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1 Introduction

The study of systems governed by differential and functional equations with
causal operators, which is due to Tonelli [29] and Tychonov [28], attracts the
attention of many researchers. The term causal arises from the engineering and
the notion of a causal operator turns out to be a powerful tool for unifying prob-
lems in ordinary differential equations, integro-differential equations, functional
differential equations with finite or infinite delay, Volterra integral equations,
neutral functional equations et al. (see monograph [2]). Various problems for
functional differential equations with causal operators were considered in recent
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papers [4, 5, 8, 23, 26]. In particular, boundary and periodic problems were
studied in [5] and [23]. In the present paper we apply the method of general-
ized integral guiding functions to the investigation of the periodic problem for
a differential inclusion with a multivalued causal operator.

The main ideas of the method of guiding functions were formulated by Kras-
noselskii and Perov in the fifties (see [18, 19]). Being geometrically clear, this
method was originally applied to the study of periodic and bounded solutions
of ordinary differential equations (see, e.g., [20, 24, 25]). Thereafter the method
was extended to differential inclusions (see, e.g., [1, 7]), functional differential
equations and inclusions (see, e.g., [6, 10, 13, 14, 16]) and other objects. The
sphere of applications was extended to the study of qualitative behavior and bi-
furcations of solutions (see, e.g. [15, 21, 22]) and asymptotics of solutions (see,
e.g., [11, 12, 17]). These and other aspects of the method of guiding functions
and its applications, as well as the additional bibliography, may be found in the
recent monograph [27].

The paper is organized in the following way. After preliminaries (Section 2),
we give the notion of a multivalued causal operator (Section 3.1) and formulate
the periodic problem for a differential inclusion with a causal multioperator
(Section 3.2). Our main existence result (Theorem 2) is presented for the case
when the right-hand side of the inclusion is convex-valued and closed.

2 Preliminaries

In what follows we will use some known notions and notation from the theory
of multivalued maps (multimaps) (see, e.g., [1, 3, 7, 9]). Recall some of them.

Let (X, dX) and (Y, dY ) be metric spaces. By the symbols P (Y ) and K(Y )
we denote the collections of all nonempty and, respectively, nonempty and com-
pact subsets of the space Y. If Y is a normed space, Cv(K) and Kv(Y ) denote
the collections of all nonempty convex closed [and, respectively, compact] sub-
sets of Y.

Definition 1 A multimap F : X → P (Y ) is called upper semicontinuous
(u.s.c.) at a point x ∈ X if for each open set V ⊂ Y such that F (x) ⊂ Y
there exists δ > 0 such that dX(x, x′) < δ implies F (x′) ⊂ V. A multimap
F : X → P (Y ) is called u.s.c. if it is u.s.c. at each point x ∈ X.

Definition 2 A multimap F : X → P (Y ) is called lower semicontinuous (l.s.c.)
at a point x ∈ X, if for each open set V ⊂ Y such that F (x)∩V 6= ∅ there exists
δ > 0 such that dX(x, x′) < δ implies F (x′)∩V 6= ∅. A multimap F : X → P (Y )
is called l.s.c. if it is l.s.c. at each point x ∈ X.

Definition 3 A multimap F : X → P (Y ) is called continuous if it is both u.s.c.
and l.s.c.

Definition 4 A multimap F : X → P (Y ) is called closed if its graph

ΓF = {(x, y) | (x, y) ∈ X × Y, y ∈ F (x)}
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is a closed subset of the space X × Y.

Definition 5 A multimap F : X → P (Y ) is called compact if its range F (X)
is relatively compact in Y.

Remark 1 If multimap F : X → P (Y ) is closed and compact, it is u.s.c.

Let I be a closed subset of R endowed with the Lebesgue measure.

Definition 6 A multifunction F : I → K(Y ) is called measurable if, for each
open subset W ⊂ Y, its pre-image

F−1(W ) = {t ∈ I : F (t) ⊂W}

is a measurable subset of I.

Remark 2 Each measurable multifunction F : I → K(Y ) has a measurable
selection, i.e., there exists such measurable function f : I → Y, that f(t) ∈ F (t)
for a.e. t ∈ I.

In the sequel we will use some standard properties of the topological degree
theory of single-valued and multivalued vector fields (see, e.g., [3, 7, 9, 18]).

3 Periodic problem for inclusions with causal
multioperators

3.1 Causal multioperators

Let T > 0 and σ ≥ 0 be given numbers. By the symbols C([kT−σ, (k+1)T ];Rn)
and L1((kT, (k+1)T );Rn), where k ∈ Z, we will denote the corresponding spaces
of continuous and integrable functions with usual norms.

For any subset N ⊂ L1 ((kT, (k + 1)T );Rn) and τ ∈ (kT, (k+1)T ) we define
the restriction of N on (kT, τ) as

N |(kT,τ)= {f |(kT,τ): f ∈ N}.

Definition 7 We will say that Q is a causal multioperator if for each k ∈ Z a
multimap

Q : C([kT − σ, (k + 1)T ];Rn) ( L1((kT, (k + 1)T );Rn)

is defined in such a way that for each τ ∈ (kT, (k + 1)T ) and for all

u(·), v(·) ∈ C ([kT − σ, (k + 1)T ];Rn)

the condition u |[kT−σ,τ ]= v |[kT−σ,τ ] implies Q(u) |(kT,τ)= Q(v) |(kT,τ) .

Let us consider some examples of causal multioperators. Denote by C the Banach
space C([−σ, 0];Rn).
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Example 1 Suppose that a multimap F : R × C → Kv (Rn) satisfies the fol-
lowing conditions:

(F1) the multifunction F (·, c) : R→ Kv (Rn) admits a measurable selection for
every c ∈ C;

(F2) the multimap F (t, ·) : C → Kv (Rn) is u.s.c. for a.e. t ∈ R;

(F3) for every r > 0 there exists a locally integrable nonnegative function ηr(·) ∈
L1
loc (R) such that

‖F (t, c)‖ := sup{‖y‖ : y ∈ F (t, c)} ≤ ηr (t) a.e. t ∈ R ,

for all c ∈ C, ‖c‖ ≤ r.

It is known (see, e.g., [3, 9]) that under conditions (F1) − (F3) for each
k ∈ Z, the superposition multioperator

PF : C ([kT − σ, (k + 1)T ];Rn) ( L1 ((kT, (k + 1)T );Rn) ,

PF (u) =
{
f ∈ L1 ((kT, (k + 1)T ];Rn) : f (t) ∈ F (t, ut) a.e. t ∈ (kT, (k + 1)T )

}
(1)

is well defined. Here ut ∈ C is defined as ut(θ) = u(t+ θ), θ ∈ [−σ, 0]. It is easy
to see that the multioperator PF is causal.

Remark 3 We will say that a multimap F : R×C → K (Rn) obeying (F1)-(F2)
satisfies the upper Carathéodory conditions. If (F2) may be replaced with

(F2′) the multimap F (t, ·) : C → K (Rn) is continuous for a.e. t ∈ R

we say that F satisfies the Carathéodory conditions.

Example 2 Let F : R × C → Kv(Rn) be a multimap satisfying conditions
(F1) − (F3) of Example 1. Suppose that {K(t, s) : −∞ < s ≤ t < +∞}
is a continuous (with respect to the norm) family of linear operators in Rn
and m ∈ L1

loc(R;Rn) is a given locally integrable function. Consider, for each
k ∈ Z, the Volterra type integral multioperator G : C ([kT − σ, (k + 1)T ];Rn) (
L1 ((kT, (k + 1)T );Rn) defined as

G(u)(t) = m(t) +

∫ t

kT

K(t, s)F (s, us)ds,

i.e.,

G(u) = {y ∈ L1 ((kT, (k + 1)T );Rn) : y(t) = m(t)+

∫ t

kT

K(t, s)f(s)ds : f ∈ PF (u)}.

(2)
It is also obvious that the multioperator G is causal.

Example 3 Suppose that a multimap F : R×C → K(Rn) satisfies the following
condition of almost lower semicontinuity:
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(FL) there exists a sequence of disjoint closed sets {Jn}, Jn ⊆ R n = 1, 2, ...
such that: (i) meas (R \

⋃
n Jn) = 0; (ii) the restriction of F on each set

Jn × C is l.s.c.

Then (see, e.g., [3, 9]) under conditions (FL), (F3), for each k ∈ Z, the
superposition multioperator

PF : C ([kT − σ, (k + 1)T ];Rn) ( L1 ((kT, (k + 1)T );Rn)

is also well-defined and causal.

3.2 Periodic problem

Denote by CT the space of continuous T -periodic functions x : R → Rn with
the norm ‖x‖C = sup

t∈[0,T ]

‖x(t)‖. By ‖x‖2 we denote the norm of function x in

the space L2,

‖x‖2 =

 T∫
0

‖x(s)‖2 ds


1
2

.

To define the notion of a periodic causal multioperator, introduce, for k ∈ Z,
the following shift operator jk : L1 ((kT, (k + 1)T );Rn)→ L1 ((0, T );Rn) :

jk(f)(t) = f(t+ kT ).

Definition 8 A causal multioperator Q will be called T -periodic if, for each
x ∈ CT and k ∈ Z,

jk(Q(x |[kT−τ,(k+1)T ])) = Q(x |[−τ,T ]).

It is clear that, to provide the periodicity of the causal multioperators in the
above examples, it is sufficient to assume that the multimaps F are T -periodic
in the first argument:

F (t+ T, c) = F (t, c)

for all (t, c) ∈ R × C and in Example 2, additionally, that function m(t) and
family K(t, s) are also T -periodic:

m(t+ T ) = m(t), ∀t ∈ R;

K(t+ T, s+ T ) = K(t, s), ∀ −∞ < s ≤ t < +∞.

It is clear that the condition of periodicity of the causal multioperator allows to
consider it only on the space C([−τ, T ];Rn).

Given a T -periodic causal multioperator Q, we will consider the existence of
solutions to the following problem:

x′ ∈ Q(x), (3)
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where x ∈ CT is an absolutely continuous function.
Denote by L1

T the space of integrable T -periodic functions f : R→ Rn.
In this section we will assume that the T -periodic causal multioperator Q :

CT → Cv(L1
T ) satisfies the following conditions:

(Q1) for each bounded linear operator A : L1
T → E, where E is a Banach space,

the composition A ◦ Q : CT → Cv(E) is closed;

(Q2) there exists a non-negative T -periodic integrable function α(t) such that

‖Q(x)(t)‖ ≤ α(t)(1 + ‖x(t)‖) for a.e. t ∈ R

for each x ∈ CT .

To provide condition (Q1) in Examples 1 and 2, it is sufficient to assume, besides
the above mentioned periodicity conditions, that the multimap F satisfies con-
ditions (F1) – (F3) (see, e.g. [1], Theorem 1.5.30) and to fulfil condition (Q2),
we can suppose, in Example 1, the following sublinear growth condition: for
each x ∈ CT we have, for some non-negative integrable function β(t):

‖F (t, xt)‖ ≤ β(t)(1 + ‖x(t)‖) a.e.t ∈ [0, T ], (4)

and, in Example 2, the global boundedness condition

‖F (t, c)‖ ≤ γ(t) (5)

for some non-negative integrable function γ(t).
To study periodic problem (3) we will need a coincidence point result for a

multivalued perturbation of a linear Fredholm operator. Let us give necessary
definitions.

Let E1, E2 be Banach spaces, U ⊂ E1 an open bounded set; l : Dom l ⊆
E1 → E2 a linear Fredholm operator of zero index such that Im l ⊂ E2 is closed.

Consider continuous linear projection operators p : E1 → E1 and q : E2 →
E2 such that Im p = Ker l, Im l = Ker q. By the symbol lp denote the restric-
tion of the operator l to Dom l ∩Ker p.

Further, let the continuous operator kp,q : E2 → Dom l ∩ Ker p is de-
fined by the relation kp,q(y) = l−1p (y − q(y)), y ∈ E2; the canonical projection
operator π : E2 → E2/ Im l has the form π(y) = y + Im l, y ∈ E2; and
φ : Coker l→ Ker l a continuous linear isomorphism.

Let G : U → Kv(E2) be a closed multimap such that

(a) G(U) is a bounded subset of E2;

(b) kp,q ◦ G : U → Kv(E1) is compact and u.s.c.

The following assertion holds true (see [3], Lemma 13.1).

Lemma 1 Suppose that:
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(i) l(x) /∈ λG(x) for all λ ∈ (0, 1], x ∈ Dom l ∩ ∂U ;

(ii) 0 /∈ πG(x) for all x ∈ Ker l ∩ ∂U ;

(iii) degKer l(φπG|UKer l
, UKer l) 6= 0, where the symbol degKer l denotes the

topological degree of a multivalued vector field evaluating in the space
Ker l, and UKer l = U ∩Ker l.

Then l and G has a coincidence point in U , i.e., there exists x ∈ U such that
l(x) ∈ G(x).

Developing notions introduced in [6, 10, 18], let us give the following defini-
tion.

Definition 9 A continuously differentiable function V : Rn → R is called the
integral guiding function for inclusion (3) if there exists N > 0 such that∫ T

0

〈∇V (x(s)), f(s)〉 ds > 0 for all f ∈ Q(x), (6)

for each absolutely continuous function x ∈ CT such that ‖x‖2 ≥ N and
‖x′(t)‖ ≤ ‖Q(x)(t)‖ a.e. t ∈ [0, T ].

From the definition it immediately follows that the integral guiding function
V is a non-degenerate potential in the sense that

∇V (x) 6= 0,

for all x ∈ Rn, ‖x‖ ≥ K = N√
T
. Therefore, on each closed ball BK̃ ⊂ Rn

centered at the origin of the radius K̃ ≥ K, the topological degree of the gradient
deg(∇V ;BK̃) is well defined and, moreover, it does not depend on the radius

K̃ (see, e.g., [18, 20]). This generic value of the degree will be called the index
Ind V of an integral guiding function V.

Definition 10 A non-degenerate potential V : Rn → R is called the generalized
integral guiding function for inclusion (3) if there exists N > 0 such that∫ T

0

〈∇V (x(s)), f(s)〉 ds ≥ 0 for some f ∈ Q(x), (7)

for each absolutely continuous function x ∈ CT such that ‖x‖2 ≥ N and
‖x′(t)‖ ≤ ‖Q(x)(t)‖ a.e. t ∈ [0, T ].

Now we are in position to formulate the main result of this section.

Theorem 1 Let V : Rn → R be an generalized integral guiding function for
problem (3) such that

Ind V 6= 0.

Then problem (3) has a solution.

7
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Remark 4 Notice that conditions of the theorem are fulfilled if, for example,
the function V is even or satisfies the coercivity condition: lim

‖x‖→+∞
V (x) = ±∞.

Proof Step 1. Let us consider the case of the strict integral guiding function
for inclusion (3). Let us justify the solvability of the following operator inclusion

lx ∈ Q(x), (8)

where l : Dom l := {x ∈ CT : x is absolutely continuous} ⊂ CT → L1
T is

the linear Fredholm operator of zero index. It is easy to see that Ker l = Rn,

projection π : L1
T → Rn may be given by the formula πf = 1

T

T∫
0

f(s) ds and

the multioperators πQ and kp,qQ are convex-valued and compact on bounded
subsets.

Now, let, for some λ ∈ (0, 1] a function x ∈ Dom l is the solution of the
inclusion

lx ∈ λQ(x.)

It means that x(·) is an absolutely continuous function such that x′(t) = λf(t)
a.e. t ∈ [0, T ], for some f ∈ Q(x).

Then ∫ T

0

〈∇V (x(s)), f(s)〉 ds =
1

λ

∫ T

0

〈∇V (x(s)), x′(s)〉 ds =

=
1

λ

∫ T

0

V ′(x(s)) ds =
1

λ
(V (x(T ))− V (x(0))) = 0,

yielding
‖x‖2 < N.

From condition (Q2) it follows that ‖x′‖2 < M ′, where M ′ > 0. But then
there exists also M > 0 such that

‖x‖C < M.

Now, take as U the ball Br ⊂ CT of the radius r = max{M,NT−1/2}. Then
we have

lx /∈ λQ(x)

for all x ∈ ∂U .
Take an arbitrary u ∈ ∂U∩Ker l. We have ‖u‖ ≥ NT−1/2 and considering u

as a constant function, from the definition of the strict integral guiding function
we obtain ∫ T

0

〈∇V (u), f(s)〉 ds > 0

for each f ∈ Q(u). But∫ T

0

〈∇V (u), f(s)〉 ds = 〈∇V (u),

∫ T

0

f(s) ds〉 = T 〈∇V (u), πf〉 > 0,
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and, therefore
〈∇V (u), y〉 > 0

for each y ∈ πQ(u).
It means that 0 /∈ πQ(u) and, moreover, the multifield πQ(u) and the field

∇V (u) do not admit opposite directions for u ∈ ∂U ∩Ker l. It means that they
are homotopic and, hence,

deg(πQ
∣∣
UKer l

, UKer l) = deg(∇V,UKer l) 6= 0,

where UKer l = U ∩Ker l. Therefore, all conditions of Lemma 1 are fulfilled and
problem (8), and, hence (3) have a solution.

Step 2. Now we consider the case of the generalized integral guiding function
for inclusion (3). Consider a multimap B : CT → P (L1

T ) defined as

B(x) =

{
ϕ : |ϕ(t)| ≤ α(t)(1 + ‖xt‖) and γ(x)

∫ T

0

〈
∇V

(
x(s)

)
, ϕ(s)

〉
ds ≥ 0

}
,

where the first relation holds true for a.e. t ∈ [0, T ], α(·) is a function from the
condition (Q2), and

γ(x) =

{
0, if ‖x‖2 ≤ N,
1, if ‖x‖2 > N.

It is easy to verify that B is a closed multimap.
Let us consider a multimap QB : CT → P (L1

T ) given as

QB(x) = Q(x) ∩B(x).

Obviously, the multimap QB is closed and the condition (7) is satisfied for all
f ∈ QB(x).

For the non-degenerate potential V we define a map YV : Rn → Rn as follows

YV (x) =

{
∇V (x), if ‖∇V (x)‖ ≤ 1,
∇V (x)
‖∇V (x)‖ , if ‖∇V (x)‖ > 1.

It is easy to see that the map Y is continuous.
For any εm > 0 we define a multimap Qm : CT → P (L1

T ) as following

Qm(x) = QB(x) + εmYV (x).

The multimap Qm is closed and for each εm > 0 the condition (6) is ful-
filled. By applying results of Step 1 we can prove the solvability of the following
operator inclusion

lx ∈ Qm(x),

for each εm > 0. From which follows the existence of a solution for problem (3).
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