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1 Introduction

The study of systems governed by differential and functional equations with
causal operators, which is due to Tonelli [29] and Tychonov [28], attracts the
attention of many researchers. The term causal arises from the engineering and
the notion of a causal operator turns out to be a powerful tool for unifying prob-
lems in ordinary differential equations, integro-differential equations, functional
differential equations with finite or infinite delay, Volterra integral equations,
neutral functional equations et al. (see monograph [2]). Various problems for
functional differential equations with causal operators were considered in recent
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papers [4, 5, 8, 23, 26]. In particular, boundary and periodic problems were
studied in [5] and [23]. In the present paper we apply the method of general-
ized integral guiding functions to the investigation of the periodic problem for
a differential inclusion with a multivalued causal operator.

The main ideas of the method of guiding functions were formulated by Kras-
noselskii and Perov in the fifties (see [18, 19]). Being geometrically clear, this
method was originally applied to the study of periodic and bounded solutions
of ordinary differential equations (see, e.g., [20, 24, 25]). Thereafter the method
was extended to differential inclusions (see, e.g., [1, 7]), functional differential
equations and inclusions (see, e.g., [6, 10, 13, 14, 16]) and other objects. The
sphere of applications was extended to the study of qualitative behavior and bi-
furcations of solutions (see, e.g. [15, 21, 22]) and asymptotics of solutions (see,
e.g., [11, 12, 17]). These and other aspects of the method of guiding functions
and its applications, as well as the additional bibliography, may be found in the
recent monograph [27].

The paper is organized in the following way. After preliminaries (Section 2),
we give the notion of a multivalued causal operator (Section 3.1) and formulate
the periodic problem for a differential inclusion with a causal multioperator
(Section 3.2). Our main existence result (Theorem 2) is presented for the case
when the right-hand side of the inclusion is convex-valued and closed.

2 Preliminaries

In what follows we will use some known notions and notation from the theory
of multivalued maps (multimaps) (see, e.g., [1, 3, 7, 9]). Recall some of them.

Let (X,dx) and (Y, dy) be metric spaces. By the symbols P(Y) and K(Y)
we denote the collections of all nonempty and, respectively, nonempty and com-
pact subsets of the space Y. If Y is a normed space, Cv(K) and Kv(Y) denote
the collections of all nonempty convex closed [and, respectively, compact] sub-
sets of Y.

Definition 1 A multimap F : X — P(Y) is called upper semicontinuous
(u.s.c.) at a point x € X if for each open set V.C Y such that F(z) C Y
there exists 6 > 0 such that dx(z,z') < ¢ implies F(z') C V. A multimap
F:X — P(Y) is called u.s.c. if it is u.s.c. at each point x € X.

Definition 2 A multimap F : X — P(Y) is called lower semicontinuous (I.s.c.)
at a point x € X, if for each open set V. CY such that F(x)NV # 0 there exists
§ > 0 such that dx (z,z') < 6 implies F(x')NV # 0. A multimap F : X — P(Y)
s called l.s.c. if it is l.s.c. at each point x € X.

Definition 3 A multimap F : X — P(Y) is called continuous if it is both u.s.c.
and l.s.c.

Definition 4 A multimap F : X — P(Y') is called closed if its graph

e =A{(z,9)| (2,y) e X xY, yeF(r)}
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18 a closed subset of the space X X Y.

Definition 5 A multimap F : X — P(Y) is called compact if its range F(X)
is relatively compact in Y.

Remark 1 If multimap F : X — P(Y) is closed and compact, it is u.s.c.
Let I be a closed subset of R endowed with the Lebesgue measure.

Definition 6 A multifunction F : I — K(Y) is called measurable if, for each
open subset W C Y, its pre-image

FY'W)={tel:F{t)cW}
18 a measurable subset of I.

Remark 2 FEach measurable multifunction F : I — K(Y) has a measurable
selection, i.e., there exists such measurable function f : I — Y, that f(t) € F(t)
for a.e. tel.

In the sequel we will use some standard properties of the topological degree
theory of single-valued and multivalued vector fields (see, e.g., [3, 7, 9, 18]).

3 Periodic problem for inclusions with causal
multioperators

3.1 Causal multioperators

Let T' > 0 and o > 0 be given numbers. By the symbols C([kT—o, (k+1)T];R"™)
and L' ((kT, (k+1)T); R"™), where k € Z, we will denote the corresponding spaces
of continuous and integrable functions with usual norms.

For any subset N' C L' (KT, (k + 1)T);R") and 7 € (kT, (k+1)T) we define
the restriction of N on (kT 7) as

N lorn=A{f lgrn: f €N}

Definition 7 We will say that Q is a causal multioperator if for each k € Z a
multimap

Q: C([kT — o, (k + D)T);R"™) — L*((kT, (k + 1)T); R™)
is defined in such a way that for each T € (KT, (k + 1)T) and for all
u(),0() € C (KT — o, (k + DT]; R")
the condition u |kr—o.r)= ¥ |kT—0,7) Tmplies Q(u) |xr,7)= Q) |(k1,7) -

Let us consider some examples of causal multioperators. Denote by C the Banach
space C([—o,0];R™).
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Example 1 Suppose that a multimap F : R x C — Kv (R™) satisfies the fol-
lowing conditions:

(F1) the multifunction F (-,c) : R — Kv (R™) admits a measurable selection for
every c € C;

(F2) the multimap F (t,-) : C — Kv (R") is u.s.c. for a.e. t € R;

(F3) for everyr > 0 there exists a locally integrable nonnegative function n,(-) €
Li,. (R) such that

IE (¢ o)l :==sup{[lyl : y € F(t,c)} <np(t) ae teR,
forallceC, ||| <r.

It is known (see, e.g., [3, 9]) that under conditions (F1) — (F3) for each
k € Z, the superposition multioperator

Pr : C([kT — o, (k+ 1)T);R™) — L* (KT, (k + 1)T); R"),

Pp(u)={f e L' ((KT,(k+1)T;R™): f(t) € F(t,u;) ae.te (KT, (k+1)T)}

(1)
is well defined. Here uy € C is defined as us(0) = u(t+40), 6 € [—0,0]. It is easy
to see that the multioperator Pr is causal.

Remark 3 We will say that a multimap F : RxC — K (R™) obeying (F1)-(F2)
satisfies the upper Carathéodory conditions. If (F'2) may be replaced with

(F2') the multimap F (t,-) : C — K (R™) is continuous for a.e. t € R
we say that F satisfies the Carathéodory conditions.

Example 2 Let F : R x C — Kv(R"™) be a multimap satisfying conditions
(F1) — (F3) of Ezample 1. Suppose that {K(t,s) : —oo < s < t < 400}
is a continuous (with respect to the norm) family of linear operators in R™
and m € L}, .(R;R™) is a given locally integrable function. Consider, for each
k € Z, the Volterra type integral multioperator G : C ([kT — o, (k + 1)T);R™) —o
L' (KT, (k + 1)T); R™) defined as
t
G(u)(t) =m(t) + K(t,s)F(s,us)ds,
kT
i.e.,
t
G(u) = {y € L' (KT, (k + 1)T);R"™) : y(t) = m(t)+ [ K(t,5)f(s)ds: [ € Pr(u)}.
kT
(2)
It is also obvious that the multioperator G is causal.

Example 3 Suppose that a multimap F : RxC — K(R™) satisfies the following
condition of almost lower semicontinuity:
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(Fr) there exists a sequence of disjoint closed sets {Jn}, J, CRn =1,2,..
such that: (i) meas (R\ |, Jn) = 0; (i) the restriction of F' on each set
Jn xC is ls.c.

Then (see, e.g., [3, 9]) under conditions (Fr), (F3), for each k € Z, the
superposition multioperator

Pr: C([kT — o, (k + 1)T];R™) — L' (T, (k + 1)T); R™)

s also well-defined and causal.

3.2 Periodic problem

Denote by Cr the space of continuous T-periodic functions  : R — R" with

the norm ||z||c = sup |z(¢)||. By ||z||2 we denote the norm of function z in
t€[0.T]
the space L2,

1
2

T
2 = / ()| ds
0

To define the notion of a periodic causal multioperator, introduce, for k € Z,
the following shift operator ji : L* ((kT, (k + 1)T);R™) — L' ((0,T); R") :

Jr(f)(t) = f(t +KT).
Definition 8 A causal multioperator Q will be called T-periodic if, for each
x€Cr and k € Z,
Jx(Q |pr—r. (bt 1y1))) = Q@ |[=7.77).

It is clear that, to provide the periodicity of the causal multioperators in the
above examples, it is sufficient to assume that the multimaps F' are T-periodic
in the first argument:

F(t+T,c)=F(tc)

for all (¢t,¢) € R x C and in Example 2, additionally, that function m(¢) and
family K (t,s) are also T-periodic:

m(t+T)=m(t), VteR,

Kit+T,s+T)=K(ts), V—oo<s<t<-+oo.

It is clear that the condition of periodicity of the causal multioperator allows to
consider it only on the space C([—7,T]; R™).

Given a T-periodic causal multioperator Q, we will consider the existence of
solutions to the following problem:

2 € 9(x), (3)
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where x € Cp is an absolutely continuous function.

Denote by L. the space of integrable T-periodic functions f: R — R™.

In this section we will assume that the T-periodic causal multioperator Q :
Cr — Cwv(LY) satisfies the following conditions:

(Q1) for each bounded linear operator A : L}, — E, where E is a Banach space,
the composition Ao Q : Cp — Cv(E) is closed;

(Q2) there exists a non-negative T-periodic integrable function «(t) such that
[1Q(x)(t)]] < a(t)(1+ ||z(t)]) for ae.t €R

for each x € Cr.

To provide condition (Q1) in Examples 1 and 2, it is sufficient to assume, besides
the above mentioned periodicity conditions, that the multimap F' satisfies con-
ditions (F'1) — (F'3) (see, e.g. [1], Theorem 1.5.30) and to fulfil condition (Q2),
we can suppose, in Example 1, the following sublinear growth condition: for
each x € Cr we have, for some non-negative integrable function 3(¢):

1E(t, x| < B(E)(1+ [lz(®)]]) aet €[0,T], (4)
and, in Example 2, the global boundedness condition

1E(E, )] < () ()

for some non-negative integrable function ~(t).

To study periodic problem (3) we will need a coincidence point result for a
multivalued perturbation of a linear Fredholm operator. Let us give necessary
definitions.

Let Ey, Es be Banach spaces, U C E; an open bounded set; [ : Dom [ C
FE{ — FEs alinear Fredholm operator of zero index such that Im [ C F5 is closed.

Consider continuous linear projection operators p: £y — E; and q : Fy —
Ej5 such that Im p = Ker [, Im [ = Ker ¢. By the symbol [, denote the restric-
tion of the operator [ to Dom [N Ker p.

Further, let the continuous operator k,, : E2 — Dom [ N Ker p is de-
fined by the relation kp 4(y) = 1, ' (y — q(y)), y € E»; the canonical projection
operator m : Ey — E5/Im [ has the form 7(y) = y+Im I, y € FEs; and
¢ : Coker | — Ker [ a continuous linear isomorphism.

Let G : U — Kv(FEs3) be a closed multimap such that
(a) G(U) is a bounded subset of Fs;
(b) kpqy0G:U — Kv(Ey) is compact and u.s.c.

The following assertion holds true (see [3], Lemma 13.1).

Lemma 1 Suppose that:



(i) l(z) ¢ XG(x) for all A € (0,1], = € Dom [ NIU;
(i) 0 ¢ wG(x) for all x € Ker 1N OU;

(7ii) degier l(¢7rg|ﬁm l,UKer 1) # 0, where the symbol degier | denotes the
topological degree of a multivalued vector field evaluating in the space
Ker [, and Uker 1 = U NKer 1.

Then | and G has a coincidence point in U, i.e., there exists x € U such that

l(z) € G(z).

Developing notions introduced in [6, 10, 18], let us give the following defini-
tion.

Definition 9 A continuously differentiable function V : R™ — R is called the
integral guiding function for inclusion (3) if there exists N > 0 such that

T
/U (VV(2(s)), f(s)) ds > 0 for all f € Q(x), (6)

for each absolutely continuous function v € Crp such that ||z|l2 > N and
l=" @] < 1Q)®)] a-e. t €[0,T].

From the definition it immediately follows that the integral guiding function
V' is a non-degenerate potential in the sense that

VV(z) #0,

for all x € R™, |z > K = % Therefore, on each closed ball By C R"

centered at the origin of the radius K > K, the topological degree of the gradient
deg(VV; By ) is well defined and, moreover, it does not depend on the radius
K (see, e.g., [18, 20]). This generic value of the degree will be called the index
Ind V of an integral guiding function V.

Definition 10 A non-degenerate potential V : R™ — R is called the generalized
integral guiding function for inclusion (3) if there exists N > 0 such that

/0 (VV(x(s)), f(5)yds >0 for some f € Q(z), (7)

for each absolutely continuous function x € Crp such that ||z||2 > N and
[ @O < [Q)D)] a-e. t €[0,T].

Now we are in position to formulate the main result of this section.

Theorem 1 Let V : R™ — R be an generalized integral guiding function for
problem (3) such that
Ind V # 0.

Then problem (3) has a solution.
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Remark 4 Notice that conditions of the theorem are fulfilled if, for example,

the function V is even or satisfies the coercivity condition: | ”lim V(z) = to0.
x||—+4o0

Proof Step 1. Let us consider the case of the strict integral guiding function

for inclusion (3). Let us justify the solvability of the following operator inclusion

lx € Q(x), (8)

where | : Dom [ := {z € Cr : x is absolutely continuous} C Cr — Lk is
the linear Fredholm operator of zero index. It is easy to see that Ker | = R",

T
projection m : L% — R™ may be given by the formula 7f = % [ f(s)ds and
0

the multioperators m7Q and k, ;,Q are convex-valued and compact on bounded
subsets.

Now, let, for some A € (0,1] a function € Dom [ is the solution of the
inclusion

lx € AQ(z.)

It means that x(-) is an absolutely continuous function such that z’(t) = Af(t)
a.e. t € [0,T], for some f € Q(x).

Then
T 1 T ,
| V). s@) s =5 [ Vi) ds =
T
=5 | Viaw)ds = 50 6@) - Vo) <o
yielding

|z]|2 < N.
From condition (Q2) it follows that ||z'||2 < M’, where M’ > 0. But then
there exists also M > 0 such that
zllc < M.

Now, take as U the ball B, C Cr of the radius r = max{M, NT~'/?}. Then
we have
lx ¢ \Q(x)

for all x € OU.

Take an arbitrary u € U NKer I. We have ||Ju| > NT~'/2 and considering u
as a constant function, from the definition of the strict integral guiding function
we obtain

T
/O (VV(u), f(s))ds >0
for each f € Q(u). But

T T
/ (VV(u), f(s5)) ds = (VV(u), ; f(s)ds) =T(VV(u),xf) >0,

0
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and, therefore
(VV(u),y) >0
for each y € 7Q(u).
It means that 0 ¢ 7Q(u) and, moreover, the multifield 7Q(u) and the field
VYV (u) do not admit opposite directions for u € OU NKer I. It means that they
are homotopic and, hence,

deg(ﬁQ’err l7UKer l) = deg(v‘/u UKer l) 7& 07

where Uker ; = U NKer 1. Therefore, all conditions of Lemma 1 are fulfilled and
problem (8), and, hence (3) have a solution.

Step 2. Now we consider the case of the generalized integral guiding function
for inclusion (3). Consider a multimap B : Cp — P(LL) defined as

T
B(z) = {@ @] < a@)(1 4+ [|a]) and v(fﬂ)/o (VV(x(5)), ¢(s)) ds > 0} ;

where the first relation holds true for a.e. t € [0, 7], «(-) is a function from the
condition (Q2), and

(.CC) — Oa if H:E”Q < Na
1, if ||zl > N.
It is easy to verify that B is a closed multimap.
Let us consider a multimap QP : Cpr — P(LL) given as

QP (z) = Q(z) N B(x).
Obviously, the multimap @® is closed and the condition (7) is satisfied for all
f€QF(x).
For the non-degenerate potential V' we define a map Yy : R® — R™ as follows
VV(x), if [VV(2)|| <1,

Y :I: = x .
vie) { it 19V )] > 1

It is easy to see that the map Y is continuous.
For any €, > 0 we define a multimap Q,, : Cr — P(L}) as following

Qm(z) = QP (z) + e, Yy ().
The multimap @, is closed and for each €, > 0 the condition (6) is ful-
filled. By applying results of Step 1 we can prove the solvability of the following
operator inclusion

lz € Qm(x),
for each €,, > 0. From which follows the existence of a solution for problem (3).
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