping ' : �f� 2 Cmg ! �f� 2 Cmg: Similarly, the deformation ('̂A)(�)
2 �(T (Tn)) is called induced from the deformation A(�) 2 �(T (Tn)) under the mapping ' : �f� 2
Ckg ! �f� 2 Cmg:

1.2. Versal deformations.

De�nition 1.3. A vector �eld deformation A(�) 2 �(T (Tn)) is called [2] versal, if it generates
every other deformation B(�) 2 �(T (Tn)) of the vector �eld A 2 �(T (Tn)); that is there exists
such a mapping ' : �f� 2 Ckg ! �f� 2 Cmg and a deformation g(�) 2 Diff(Tn) of the identity
Id 2 Diff(Tn) that it is equivalent to the deformation obtained from the induced deformation
A('(�)) 2 �(T (Tn)) :
(1.2) B(�) = Adg(�)('̂A)(�)

on the deformation base�f� 2 Ckg: Similarly, a 1-form deformation l(�) 2 �1(Tn) is called versal,
if it generates every other 1-form deformation p(�) 2 �1(Tn) of the 1-form l 2 �1(Tn); that is
there exists such a mapping ' : �f� 2 Ckg ! �f� 2 Cmg and a deformation g(�) 2 Diff(Tn)
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of the identity I 2 Diff(Tn) that it is equivalent to the deformation obtained from the induced
deformation p('(�)) 2 �1(Tn) :
(1.3) p(�) = Ad�g(�)( �'l)(�)

on the deformation base �f� 2 Ckg:

2. Versality and transversality

2.1. Transversality. Let N � M - a smooth submanifold of a manifold M: Consider a smooth
mapping A : �!M; and let a point � 2 � for which A(�) 2 N:

De�nition 2.1. A mapping A : �!M is called transvesal [2] to the submanifold N �M; if
(2.1) TA(�)(M) = TA(�)(N) +A�T� (�):

As the di¤eomorphism group Diff(Tn) naturally acts on a �xed vector �eld A 2 �(T (Tn)); its
orbit Or(A;Diff(Tn)) = AdDiff(Tn)A � �(T (Tn)): Thus, a deformation A(�) 2 �(T (Tn)) can be
considered as a mapping A : �! �(T (Tn)) of the deformation base �f� 2 Cmg into the space of
vector �elds �(T (Tn)) on the torus Tn: The following lemma [2] holds.

Lemma 2.2. A deformation A(�) 2 �(T (Tn)) is versal i¤ the mapping A : f� 2 Cmg ! �(T (Tn))
is transversal to the orbit of the corresponding element A 2 �(T (Tn)); that is any deformation
B(�) = Ad�g(�)('̂A)(�) on the deformation base �f� 2 Ckg for some mapping ' : �f� 2 Ckg !
�f� 2 Cmg:

Proof. Really, owing to the versality condition (1.2), for any deformation B(�) 2 �(T (Tn)) of
the vector �eld A 2 �(T (Tn)) one has
(2.2) B(�) = Adg(�)('̂A)(�)

on the deformation base �f� 2 Cmg: Then, upon di¤erentiating (2.2) with respect to � 2 � one
obtains that

(2.3) B�(0)� = A�(0)'̂(0)� + [C�(0)�; A]

for any � 2 T (�); : where [�; �] is the usual commutator of vector �elds on Tn and r�'(�)j�=0 :=
� 2 T0(�); r�g(�)j�=0 := C�(0) 2 �(T (Tn)): Now it is easy to see that (2.3) is equivalent to the
transversality condition (2.1), if to put M := �(T (Tn)); N := Or(A;Diff(Tn) � �(T (Tn)):
Consider now a smooth mapping � : Diff(Tn)! �(T (Tn)); where

(2.4) �(g) := AdgA;

which induces the tangent mapping �� : diff(Tn) ! TA( �(T (Tn))); where diff(Tn) :=
TId(Diff(Tn) is the Lie algebra of vector �elds on the torus Tn and acts as
(2.5) ��C = [C;A]:

The kernel Ker�� is a Lie subalgebra of vector �elds commuting with the vector �eld A 2
�(T (Tn)) and is called its centralizer. It is also interesting to observe that the codimension
codimOr(A;Diff(Tn) = dimKer��: As a result from reasoning in [2] for small enough
� 2 � there exists an invertible mapping � : V � �f� 2 Cmg ! �(T (Tn)) for V to be
a submanifold of Diff(Tn); transversal to the centralizer dimKer�� and of maximal dimension
dimV = dimOr(A;Diff(Tn); allowing the representation
(2.6) �(g; �) = AdgA(�)

on the deformation base �f� 2 Cmg for some g 2 V: Let now B(�) 2 �(T (Tn)) be an arbitrary
transversal deformation. Then it can be represented as B(�) = �(v; �); giving rise to the following
expression:

(2.7) B(�) = Adg(�)A('(�)) ;

where '(�) := �2��1(B(�)); g(�) := �1��1(B(�)) and �1 and �2 are projections of V ��f� 2 Ckg
on the �rst and the second factor, respectively. The obtained expression (2.7) exactly means that
this arbitrary deformation B(�) 2 �(T (Tn)) is versal, thus proving the lemma. �

Consider now a 1-form deformation l(�) 2 �1(Tn) on the deformation base �f� 2 Cmg: The
same way as above one can prove the following dual to Lemma (2.2) proposition.
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Proposition 2.3. A 1-form deformation l(�) 2 �1(Tn) is versal i¤ the mapping l : �f� 2
Cmg ! �1(Tn) is transversal to the orbit of the corresponding element l 2 �1(Tn); that is
any deformation p(�) = Ad�g(�)( �'l)(�) on the deformation base �f� 2 Ckg for some mapping

' : �f� 2 Ckg ! �f� 2 Cmg:

Being interested in describing versal deformations of pencils of di¤erential forms, analytically
depending on the "spectral" parameter � 2 C; we will proceed below �rst to studing their orbits
from the Marsden-Weinstein reduction theory point of view.

3. Torus diffeomorphism group and its orbits

Let us now consider the action of the di¤eomorphism group Diff(Tn) on the space G :=
diff(Tn)ndiff(Tn)�; being the semidirect product �(T (Tn))n�1(Tn) ' diff(Tn)ndiff(Tn)�:
It is well known [?] that the semidirect sum G = diff(Tn)n diff(Tn)� is a metrized Lie algebra
with the Lie structure

(3.1) [a1 n l1; a2 n l2] := [a1; a2]n (ad�a1 l2 � ad
�
a2 l1);

allowing to identify it with its adjoint space G� ' G via the nondegenerate and symmetric scalar
product

(3.2) (a1 n l1; a2 n l2) = (l1; a2) + (l2; a1)

for arbitrary a1n l1; a2n l2 2 G� ' G; where (�; �) : �1(Tn)��(T (Tn))! C is the standard pairing.
Consider now the point product �G :=

Y
z2S1

~G of Lie algebra G and endow it wit the central

extension generated by a two-cocycle !2 : �G � �G ! C; where

(3.3) !2(a1 n l1; a2 n l2) :=
Z
S1
[(l1; @a2=@z)� (l2; @a1=@z)]dz

for arbitrary a1 n l1; a2 n l2 2 �G: Thus, the adjoint space �G� is a Poisson manifold [2, 7, 6, 4]
endowed with the canonical Lie-Poisson structure

ff; hg0 := (an l; [rf(an l);rh(an l)])+(3.4)

+

Z
S1
[ < rfa(an l);

@

@z
rhl(an l) > � < rha(an l);

@

@z
rfl(an l) >]dz;

where f; h 2 D( �G�);rf(anl) := rfl(anl)nrfa(anl) 2 �G; rh(anl) := rhl(anl)nrha(anl) 2
�G and r : D( �G�) ! �G is the usual functional gradient mapping. If to take now a constant vector
�eld d(an l)=ds = J(�) :=

P
j;k=1;n �jk @=@xj ndxk 2 �G�; depending on the constant parameters

�kj 2 C; j; k = 1; n; one can construct [5, 3] by means of the Lie di¤erentiation LJ(�;�) of the
bracket (3.4) a new Poisson bracket

ff; hg1 := LJ(�;�)ff; hg0 � fLJ(�;�)f; hg0 � ff; LJ(�;�)hg0 =
(3.5)

= (J(�); [rf(an l);rh(an l)]);

de�ned for any f; h 2 D( �G�) and satisfying the Jacobi condition.
Consider now the in�nitesimal Diff(Tn)-actions on the space �G� ' �G subject to the Poisson

brackets (3.4) and (3.5):

(3.6) d(an l)=d� = fh; an lg0 = (�[rhl; a] +
@

@z
rhl)n (ad�rhl l � ad

�
arha �

@

@z
rha)

subject to any function h 2 D( �G�) and

(3.7) d(an l)=d� = ff; an lg1 = �
X
j=1;n

�jk [rfl; @=@xj ]n ad�rfldxk

subject to a Casimir function f 2 D( �G�); respectively to the evolution parameters � and � 2 C:
Making use of the vector �elds (3.6) and (3.7), one can construct the following integrable on the
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space �G� distributions:

(3.8) D0 = f(�[rhl; a] +
@

@z
rhl)n (ad�rhl l � ad

�
arha �

@

@z
rha) : h 2 I1( �G�)g;

where I1( �G�) is the space of Casimir functions for the Poisson bracket (3.5), and

(3.9) D1 = f�
X

j;k=1;n

�jk [rfl; @=@xj ]n ad�rfldxk : f 2 D( �G
�)g;

as [D0; D0] � D0 and [D1; D1] � D1: The set of maximal integral submanifolds of (3.9) generates
the foliation �G�JnD0; whose leaves are the intersections of �xed integral submanifolds �G�J � �G� of the
distribution D1 passing through an element an l 2 G� with the leaves of the distribution D0: If the
foliation �G�JnD0 is su¢ ciently smooth, one can de�ne the quotient manifold �G�red := �G�J=( �G�JnD0)
with its associated projection mapping �G�J ! �G�red: The structure of the reduced manifold �G�red is
characterized by the following theorem.

Theorem 3.1. On the manifold �G�red the pair of Poisson structures f�; �g0 and f�; �g1 are compat-
ible, that is for any parameter � 2 R the algebraic sum f�; �g0 + �f�; �g1 is Poisson too.

A proof of Theorem 3.1 is strongly based on the classical di¤erential-geometric Marsden-
Weinstein reduced space construction.
As a consequence of Theorem 3.1 and reasonings, based on the structure of the distribution

(3.8), one can describe its invariants on and a leave �G�J and generate the related coordinates on the
reduced manifold �G�red = �G�J=( �G�JnD0): Thus, the related with (3.6) reduced �ow on the manifold
�G�red will present the canonical representation of the studied versal deformation subject to a metric
Lie algebra generated by the semidirect sum �(T (Tn)) n �1(Tn) ' diff(Tn) n diff(Tn)� of the
smooth a¢ ne vector �elds �(T (Tn)) on the torus Tn and its adjoint space �1(Tn): Their detailed
analytical structure is under preparation and will be presented in other place.
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